
• Learning the front-end always improves quality  
(with or without attention, but more so with attention)

• Acoustic feedback has a strong beneficial impact 
• Attention (compared to fixed alignment)

• ‘breaks’ without a learned front-end 
• helps a bit (but not significantly) with a learned front-end
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Figure 3: Box plot of normalised ratings per system. 99% con-
fidence intervals are shown for medians (red lines) and means
(yellow diamonds). Whiskers cover 95% of all responses.
Table 4: System differences from listening test. 99% confidence
intervals and Holm-Bonferroni corrected p-values from pair-
wise t-tests (mean) and Clopper-Pearson tests (preference ig-
noring ties). Daggers mark non-significant differences.

A!B E[RB�RA] p-val. P(RB>RA) p-val.

M!MM �47.6±3.1 <10�99 3%2( 1, 5) <10�99

MM!W2 �10.7±2.0 <10�38 21%2(16,27) <10�34

W2!W2T 0.0±1.4 0.956† 49%2(42,56) 0.585†

W2!W2H 1.9±1.6 0.005 56%2(49,63) 0.067†

W2!G2 11.1±2.3 <10�30 74%2(68,80) <10�25

G2!G1 1.8±2.3 0.075† 54%2(47,61) 0.155†

G1!G1H 52.3±3.2 <10�99 97%2(94,99) <10�99

G1H!G1TH 13.2±3.4 <10�20 72%2(66,78) <10�20

G1H!G1HA �17.9±4.0 <10�26 29%2(23,35) <10�19

G1HA!G1THA 34.4±4.1 <10�73 87%2(82,91) <10�62

G1TH!G1THA 3.2±3.3 0.033† 56%2(49,62) 0.067†

(G1!G1H) than when using WORLD features (W2!W2H).
The speech produced by system G1 has a hoarse quality which
can be attributed to predicted harmonic structure which is in-
appropriately averaged, erasing most harmonics and effectively
lowering the maximum voiced frequency.
Q9: The fact that the increase in ratings from G1HA!G1THA
(where attention is being used) is greater than in the comparable
case where no attention is used (G1H!G1TH) suggests that
the benefit of attention is dependent on a learned front end. We
take this to confirm our suspicions that a learned front end is
needed to produce an embedding of inputs which is comparable
with representations derived from acoustics; the single linear
transform of hand-engineered features used by G1HA does not
provide the same degree of comparability. Informal listening to
the output of system G1HA shows that the speech produced by
this system is locally of reasonable quality, but overall marred
by skipped and jumbled segments, which we take to indicate
failures of the attention mechanism.

5. Conclusions

We have studied the perceptual implications of three main char-
acteristics of sequence-to-sequence TTS models. Comparing
listener ratings of TTS systems with and without these fea-
tures, we can conclude that: the use of attention rather than a
fixed alignment does not significantly improve the naturalness
of synthetic speech; the use of learned linguistic analysis im-
proves performance, and seems to be a crucial ingredient in al-
lowing attention to function properly; and finally, conditioning
on previously-generated acoustics also leads to significant gains
in performance.
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Table 2: Systems compared. The signal generator also determines the acoustic features used (vs. 80-filterbank mel-spectrum log-
magnitudes). Learned front-end is DCTTS TextEnc. Fixed alignments are monophone HTS; learned alignments are (guided) attention.

System Codebase Frame hop Dynamic feats. Sig. gen. Acoust. loss Front-end Feedback Alignment SSRN

M Merlin 5 ms �+�2 WORLD L2 Fixed As in [5] Fixed N/A
MM " 12.5 ms " " " " " " "
W2 DCTTS 50 ms None " " " Rel. pos. in phone " “W2”
W2T " " " " " Learned " " "
W2H " " " " " Fixed Acoustic " "
G2 " " " G-L " " Rel. pos. in phone " “G2”
G1 " " " " L1 + BCE " " " “G1”
G1H " " " " " " Acoustic " "
G1TH " " " " " Learned " " "
G1HA " " " " " Fixed " Learned "
G1THA " " " " " Learned " " "

ified to allow among other things the training of between-
paradigm systems and the use of phonetised inputs.2 Hyper-
parameters for training all systems except M and MM were in-
herited from this implementation and were not thoroughly op-
timised for each configuration. We expect that the inherited
parameters will suit configuration G1THA – the system most
similar to DCTTS – best, and systems to the left of G1THA in
Figure 1 progressively worse. This has implications for our res-
ults: we have more confidence that what we find from compar-
isons between systems towards the righthand side of this scale
will be more likely to generalise to situations where hyperpara-
meters are optimised better per system than other comparisons.

