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ABSTRACT

Breathing and speech planning in spontaneous speech are coordin-
ated processes, often exhibiting disfluent patterns. While synthetic
speech is not subject to respiratory needs, integrating breath into syn-
thesis has advantages for naturalness and recall. At the same time,
a synthetic voice reproducing disfluent breathing patterns learned
from the data can be problematic. To address this, we first propose
training stochastic TTS on a corpus of overlapping breath-group bi-
grams, to take context into account. Next, we introduce an unsuper-
vised automatic annotation of likely-disfluent breath events, through
a product-of-experts model that combines the output of two breath-
event predictors, each using complementary information and oper-
ating in opposite directions. This annotation enables creating an
automatically-breathing spontaneous speech synthesiser with a more
fluent breathing style. A subjective evaluation on two spoken genres
(impromptu and rehearsed) found the proposed system to be pre-
ferred over the baseline approach treating all breath events the same.

Index Terms— Speech synthesis, spontaneous speech, breath-
ing, speech planning, ensemble method

1. INTRODUCTION

Humans necessarily breathe when we speak, and integrating breath-
ing into speech synthesis has long been considered desirable, cf.
[1, 2]. Breathing not only adds to the perceived naturalness of syn-
thetic speech over using silent pauses [3], but also breaks the mes-
sage into smaller chunks that may be easier to comprehend [4] and
improves recall [S]. Moreover, TTS systems that integrate breathing
into the synthesis and allow it to be controlled have the potential to
make virtual characters [6] and social robots more convincing.

In natural spontaneous speech, breathing and speech planning
operate in a system of coordinated processes. People tailor the in-
halation location and depth to their linguistic plan, but the linguistic
plan itself is also affected by the speaker’s respiratory state [7].
While breath events in read speech are largely organised around
phrase and sentence boundaries [8], comparison studies between
read and spontaneous speech have shown that the latter exhibits a
higher percentage of breath events placed within phrases, i.e., in
ungrammatical locations [9]. Moreover, the speaking style, com-
municative situation and the level of cognitive demand have been
shown to affect breathing [10, 11, 12]. [13] differentiates between
alternating periods of fluency and periods of hesitation; when speech
production is disfluent, breathing patterns also reflect that ongoing
breakdown of linguistic planning.
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Synthetic speech is, evidently, not constrained by physiological
needs like respiratory intake, nor is it dependent on cognitive de-
mands related to the availability of the linguistic plan, since the
full text to be spoken is typically provided up front. We can there-
fore propose that, from the speech synthesis point of view, some
inhalation breaths can be considered disfluencies, and exist in the
data due to breakdowns of the coordinated planning and breathing
processes. Selectively choosing not to reproduce such breath events
in synthesis would lead to more fluent and appealing output speech.

1.1. Contributions and relation to prior work

In this paper we study breathing in spontaneous speech synthesis,
and how one can create a breathing speech synthesiser where the
number of idiosyncratic breath events — pervasive in spontaneous
speech corpora — is reduced. Our approach to this end includes sev-
eral contributions: First, to enable TTS to produce longer speech
segments that also better evidence the impact of synthetic breath-
ing strategies, we propose training attention-based neural TTS on
pairs (bigrams) of consecutive breath groups (Sec. 2.1). Second, we
furthermore propose to use the output of two deep-learning-based
breath predictors, fused using an ensemble approach (Sec. 2.4), to
automatically annotate breath events in the bigram database accord-
ing to their probable function. While the sub-classifiers are trained
using supervised learning, the method itself is unsupervised in that
it requires no additional annotation compared to what is needed to
create the TTS in the first place. In particular, there is no manual
labelling of breath events into different classes. Using the result-
ing breath-type annotation in training a stochastic speech synthesiser
yields automatically-breathing TTS where specific types of breath
events can be excluded from the synthesis.

