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Overview

Speech in noise can be made more intelligible without an increase in energy!

> Human strategies (Lombard speech) do this to a limited extent;

> Machines can go further but need to be controlled carefully.

An optimization-based framework for speech pre-emphasis may target
> Minimizing a perceptual distortion measure (improving audibility);

> Maximizing recognition accuracy (improving sound discrimination).

We show that the optimization of a measure of speech intelligibility at
the text level (based on a clean speech model from ASR) for the param-
eters of a speech modification strategy can increase intelligibility significantly.

The method requires:
> A phonetic transcription of the message;

> An accurate phone-level waveform segmentation.
A-priori available in TTS. Extracted for recorded & live speech;

» Disturbance statistics.
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Figure 1: Speech Communication Hierarchy.

Modification-side perspective Optimization-side perspective

> Low-level modifications > Low-level measure optimization

— Efficient but limited;
—Widely used in practice.

—Low complexity;
— Modification-specific;
— Conceptually far from the true

> High-level modifications objective (message intel.).

— Need more prior knowledge; > High-level measure optimization

— Opens wide modificiation space. — More general;

— Closer to the true objective.
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Text-Level Objective Intelligibility

Select the modification parameters c that maximize the probability
D (t | F, (c) ,V) of the correct transcription, where

> t is the correct message transcription
> f’y are the estimated features of the noisy signal

> ¢ are modification parameters
> V is a clean speech model from an HMM-based ASR.

A theoretically-equivalent form of p (t | f’y (c) ,V) is:

O(e)=log (p (Fyle) [ £,V)) =log [ S p(Fy(e)[.V)p(x V)], (1)

T, 7+t

where 7 is an index over all possible transcriptions,
J
p (f’y (c),s| T,V) =[[v (fi; (c) | Sj,V) p(s' s, 7,V) (2)
j=1

for some state sequence s and
p(Fy(CHT,V)IZp(Fy(C),S|T,V). (3)

S
Phone-duration compensation: the duration of a phone is not representative
of its contribution to intelligibility at the word level. Duration-invariance
can be introduced through phone duration normalization.

Practical considerations: the optimization of (1) is computationally
demanding when working with context-dependent speech models from
ASR. Here we focus on the first term of (1) and evaluate the performance
of an approximation to the desired discriminative measure.

Optimization problem:

L J
c = argmaxx S: Jl_llog (p (}% (c) | s’ V) p (Sj | s/t V)) . (4)

=1 j=1

Modifications: i) spectral-band gain and ii) phone-energy gain adjustment
(both accommodate linear energy-preservation constraints).
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Figure 2: Diagram of the system operating on a single word.
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Results

Experiment |

> Eight-band spectral gain mod.
(word level /energy preserving);

> Utterance-level word recognition:
r, = 0.38 (natural speech)
rm = 0.59 (modified speech)

> High improvement significance.

> No phone-duration normalization;

> Multi-speaker babble noise at
—3dB, 30 sentences, 8 subjects.

Experiment ||

> 50-band spectral gain mod. (word level /energy preserving);
> Phone-gain mod. (word level /energy preserving) follows spectral mod.;

> Two noise types at two SNRs, 120 sentences, 12 subjects.

Subjective Recognition Rates for Speech in Speech—Shaped Noise
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Subjective Recognition Rates for Speech in Babble Noise
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Figure 3: Results from subjective evaluation using 12 sets from the Harvard database and 12 subjects.
(ref. method: Taal et al., 'A Speech Preprocessing Strategy for Intelligibility Improvement in Noise Based
on a Perceptual Distortion Measure’, ICASSP 2012. )
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Figure 4: Effect of the adopted modifications in —4 dB SNR speech-shaped noise.

Future Work

> Phone-level spectral modifications (sound-specific modifications);
> Evaluate the performance of the discriminative measure;

> Extend application domain: TTS, live speech, accent adaptation.



