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Overview
Speech in noise can be made more intelligible without an increase in energy!
I Human strategies (Lombard speech) do this to a limited extent;
I Machines can go further but need to be controlled carefully.

An optimization-based framework for speech pre-emphasis may target
I Minimizing a perceptual distortion measure (improving audibility);
I Maximizing recognition accuracy (improving sound discrimination).

We show that the optimization of a measure of speech intelligibility at
the text level (based on a clean speech model from ASR) for the param-
eters of a speech modification strategy can increase intelligibility significantly.

The method requires:
I A phonetic transcription of the message;
I An accurate phone-level waveform segmentation.
A-priori available in TTS. Extracted for recorded & live speech;

I Disturbance statistics.
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Figure 1: Speech Communication Hierarchy.

Modification-side perspective
I Low-level modifications
–Efficient but limited;
–Widely used in practice.

I High-level modifications
–Need more prior knowledge;
–Opens wide modificiation space.

Optimization-side perspective
I Low-level measure optimization
– Low complexity;
–Modification-specific;
–Conceptually far from the true
objective (message intel.).

I High-level measure optimization
–More general;
–Closer to the true objective.

Text-Level Objective Intelligibility
Select the modification parameters c that maximize the probability
p
(
t | F̂ y (c) ,V

)
of the correct transcription, where

I t is the correct message transcription
I F̂ y are the estimated features of the noisy signal
I c are modification parameters
I V is a clean speech model from an HMM-based ASR.

A theoretically-equivalent form of p
(
t | F̂ y (c) ,V

)
is:

O (c) = log
(
p
(
F̂ y (c) | t,V

))
− log

∑
τ ,τ 6=t

p
(
F̂ y (c) | τ ,V

)
p (τ | V)

 , (1)

where τ is an index over all possible transcriptions,

p
(
F̂ y (c) , s | τ ,V

)
=

J∏
j=1

p
(
f̂ j
y (c) | sj,V

)
p
(
sj | sj−1, τ ,V

)
(2)

for some state sequence s and
p
(
F̂ y (c) | τ ,V

)
=
∑
s

p
(
F̂ y (c) , s | τ ,V

)
. (3)

Phone-duration compensation: the duration of a phone is not representative
of its contribution to intelligibility at the word level. Duration-invariance
can be introduced through phone duration normalization.

Practical considerations: the optimization of (1) is computationally
demanding when working with context-dependent speech models from
ASR. Here we focus on the first term of (1) and evaluate the performance
of an approximation to the desired discriminative measure.

Optimization problem:

c = argmax
c′

L∑
l=1

Jl∑
j=1

J−1l log
(
p
(
f̂ j
y (c

′) | sj,V
)
p
(
sj | sj−1, tl,V

))
. (4)

Modifications: i) spectral-band gain and ii) phone-energy gain adjustment
(both accommodate linear energy-preservation constraints).
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Figure 2: Diagram of the system operating on a single word.

Results
Experiment I
I Eight-band spectral gain mod.
(word level/energy preserving);

I No phone-duration normalization;
I Multi-speaker babble noise at
−3 dB, 30 sentences, 8 subjects.

I Utterance-level word recognition:
rn = 0.38 (natural speech)
rm = 0.59 (modified speech)

I High improvement significance.

Experiment II
I 50-band spectral gain mod. (word level/energy preserving);
I Phone-gain mod. (word level/energy preserving) follows spectral mod.;
I Two noise types at two SNRs, 120 sentences, 12 subjects.
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Figure 3: Results from subjective evaluation using 12 sets from the Harvard database and 12 subjects.
(ref. method: Taal et al., ’A Speech Preprocessing Strategy for Intelligibility Improvement in Noise Based
on a Perceptual Distortion Measure’, ICASSP 2012. )
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Figure 4: Effect of the adopted modifications in −4 dB SNR speech-shaped noise.

Future Work
I Phone-level spectral modifications (sound-specific modifications);
I Evaluate the performance of the discriminative measure;
I Extend application domain: TTS, live speech, accent adaptation.