Aside from the fact that interactions between breathing and
speech planning have not been studied in speech synthesis be-
fore, our method differs from prior work on breath prediction and
synthesis in several other ways: Unlike [3, 14] (but similar to
[1, 2, 15]), we specifically consider spontaneous speech. We also
distinguish between several types of breath events, as seen only
in [3]. Moreover, our attention-based synthesiser learns to insert
breath events in a joint end-to-end manner and does not use a sep-
arately trained, text-level “language model” of breath locations.
[1, 2, 3, 14]. This joint learning to speak and breathe produces a
synthesiser where prosody, voice quality, and breath are coordin-
ated, for instance sounding like the speaker speeding up and using
expiratory reserve volume in long stretches of speech without a
breath. (For audio, see our evaluation samples linked in Sec. 4.1.)

2. PROPOSED METHOD

This section describes our approach for creating breathing, spontan-
eous TTS that speaks connected utterances in a more fluent manner
than the training data itself. We first explain (in Sec. 2.1) how we

Author postprint of paper presented at ICASSP 2020. Digital Object Identifier 10.1109/ICASSP40776.2020.9054107
(© 2020 IEEE. Personal use of this material is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


https://doi.org/10.1109/ICASSP40776.2020.9054107
https://www.ieee.org/publications/rights/index.html

Reverse-direction predictor of probability of breath event from speech signal (CNN-LSTM)

Forward-direction predictor of probability of utterance-internal breath event

from breath and speech features (multi-input CNN-MLP)

Syllables
Avg. fO
Std. fo

RMS power

Forward-Direction Predictor (p)

Salient Breath
Disfluent Breath

oo 02 04 05 08 o
Reverse-Direction Predictor (p)

Fig. 1. Architecture of the two classifiers, including selected layer sizes, and a scatter plot of breath-event probability estimates for the corpus.

augment the training data to allow contextual information to flow
between individual utterances in the corpus. After that we describe
two breath-event predictors (one forwards, in Sec. 2.2, and one back-
wards in time, in Sec. 2.3). In Sec. 2.4 we then combine these de-
tectors using an ensemble-based method to create an unsupervised
method for separating salient from disfluent breath events in the aug-
mented data. Essentially, by identifying breaths whose locations are
difficult for a machine to predict from speech acoustics, and then not
reproducing these, likely disfluent, breath events during synthesis,
we hope to eliminate random and idiosyncratic machine breathing
from the output speech and thus obtain a more fluent and appealing
stochastic speech synthesiser.

2.1. Bigram corpus method

Despite the interest in TTS that speaks longer chunks of text, e.g.,
[16], no major engine currently assumes a connection between con-
secutive audio files in the corpus. Instead, utterances are traditionally
treated in isolation. The main reasons for retaining this custom is
that 1) most conventional TTS training material is comprised of sen-
tences read in isolation, and 2) loading longer speech segments (e.g.,
audiobook paragraphs instead of sentences) into a conventional TTS
engine would quickly result in the system running out of memory.
This state of affairs is unfortunate in the case of corpora created
from longer continuous recordings of speech, such as audiobooks
[16, 17]. It is even more problematic for spontaneous speech, where
syntactic forms do not follow the conventions of written language
and cannot be easily separated into standalone, coherent semantic
units. Therefore, whatever criteria the segmentation is based on, the
resulting segments are to be interpreted in context.

‘We here propose a simple data-augmentation method that allows
for context information to be transmitted across utterances during the
training process, while still limiting segment length and thus avoid-
ing the synthesiser running out of memory. Concretely, we propose
to pair the individual breath groups in the corpus into a sequence
of overlapping, utterance-level bigrams. If {(bn, tn, bn+1)},1¥:1 is

a training set of utterances u delineated by breath events b, we pro-
pose to train on {(bn, Un, bnt1, Un+1, bn_‘_z)}fj;ll, i.e., all concat-
enations of two contiguous breath groups. We will refer to this as
the bigram-corpus method and the bigrams themselves as double
breath groups, since they start and end with a breath event, with an
additional breath event somewhere in the middle. In practice, our ap-
proach means that we duplicate training data, creating longer input
utterances that allow the synthesiser to see each utterance in con-
text twice: once together with the preceding and once together with
the following utterance. Training a breath-group-based spontaneous
speech synthesiser with the bigram-based data augmentation tech-
nique enables the synthesiser to: a) speak longer utterances, b) place
breath events within an utterance, and c¢) take context into account.