All systems described below follow the original formula-
tion of [3] in that they consist of two independently-trained net-
works; the first maps textual or linguistic units to low resolu-
tion acoustic features, and the second (a so-called ‘spectrogram
super-resolution network’, or SSRN) upsamples those acoustics
in time and (in some cases) along the frequency axis.

All systems starting with the code W use the same WORLD
parameters as system MM, extracted with a 12.5 ms frameshift.
The same mel-cepstral representation is used for spectral envel-
ope parameters. The SSRN for these systems (called ‘W2’ in
Table 2) upsamples in time, accepting inputs at 50 ms intervals
and outputting at 12.5 ms intervals. It performs no adjustment
to the dimensionality of each frame of parameters, in contrast
to the SSRNs used for the G systems.

Also, unlike in systems M and MM, none of the SSRNs we
trained made use of dynamic features. Dynamic features are
required by the M systems for use by MLPG to generate static
speech parameter trajectories which vary realistically over time.
We consider this to be one of the responsibilities of the SSRN
in the W and G systems, hence the absence of these features.
Factor T: Systems W2T, G1TH, and G1THA all make use of
learned text analysis; that is, they accept as input phone se-
quences enriched with punctuation and word-boundary symbols
which are fed into a text encoder of the same specification as
that described in [3], consisting of several dilated convolutional
layers and highway blocks. For the remaining systems, switch
II in Figure 2 is adjusted, and the same phone-level labels used
for system M are used in place of the text encoder’s output V.
In these systems, a single learned linear transform is applied to
the labels to turn them to the same dimensionality as V.
Factor A: Systems G1HA and G1THA make use of learned at-
tention, where elements of matrix A (shown in Figure 2) are
computed as the dot-product between frames of K and Q. As

2The modified codebase which will allow the replication of all our
systems will be made freely available.

in [3], an extra attention loss is used for optimisation in these
cases. In other systems, switch IV in Figure 2 is flipped and A is
a binary matrix populated for each sentence from the same fixed
HMM-based alignments used by system M (resampled in time
to the appropriate frame-rate). As A is binary in these cases
(elements either 1 or 0), it acts as a selection matrix: in mul-
tiplying V by it, we are effectively selecting context-dependent
phone representations from V and repeating each of them the
appropriate number of times to match the acoustic frame rate.
Factor H: Systems W2H, G1H, G1HA, G1TH, and G1THA
all condition their predictions on previous frames of acous-
tics. As in [3], ground-truth acoustics are used in training, and
previously-generated ones at synthesis time. Note that Q and H
in Figure 2 – which could in principle be different representa-
tions – are identical in the systems we built, consistent with [3].
For all other systems, switch III is flipped, and a simple frame-
counter feature (normalised position forwards in phone) is used
to condition predictions rather than encoded acoustic history.
Here a single feature is used, and no use is made of state-level
alignments, which means it is rather less informative than the 9
subphone features employed by M and MM.
3.4. Data

All systems were trained on LJ Speech, a public-domain speech
database consisting of approximately 24 hours of transcribed
speech read from non-fiction books by a single speaker. This
data was chosen because it allows free replication of our sys-
tems, is large enough to train reasonable quality sequence-to-
sequence models, and has become a de facto standard database
for benchmarking such models. We use chapters 1–49 of the
dataset for training, reserving chapter 50 for informal listening
and validation during system development.

4. Evaluation

4.1. Listening test

To assess the subjective naturalness of speech synthesised by
the systems in the study, we conducted a MUSHRA-like test
[18] using audio generated from Harvard sentence prompts
[19]. Participants were asked to rate a set of parallel stimuli on a
scale from 0 (very poor) to 100 (completely natural). Each set of
stimuli were generated from an identical sentence text, but syn-
thesised using all 11 systems listed in in Table 2. Stimuli were
presented unlabelled and in random order. As we did not have
access to the LJ Speech speaker uttering the Harvard sentences,
no reference stimuli were used, and listeners were not required
to rate any stimulus at 100. As is common in MUSHRA-like
tests for TTS, no explicit lower anchor was used.

24 paid native English listeners, all students at the Univer-
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improved quality over statistical parametric speech synthesis (SPSS)

• Which elements of the new paradigm contribute most to these gains?

• Propose a functional mapping between seq2seq subnets and SPSS 
modules to step gradually from SPSS → S2S

• In addition to many subsidiary questions:

What is the impact of learning the front end (Text encoder)? 
What is the impact of conditioning on acoustic History?
What is the impact of jointly-learned alignments (Attention)? 

 

Table 3: Questions for the experiments, relating either to dif-
ferences between SPSS and sequence-to-sequence neural TTS
(primary questions), or differences within paradigms (second-
ary questions), or how design decisions interact with each other
(interaction questions).

