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Why do speech engineers need speech sci-
ences?

I There is no synthesis without analysis (mostly)

I More data, better algorithms, better performance -
yes, but what about:

I ... understanding your data?
I ... modeling your data so that you can manipulate or

predict particular aspects of it?

I Methodology: prevent your non-ML statistics muscle
atrophy
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Why does speech synthesis need speech sci-
ences?

I Instrumental in speech processing and engineering in
the formant synthesis age: sparse data, wetware
modelling (King, 2015)

I Today: perception-based modelling (e.g. mel scale)

I Benchmarking TTS: advanced evaluation methods
crossed over from e.g. psycholinguistics
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Why do phoneticians need speech synthesis?

I Categorical speech perception: use of synthetic sound
continua (Lisker and Abramson, 1970)

I Motor theory of speech perception (Liberman and
Mattingly, 1985), acoustic cue analysis

I Analysis by synthesis: modelling frameworks used for
testing phonological models (Xu and Prom-On, 2014;
Cerňak et al., 2017)
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Why do phoneticians need speech synthesis?

I Stimuli creation: assess listeners’ sensitivity to a
particular acoustic cue in isolation

I Manipulation of e.g. formant transitions: how to
exclude redundant and residual cues to place of
articulation

I Control over single-cue variability limiting confounds

I MBROLA, PSOLA (Dutoit et al., 1996; Moulines and
Charpentier, 1990) (Gao, this conference)

I Speech distortion and delexicalisation, noise-vocoding
(White et al., 2015; Kolly and Dellwo, 2014)
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Current situation
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Proposed development
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Simultaneous routes towards the goal

I Resources: What can be achieved by open code and
databases with modest computation?

I Evaluation: a case for careful evaluation leading to
robust and standardised benchmarking

I We are in new territory in terms of what TTS can do,
new evaluation methods necessary

I Renewing dialogue between speech sciences and
technology
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New areas for research

I Generating conversational phenomena "on demand"
(Szekely et al. submitted)

I Phenomena difficult to elicit from human speakers in
empirical designs (optional, non-intentional)

I "Artificial speech" vs. realistic speaker babble
(WaveNet)
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Control

I Controllable neural vocoder: MFCCs re-placed with
more phonetically meaningful speech parameters
(Juvela et al., 2018)

I Same parameters can be predicted from text
(Tacotron, Wang et al. (2017))

I Control of high-level features (Malisz et al. 2017; SSW
submitted)
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Modern speech synthesis for phonetic
sciences: a discussion and an evaluation
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Where are we on realism exactly?

I What is the actual perceptual difference between
natural speech and modern synthesis?

I Winters and Pisoni (2004) showed that classic
synthesis:

I is less intelligible
I overburdens attention and cognitive mechanisms

resulting in slower processing times

I Compare natural speech, classic synthesis and
modern synthesisers on:

I listener preference
I intelligibility
I speed of processing
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System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Copy synthesis (acoustic analysis followed by
re-synthesis) with the MagPhase vocoder (Espic et al.
2017)
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System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Synthetic speech generated by the Merlin TTS system
Wu et al. (2016) using the MagPhase vocoder.

I Standard research grade statistical-parametric TTS.
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System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Copy synthesis from magnitude mel-spectrograms
using the Griffin-Lim algorithm (Griffin 1984) for phase
reconstruction.
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System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Tacotron-like TTS using deep convolutional networks
as in (Tachibana et al. 2018) with Griffin-Lim signal
generation.
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System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

I Rule-based formant TTS system (Carlson et al. 1982,
Sjolander et al. 1998) configured to use a male RP
British English voice.

I Research-grade formant-based TTS.
I Permits optional prosodic emphasis control.
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Subjective rating: MUSHRA test
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Subjective rating: MUSHRA test

I The test used 20 native English-speaking listeners,
N=799 ratings per system

I Listeners rated stimuli representing the different
systems speaking four sets of ten Harvard sentences
(designed to be approximately phonetically balanced)
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Lexical decision: correct response rate and reac-
tion time test
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Lexical decision: correct response rate and reac-
tion time test
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Lexical decision: correct response rate and reac-
tion time test

I We tested 20 listeners, 600 choices and reaction
times per listener

I Stimuli: CVC words from 50 minimal pairs selected
from MRT, embedded in a fixed carrier sentence
rendered by the six different systems.
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Results: subjective rating via MUSHRA
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I Pairwise system differences all statistically significant
(p < 0.001),

I VOC was rated above NAT 5.7% of the time
I MERLIN was rated above NAT 0.38% of the time
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Results: correct response rate and reaction time
via lexical decision

System Estimate p-value Incorrect
NAT (ref.) 2.6%
GL -0.001 = 0.94 4.0%
VOC 0.02 = 0.33 2.5%
DCTTS 0.04 < 0.01 5.8%
MERLIN 0.02 = 0.14 3.0%
OVE 0.09 < 0.001 6.0%
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Results: correct response rate

System Estimate p-value Incorrect
NAT (ref.) 2.6%
GL -0.001 = 0.94 4.0%
VOC 0.02 = 0.33 2.5%
DCTTS 0.04 < 0.01 5.8%
MERLIN 0.02 = 0.14 3.0%
OVE 0.09 < 0.001 6.0%
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Results: reaction times

System Estimate p-value Incorrect
NAT (ref.) 2.6%
GL -0.001 = 0.94 4.0%
VOC 0.02 = 0.33 2.5%
DCTTS 0.04 < 0.01 5.8%
MERLIN 0.02 = 0.14 3.0%
OVE 0.09 < 0.001 6.0%
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Conclusions

I Modern methods largely overcome the processing
inadequacies of systems commonly used in speech
sciences.

I Include speech manipulation and neural vocoders to
further improve on the quality of systems for speech
sciences

I You can always use OVE for the "artificial speech"
quality but realistic synthesis should generalise better
to actual speech perception
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Thank you!
Tack så mycket!
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