2.2. Forward-direction predictor of utterance-internal breaths

The first classifier predicts whether the initial breath and summary
characteristics of the subsequent speech are most consistent with a
single breath group or with two consecutive breath groups. We then
use the predictions of the trained classifier as an indication of which
double breath groups in our corpus could likely have been completed
with their initial inhalation alone. This lets us annotate breath events
as more likely to be unnecessary, and thus candidates for exclusion
in order to exhibit a more fluent and rehearsed speaking style.

To characterise the initial breath event, three feature vectors are
used as input for two convolutional layers with batch-normalisation:

e root-mean-square (RMS) power of the breath signal, using a
window of 20 ms and a step size of 5 ms;

e zero-crossing rate (ZCR), the number of times the audio
waveform changes sign divided by the total number of
samples in the window (windowing same as above); and

e gradient index (GI), a parameter based on the gradient of the
signal at each change of direction, which is used to character-
ise breath and to differentiate on level of voicing [18].



Duration of the breath was modelled implicitly by the length of the
input vectors. The output of the CNN layers was flattened after
max-pooling and taken through a fully connected layer. The output
was merged with the following summary statistics of the speech: the
number of syllables, the mean and standard deviation of fy, and the
average RMS power of the speech signal, windowed like the breath
features. Two fully connected layers then mapped the merged vec-
tor to the softmax output layer of the model. This architecture is
visualised in the bottom row of Fig. 1.

2.3. Reverse-direction predictor of breath events from speech

The second classifier uses acoustic information to estimate the prob-
ability that a speech segment was preceded by a breath. This is used
to assess the acoustic-prosodic salience of breath events given the
subsequent speech, hence the classifier moves from right to left.

Inputs to the reverse-direction predictor are mel-scaled spectro-
grams of two-second long speech signals, inverted on the time axis,
as the breath for the positive examples precedes the sample (with
0.05 second lag to ensure no breath is accidentally captured in the
speech sample). Negative examples for training are taken from a
disjoint group of speech segments, equally many as the positive ex-
amples, at least one second after a breath. The predictor architecture
(illustrated in the top row of Fig. 1) is similar to that of the breath
detector presented in [19], but uses a one-directional LSTM, as the
presence of a breath is tested for at the beginning of the sample.
The spectrograms are also sliced into longer, 0.25 second segments
and span of the convolutions is increased to better identify acoustic
trends. Two convolutional (CNN) layers with batch-normalisation
and max-pooling are followed by a bi-directional (BLSTM) recur-
rent and a one-directional recurrent (LSTM) layer. A fully connec-
ted layer connects the outputs of the LSTM to the softmax output
layer of the model. By training a reverse predictor on one part of
the corpus, its predictions can be on the other part of the material to
annotate the acoustic-prosodic salience of the middle breaths in each
double breath group, and vice versa.

2.4. Classifier ensemble

The two classifiers above provide complementary information about
whether or not a given breath event might be considered disfluent.
This suggests that they can be combined into a classifier ensemble
that is likely to produce better decisions than a single classifier on its
own. Such ensembles can be built in different ways; we opt to com-
bine the two classifiers using a product of experts approach [20], in
which the probabilities from the two classifiers are multiplied to-
gether for each class and then renormalised. Mathematically, pe, the
probability of a breath according to the ensemble, is computed as

pip2
De = , (1)
p1p2 + (1 —p1)(1 — p2)

where p; and p2 are the breath probabilities returned by the two
constituent predictors. Products of experts are central to parameter-
generation algorithms in statistical parametric speech synthesis [21]
and have been used to identify voice styles in audiobooks [22].
Whereas in an additive mixture of experts the most uncertain classi-
fier has a substantial impact on the combined class probabilities, a
product-of-experts model instead means that the most certain clas-
sifier exerts the greatest influence over the ensemble output. The
scatter plot in the bottom right of Fig. 1 shows the classifications
made on our data, and the decision boundary of the ensemble de-
scribed in Sec. 3.2. Note that an additive mixture of experts would
exhibit a linear decision boundary sloping downward 45 degrees.

