

Speech2Properties2Gestures: Gesture-Property Prediction as a Tool for Generating Representational Gestures from Speech

Taras Kucherenko^{*}; Rajmund Nagy[†]; Patrik Jonell[†]; Michael Neff[‡]; Hedvig Kjellström^{*}; Gustav Eje Henter[†]
*KTH Royal Institute of Technology, RPL; [†]KTH Royal Institute of Technology, TMH; [‡]University of California, Davis

Summary

We outline a three-step gesture generation system that:

- 1) predicts when to gesture
- 2) predicts how to gesture
- **3) synthesizes appropriate motion** for the predicted properties.

Problem setting

We evaluate the feasibility of predicting the timing of gestures and various properties of the motion.

Dataset

We utilize the Bielefeld SaGA dataset [1], containing audio/video recordings of 25 participants in a direction-giving scenario with rich gesture-property annotations.

Label	Gesture category [Macro F ₁]				Gesture semantics [Macro F ₁]			
	deictic	beat	iconic	discourse	amount	shape	direction	size
Relative frequency	29.05%	14.47%	72.03%	12.78%	4.7%	13.1%	13.7%	1.9%
RandomGuess	50% ± 2%	50% ± 2%	50% ± 1.5%	50% ± 2%	49% ± 1%	49% ± 2%	49% ± 2%	50% ± 1%

ProposedModel $60\% \pm 6\%$ $53\% \pm 6\%$ $63\% \pm 5\%$ $59\% \pm 7\%$ $63\% \pm 8\%$ $65\% \pm 6\%$ $62\% \pm 8\%$ $59\% \pm 9\%$

Initial results

- → Our experiments show that it is possible to predict various aspects of the gesturing motion.
- → This is surprising, as gestures are highly stochastic and idiosyncratic.
- → Future work will focus on the efficacy of conditioning data-driven systems on these properties.

project page with the follow up work

Contact

Taras Kucherenko KTH Royal Institute of Technology, Stockholm, Sweden tarask@kth.se

References

 Andy Lücking, Kirsten Bergman, Florian Hahn, Stefan Kopp, and Hannes Rieser. 2013. Data-based analysis of speech and gesture: The Bielefeld Speech and Gesture Alignment Corpus (SaGA) and its applications. Journal on Multimodal User Interfaces 7, 1 (2013), 5–18