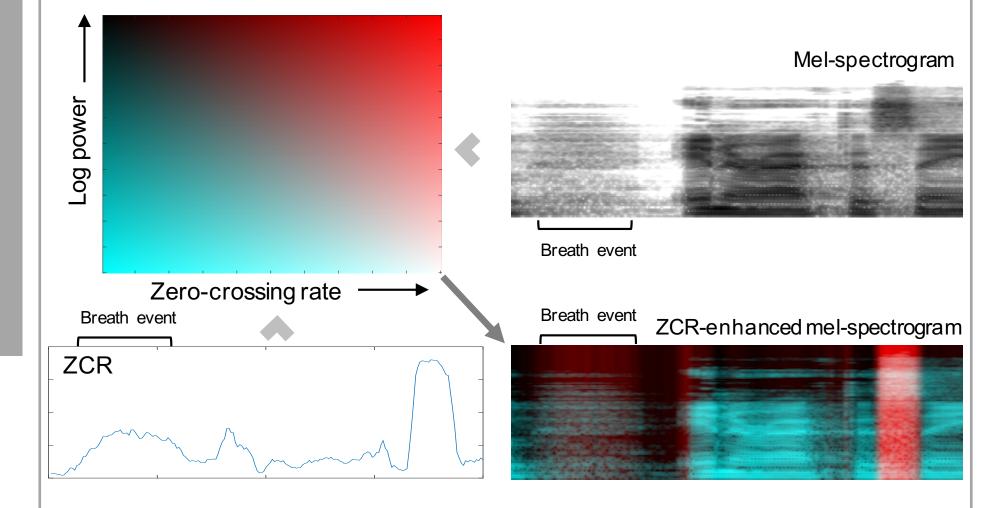


SPONTANEOUS CONVERSATIONAL SPEECH SYNTHESIS FROM FOUND DATA

Éva Székely, Gustav Eje Henter, Jonas Beskow, Joakim Gustafson

Division of Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden


Motivation: Most speech is spontaneous and conversational. TTS should be, too!

Approach

Data source: Public domain conversational podcast with 2 speakers **Issue 1**: No punctuation/sentences \rightarrow Segment on breath groups (BGs) **Issue 2**: Multiple speakers \rightarrow Use lightly-supervised speaker-dependent BG extractor as described in [1]

Issue 3: No transcription \rightarrow Use ASR: Google Speech API, IBM Watson **Issue 4**: Disfluent; filled pauses (FPs) \rightarrow use Gentle forced aligner to transcribe FPs as 'uh' and 'um' **Result:** 27 episodes \rightarrow 9 hours of clean, single-speaker BGs Rayhane Mama's Tacotron 2 [2] + Griffin-Lim TTS:

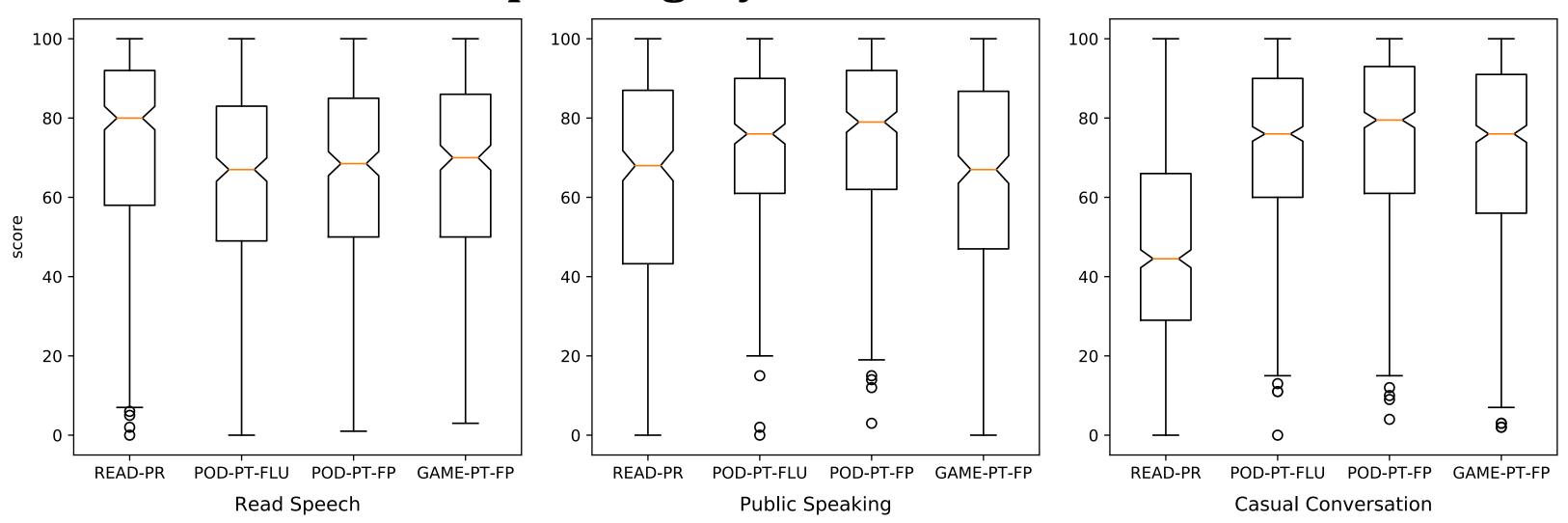
Segmentation of 1-hour long episodes into singlespeaker utterances: with a CNN-LSTM breath detector on ZCR-enhanced spectrograms [1]

Evaluation 1: Formal evaluation on the effect of transfer learning and G2P front end on pronunciation

G2P	Transfer learning	Pron. errors
	\checkmark	49
\checkmark		43
\checkmark	\checkmark	13*

Finding 1: Both transfer learning with a read-speech corpus, and G2P improve pronunciation. 2 evaluators on 400 phonetically balanced (Harvard) sentences

Evaluation 2: Disfluencies and conversational characteristics


Voice		Repeated Syllables			Find has a
Whole corpus	15	32	40/422	18/98	spee sylla
Fluent half	5	6	57/422	13/98	of no dete

ling 2: The disfluent voice a significantly slower ech rate, more repeated ables, but the distribution non-reduced forms of erminers remains similar

www.speech.kth.se/tts-demos

System	Data	Found	Spont.	Disfl.	Has text
READ-PR	LJ Speech	\checkmark			\checkmark
POD-PT-FLU	Podcast [1]	\checkmark	\checkmark		
POD-PT-FP	Podcast [1]	\checkmark	\checkmark	\checkmark	
GAME-FT-FP	Conversation		\checkmark	\checkmark	\checkmark

Evaluation 3: MUSHRA-like listening test on genre-appropriateness

How well does the **speaking style match** the content of the utterance?

Finding 3: On spontaneous text prompts, our found and spontaneous podcast TTS speaking style was preferred over TTS from either found but read, or spontaneous conversational but labrecorded corpora. No significant difference was found between the disfluent and the fluent podcast voices.

Evaluation 4: Preference test on the impact of filled pauses on perception

Which speaker sounds more engaging ?						
	POD-PT-FP	no diff.	POD-PT-FLU			
Which speaker sounds more authentic ?						
POD-PT-FP* (p=0.007)		no diff.	POD-PT-FLU			
%	25%	50%		75%	100	

Finding 4: Having FPs ("FP" as opposed to "FLU") improved perceived authenticity when synthesising series of prompts from public speeches. The presence of FPs seemed to have no effect on how engaging the listeners found the speaker.

[2] R. Mama, "Tacotron-2 Tensorflow implementation," <u>https://github.com/Rayhane-mamah/Tacotron-2/</u>, 2018.