As described in [23], not annotating acoustic events, such as filled
pauses (uh/um), with Tacotron 2 leads to TTS that randomly pro-
duces such acoustic events on its own accord in likely locations. An-
notating acoustic events, in contrast, allows control over them, and
will only insert them into the synthetic speech if explicitly requested
[23]. By only annotating the disfluent breaths (using a unique sym-
bol added to the phone set) and then not inserting such breaths into
synthesis prompts, we obtain a synthesiser that automatically inserts
salient breath events at likely locations, without producing disfluent
breathing.

3. DATABASE AND SYNTHESIS

3.1. Corpus, segmentation, and transcription

For voice training, we used the audio from the Trinity Speech-
Gesture Dataset [24], 25 impromptu monologues, on average 10.6
minutes long, performed over multiple recording sessions by a male
speaker of Irish English. The actor is speaking in a colloquial style,
spontaneously and without interruption, on topics such as hobbies,
daily activities, and interests. During the monologues, he addresses
a person seated behind the cameras who is giving visual, but no
verbal, feedback. The last monologue was held out for evaluation.

The corpus was transcribed using the enhanced video model
of Google Cloud Speech-to-Text API [25]. The Gentle forced
aligner [26] and the US English BroadbandModel of the IBM Wat-
son Speech-to-Text were used to detect and disambiguate between
filled pauses uh and um in order to obtain an annotation as close as
possible to the original speech. For more details on the annotation
pipeline please refer to [15]. All punctuation was removed from
the automatic transcription, as ASR inserts punctuation with the
main goal of making text more readable, which need not match the
prosody of the realised speech. A simplified version of the speaker-
dependent breath detector proposed by [19] was employed to detect
breath events in the corpus, with which we were able to segment
the audio recordings fully automatically to produce a TTS corpus of
3,487 breath-group utterances.

3.2. Unsupervised breath-event annotation

We used the product-of-experts methodology described in Sec. 2.4
to annotate likely disfluent breath events in the corpus, by combin-
ing the output of the forward (Sec. 2.2) and backward (Sec. 2.3)
acoustic-based breath event predictors. Since we wanted to use the
corpus to train classifiers, and then use those classifiers in turn as
an annotation method for the same corpus, a naive application risks
feeding the system training examples at test time. To prevent this we
used a cross-validation approach, where classifiers trained on one
half of the database were used to annotate the other, and vice versa.
20% of these training sets were further held out as development sets
for the individual classifiers.

All classifier networks were randomly initialised and trained for
40 epochs to minimise cross-entropy using Adadelta with default
parameters. For the forward-looking predictor we winsorised all in-
put features (breath and speech) at the upper 99th percentile to re-
move outliers and then normalised to a range between 0 and 1. The
training accuracy of the forward predictor was 0.88 and 0.86 for each
half, with development set accuracy at 0.76 and 0.77, respectively.
The same numbers for reverse-direction predictor were 0.84 and 0.87
on training data and 0.74 and 0.72 on the dev set.

Of the 3,338 double breath groups identified in the training data,
1,873 had a total speech duration of at most 7.9 seconds (the 95th



percentile of single-breath group durations) which made them can-
didates for assigning a disfluency label to the breath event, since they
conceivably could have been completed in one breath. To generate a
breath probability to feed into the product-of-experts ensemble also
from the the backward-looking classifier (which operates on acoustic
windows rather than summary statistics), the classifier was applied
to the first two seconds (padded with silence if necessary) following
the middle breath of each such double breath group. Taking the aver-
age validation accuracy of the 4 models as a heuristic for the number
of target breaths to mark as a disfluency, a cut-off point of 0.9 was
set for the product-of-experts classifier. This flagged 28% of breath
events as likely to be disfluent. If two consecutive breath events
fell below the threshold, only the one with a lower probability was
chosen, giving the final annotation of 614 breath events as disfluent,
which were labelled when training the proposed TTS system.

3.3. Systems built

All systems trained used the bigram utterance structure described in
Sec. 2.1 and the versions were given descriptive names according to
the labelling of breath events in the training data and in the synthesis
prompt.