Type ID Question: Relevant system
(“What is the impact of. . . ”) contrasts

Pr
im

ar
y

Q1 . . . learning the front end?
W2 vs. W2T

G1H vs. G1TH
G1HA vs. G1THA

Q2 . . . acoustic feedback replacing
positional feedback?

W2 vs. W2H
G1 vs. G1H

Q3 . . . jointly-learned alignments
replacing fixed alignments?

G1H vs. G1HA
G1TH vs. G1THA
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Q4 . . . Merlin simplifications to ease
stepping toward DCTTS?

M vs. MM

Q5 . . . using the DCTTS
architecture and codebase?

MM vs. W2

Q6 . . . DCTTS waveform generation
replacing World?

W2 vs. G2

Q7 . . . the DCTTS loss function
replacing L2 loss?

G2 vs. G1

In
te

ra
ct

io
n

Q8 Does acoustic feedback interact
with the acoustic feature type?
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Figure 2: Block diagram.

sity of Edinburgh, took part in the evaluation. Listeners were
partitioned into 3 groups of 8 listeners each; each group listened
to 2 distinct sets of 10 approximately phonetically balanced
Harvard sentence prompts [19]. In total 480 sets of parallel rat-
ings were obtained. All tests were conducted in sound-insulated
booths using professional-quality headphones.

For the analysis each set of 11 ratings was min-max norm-
alised to the range 0 to 100 through an affine transform, in order
to reflect relative differences between the systems. A box plot of

the resulting normalised ratings is shown in Fig. 3. Table 4 lists
the findings for contrasts between adjacent systems in the study,
as graphed in Fig. 1. For each contrast, both listener preferences
and the mean difference in normalised rating is tabulated with
conf. intervals and p-values adjusted for multiple comparisons.

4.2. Results and discussion

We now review each of the questions posed in Table 3 in turn
and attempt to answer them based on the results of the listen-
ing test. The very low scores (both absolute and after norm-
alisation) of systems W2, W2T, and W2H mean that differ-
ences between these systems should be interpreted with caution.
We instead focus more on comparisons featuring other systems,
where possible.
Q1: The G1H!G1TH and G1HA!G1THA comparisons
show that learning the linguistic analyser helps, and the effects
on mean rating and listener preference are substantial. This
holds independently of whether attention is used or not.
Q2: The G1!G1H comparison shows that acoustic feedback
has a strongly beneficial impact on the quality of synthetic
speech. Not all of this improvement can be explained by sim-
plifications made in system G1, since G1H also significantly
improves on the original Merlin system M according to Holm-
Bonferroni-corrected significance tests like those in Table 4.
Q3: The G1TH!G1THA comparison shows – perhaps sur-
prisingly – that jointly learning to align and predict does not
significantly improve quality of synthetic speech over using the
fixed forced alignment in M. Furthermore, we can be relatively
confident in this conclusion as the hyperparameters we are us-
ing are most appropriate at this end of the range of systems, as
mentioned at the start of Section 3.3.
Q4: The M!MM comparison shows that the simplifications
made to the Merlin benchmark in order to compare with sys-
tems derived from DCTTS had a disastrous effect on perceived
naturalness. Further investigation would be needed to determine
whether this is due to the increased frame shift, the decreased
number of states in forced alignment, or some interaction of
these with other details of model training.
Q5: Stepping from MM to W2 worsened performance further.
Again, the number of things changed in an uncontrolled way at
this point in the range of systems means that further investig-
ation would be needed to determine whether this is due to the
use different network architectures and sizes, SSRN, different
optimisers, learning rates, etc. An omission in the design of
systems W2, W2T, and W2H is that no postfiltering or variance
expansion was applied to their output (unlike systems M and
MM), creating further uncontrolled factors of variation.
Q6: The W2!G2 comparison shows a significant preference
for the system employing Griffin-Lim for waveform generation
over that employing WORLD. Informal listening shows that
the systems have different types of artefact: W2 with its sep-
arate F0 representation has a pitch contour which is more prop-
erly periodic in voiced speech, but oversmoothed on the whole
(which could be attributed to the lack of post-processing such
as variance expansion). G2’s pitch contour is more varied but
the speech has a hoarse quality which we attribute to averaging
of fine mel-spectral detail.
Q7: The G2!G1 comparison indicates that no advantage is
gained from using L2 loss versus the combined losses employed
by DCTTS. However, this comparison takes place between sys-
tems on a part of the scale which we treat with caution.
Q8: As expected, results suggest that using acoustic feed-
back gives greater gains when using mel-spectrogram features
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