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One-slide summary

• We propose replacing Gaussian base distributions Z in normalising
flows with multivariate Student’s t-distributions

• Studentising flows

• Our proposal is motivated through statistical robustness
• Experiments show that the proposal stabilises training and leads to

better generalisation
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Outline

• What is robustness?
• Robustness sits in the tails
• Tails of flow-based models
• Experimental findings
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Why do we need robustness?

Generate some 1D standard normal data and fit a Gaussian:
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Why do we need robustness?

The fit changes if we add an outlying datapoint (red blob).
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Why do we need robustness?

A fitted Student’s t-distribution (red plot) is more concentrated.
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Why do we need robustness?

As the outlier is moved away, the Gaussian fit changes a lot.
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Why do we need robustness?

In contrast, the Student’s t-distribution is statistically robust.
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Robust statistics

Robust (resistant) estimator:
Adversarially corrupting a fraction η of the data (η < 1/2) only has a
bounded effect on the estimated model parameters θ̂
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Why is Student’s t robust?

The probability density functions of Gaussians and Student’s t-distributions
look similar.
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Why is Student’s t robust?

The associated loss functions (the negative log-likelihood, or NLL) exhibit
differences in the tails.
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Why is Student’s t robust?

The influence function is the gradient of the NLL. It quantifies the effect of
outliers. For the t-distribution the influence function is bounded.
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Why is Student’s t robust?

Gradient clipping can also limit the influence of outliers, but need not
converge on the maximum-likelihood model.
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Related work

Our findings complement those in concurrent work by Jaini et al. (2020)1

• They show:
• Lipschitz-continuous triangular flows f θ (Z ) with Gaussian base

distributions Z cannot represent fat-tailed data
• For example: Glow with sigmoid-transformed scale factors

• Using multivariate tν-distributions allows modelling data with fat tails
• We add to this:

• The advantages of tν-distributions can be understood through
statistical robustness

• Experimentally, these benefits extend to bounded data (no fat tails)

1Jaini, P., Kobyzev, I., Yu, Y., and Brubaker, M. Tails of Lipschitz triangular flows.
In Proc. ICML, 2020.
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Stable training

Training loss of Glow models of 64×64 CelebA data trained using Adam.
The red configuration is unstable.
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Stable training

Reducing the learning rate (yellow), clipping gradients (green), or changing
the base to a multivariate tν-distribution (blue) stabilises training.
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Better generalisation on image data

Test set negative log-likelihood on MNIST with and without outliers from
greyscale CIFAR-10. ν =∞ is the Gaussian baseline.

Test Clean 1% outliers
Train ν = ∞ 20 50 1000 ∞ 20 50 1000

Clean
NLL 1.16 1.13 1.13 1.17 1.63 1.27 1.26 1.31
∆ 0 −0.03 −0.03 0.01 0 −0.36 −0.37 −0.32

1% NLL 1.17 1.13 1.14 1.18 1.21 1.18 1.19 1.22
outliers ∆ 0 −0.04 −0.03 0.01 0 −0.03 −0.02 0.01
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Better generalisation on more complex data

In probabilistic motion modelling, flow-based models are the current state
of the art in terms of output quality. However, they are quite overfitted.
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Better generalisation on more complex data

Studentising flows (yellow) perform equally well on training data but
greatly reduce overfitting for locomotion and gesture-modelling tasks.
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Please see our paper for more!

• Additional experiments and results
• Connections between:

• Consistency and asymptotic efficiency
• Statistical robustness
• Machine-learning best practises

• Code
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