1. AutoBreathe Baseline (ABB): no breath events labelled dur-
ing training or inserted in the input prompts;

2. GroundTruthBreathe (GTB): all breath events labelled,
ground-truth breath locations inserted into the prompts;

3. NoBreathe (NoB): all breath events labelled, but no breaths
inserted into the prompts;

4. AutoBreathe Proposed (ABP): only the disfluent breath
events labelled, no breaths inserted into the prompts.

Because ABP and ABB are trained on data where some or all breath
events do not have a corresponding token in the transcription, they
both insert breath events automatically, rendered by the TTS engine
according to their distribution learned during training (cf. [23]). We
note that NoB still inserts a breath at the beginning and end of each
synthesised utterance, but never within.

The voices described here were built using the implementation
[27] of the Tacotron 2 spectrogram-prediction framework [28]. Au-
dio was sampled at 22.05 kHz. The Griffin-Lim algorithm [29]
was used for waveform synthesis. Transfer learning on a pretrained
model of read speech [30] and front-end-based phonetisation were
used as these have been shown to reduce the pronunciation errors
produced by voices trained on corpora transcribed by ASR [15].

4. PERCEPTUAL EVALUATION

4.1. Evaluation design

We evaluated the naturalness of the different TTS breathing strategies
on two styles of spontaneous speech: ten utterances from the final,
held-out monologue in our corpus (representing impromptu speech)
and ten utterances from an episode in the Project Debater corpus
[31] (which are more rehearsed, but still spontaneous). All test
utterances were 2—4 breath groups long (6—14 seconds), where the
cut-off was chosen based on semantic content. Subjects were given a
MUSHRA-like listening test implemented using the WebMUSHRA
codebase [32], and asked to rate samples from the different systems
speaking the same text prompt naturalness on a scale from 0 (worst)
to 100 (best), paying particular attention to breathing. The evaluation
samples are available at www.speech.kth.se/tts-demos/icassp20.

4.2. Results

40 native speakers of English recruited through Prolific Academic
participated in the test. All participants reported having used head-
phones. Results are graphed in Fig. 2. Based on pair-wise Wilcoxon
signed-rank tests, AutoBreathe Proposed was found to perform sig-
nificantly better than the AutoBreathe Baseline (p<0.01 overall) and
NoBreathe (p<0.01 overall) in both categories. In the held-out cat-
egory, no significant difference was observed between GroundTruth-
Breathe and ABP (p=0.32). In the debate category, GTB was signi-
ficantly preferred over any other system (p<<0.01).

To verify that better scores cannot be explained simply by how
often a system places a breath, we fitted a linear model to the scores,
using a system variable (categorical) and the number of syllables
per breath group in the sample (numerical) as independent variables.
In both the held-out and the debate categories, the system remained
a significant variable (p<0.01), while the effect of the number of
syllables per breath group was not significant (p>>0.05).

Taken together, the fact that ABB is consistently worse than both
GTB and ABP suggests that the baseline approach does not model
some breath events in a convincing manner, and that our approach
to exclude likely disfluent breath events from the synthesis improves
perceived naturalness. Even though ABB and NoB were rated sim-
ilarly on the debate prompts, it was likely for different reasons, with
NoB often audibly running out of breath towards the end, while
ABB instead sometimes displaying a suboptimal breath-placement
strategy. That ABP was preferred over ABB on the debate utter-
ances suggests that the more fluent, proposed breathing style was a
better fit for prompts from a more rehearsed spoken genre, but still
not as good as the debaters’ own respiratory patterns. This shows
that both breathing-control schemes (automatic and manual) can ad-
just the level of fluency in the generated speech.

5. CONCLUSIONS

This study investigated breathing and speech planning in the con-
text of speech synthesis. Specifically, we developed an unsupervised
product-of-experts approach to annotate breath events in a corpus of
spontaneous speech according to their salience. In combination with
our bigram corpus method, this allowed us to create an automatically
breathing TTS system with hard-to-predict breath events excluded,
exhibiting a more fluent style. This spontaneous speech synthesiser
automatically adjusts the prosodic realisation in accordance with the
generated breathing style. In a listening test on two distinct spoken
genres (one more, one less rehearsed), this synthesis was preferred
over a baseline approach to automatic breathing treating all breath
events the same.
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Fig. 2. MUSHRA results on spoken genres with different degrees of
speech planning: impromptu (held-out) and rehearsed (debate).
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