

A template-based approach for speech synthesis intonation generation using LSTMs

Srikanth Ronanki

Gustav

Zhizheng

Simon

Introduction: Statistical speech synthesis

Why template-based approach?

- Lack of convincing intonation makes current parametric systems sound dull and lifeless.
- Typically, these systems predict F0 frame-by-frame using regression models.
- This approach leads to overly-smooth pitch contours and fail to construct an appropriate prosodic structure.
- Templates retain the dynamic range of F0 within the segment.
- We propose a classification-based approach to automatic F0 generation.

Pitch contour

Pitch contour segmentation

Hierarchical clustering

How to determine number of clusters?

A set of templates (clusters)

Intonation reconstruction from templates

Goldilocks and the three bears

Intonation reconstruction

Hierarchical clustering - Recap

- Interpolate the F0 contour of each utterance and segment into syllables
 - Apply DCT based decomposition:
 c0 representing the mean over syllable,
 c = [c1,...,CN-1], representing the shape of the contour
- Perform top-to-bottom hierarchical clustering over the patterns (c).

Proposed approaches

Neural Network classifiers:

- A hierarchical deep neural network classifier (HC).
 - The first DNN choses between flat and non-flat template.
 - The second DNN choses among rest of the non-flat templates.
- A simplified LSTM with a CTC output layer (CTC).
 - Connectionist temporal classification coupled with S-LSTM to predict the sequence of templates given sequence of phonemes.

Results: systems

- Baseline system
 - MSE A frame-wise regression baseline predicting F0 using LSTMs.
- Proposed systems
 - HC A hierarchical deep neural network classifier
 - CTC A simplified LSTM coupled with CTC output layer
 - Oracle A oracle system using templates derived from natural F0 contour but with predicted F0 mean and duration

Objective evaluation

- Classification measures
 - Accuracy percentage of templates correctly classified
 - F1 score is a measure of test's accuracy (precision and recall)

Model	Accuracy	F1 score
НС	61.1%	0.590
СТС	63.8%	0.593

Objective evaluation

- F0 prediction measures
 - RMSE Root mean square error
 - CORR Pearson correlation

Fig: RMSE of predicted F0

Fig: Correlation of predicted F0

• Oracle templates + Oracle F0 mean - 0.89 (corr.)

Subjective evaluation

- Reference systems
 - MSE A frame-wise regression baseline predicting F0 using LSTMs.
 - BOT A bottom line using piecewise-constant F0 per syllable (the mean natural F0)
 - BMK A benchmark system using force-aligned durations and natural F0 contours
 - VOC A top line of vocoded speech (STRAIGHT in this work)

Subjective evaluation: MUSHRA

- 20 listeners
- 20 out of 32 test stimuli

Fig: Box plot of aggregate ranks from listening test. Red lines are medians, orange squares means.

Summary and conclusions

- A classification approach to intonation prediction with syllable F0 templates
- Proposed approach matches the performance of conventional approach
- Has potential to exceed it once the issues with oracle template system are overcome
- Future work:
 - Better smoothing techniques and word-level templates
 - Use the prediction probabilities as features for frame-level regression approaches

Code

- Code for templates and clustering
 - https://github.com/ronanki/Hybrid_prosody_model
- Code for training neural networks
 - https://github.com/CSTR-Edinburgh/merlin

