Where do the improvements come from in sequence-tosequence neural TTS?

Oliver Watts Gustav Eje Henter Jason Fong Cassia Valentini-Botinhao

Motivation

- Attention-based sequence-to-sequence (seq2seq) systems lead to improved quality over statistical parametric speech synthesis (SPSS)
- Which elements of the new paradigm contribute most to these gains?
- Propose a functional mapping between seq2seq subnets and SPSS *modules* to step gradually from SPSS → S2S
- In addition to many subsidiary questions:

What is the impact of learning the front end (Text encoder)?

What is the impact of conditioning on acoustic History?

What is the impact of jointly-learned alignments (Attention)?

Systems built

System	Codebase	Frame hop	Dynamic feats.	Sig. gen.	Acoust. loss	Front-end	Feedback	Alignment	SSRN
M	Merlin	5 ms	$\Delta + \Delta^2$	WORLD	L2	Fixed	As in [5]	Fixed	N/A
MM	"	12.5 ms	"	11	"	11	"	"	**
W2	DCTTS	50 ms	None	11	"	"	Rel. pos. in phone	"	"W2"
W2T	"	"	"	11	"	Learned	" "	"	**
W2H	"	"	"	11	"	Fixed	Acoustic	"	**
G2	"	"	"	G-L	"	"	Rel. pos. in phone	"	"G2"
G1	11	11	"	11	L1 + BCE	"	" "	"	"G1"
G1H	11	11	"	11	**	"	Acoustic	"	**
G1TH	11	11	"	11	**	Learned	"	"	**
G1HA	11	11	"	11	"	Fixed	"	Learned	**
G1THA	"	"	11	11	11	Learned	"	"	**

Relevant system

Merlin codebase M WORLD Griffin-Lim L2 loss L1 + binary cross **Attention** Learned Text analysis Acoustic History feedback

Question:

The systems built represent one way of flipping the switches T, A & H to step from Merlin to DCTTS. Several partial paths are added to increase the number of useful comparisons we can make.

SPSS -> S2S-TTS phone label sequence Setting the sequence from Festival positions of 3 Switch T: controls switches allows whether the inputs **Text** us to implement is a sequence of encoder intermediate phones + systems between punctuation or the old and new richer inputs used paradigms in a by Merlin (phones + single framework phonetic features + POS tags + positional features) forced alignment Switch A: controls whether positional upsampling features matrix A is jointly learned Switch H: Н with acoustic encoded model via acoustic attention or history or Audio encoder fixed 'hard Decoder fractional (prenet) attention' matrix progress supplied by through forced time delay phone alignment

Evaluation

systems

- Training data: LJSpeech 24 hours of read speech
- MUSHRA-like test; G1THA as reference, no anchor
- 24 paid native English listeners
- Each listener rated two sets of 10 synthesised Harvard sentences, every set phonetically balanced

Main findings

- Learning the front-end always improves quality (with or without attention, but more so with attention)
- Acoustic feedback has a strong beneficial impact
- Attention (compared to fixed alignment)
 - 'breaks' without a learned front-end
 - helps a bit (but not significantly) with a learned fror

