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ABSTRACT

Nowadays vast amounts of speech data are recorded from low-
quality recorder devices such as smartphones, tablets, laptops, and
medium-quality microphones. The objective of this research was
to study the automatic generation of high-quality speech from such
low-quality device-recorded speech, which could then be applied
to many speech-generation tasks. In this paper, we first introduce
our new device-recorded speech dataset then propose an improved
end-to-end method for automatically transforming the low-quality
device-recorded speech into professional high-quality speech. Our
method is an extension of a generative adversarial network (GAN)-
based speech enhancement model called speech enhancement GAN
(SEGAN), and we present two modifications to make model train-
ing more robust and stable. Finally, from a large-scale listening test,
we show that our method can significantly enhance the quality of
device-recorded speech signals.

Index Terms— Audio transformation, speech enhancement,
generative adversarial network, speech synthesis

1. INTRODUCTION

Using high-quality speech recordings is essential in various speech-
generation tasks such as speech synthesis and voice conversion. Cur-
rently, a large amount of speech-content sources, such as YouTube,
podcasts, lecture videos, and audio stories, is available on the Web.
Typically, such content is recorded in non-professional acoustic en-
vironments such as homes and offices. Moreover, the recordings
are often carried out using consumer devices such as smartphones,
tablets, and laptops. Therefore, the speech recordings of the content
are of typically poor quality and contain a large amount of ambi-
ent noise and room reverberation. Even if the recordings are done
under quiet conditions, they may still present low-quality standards
due to using recording hardware with bad frequency characteristics
and/or inappropriate bandwidth settings. In real applications, such
as speaker adaptation of speech synthesis or voice conversion, we
have to handle such non-ideal data in the wild; thus, we have to gen-
erate high-quality speech outputs. This objective may sound con-
tradictory; however, there is a strong demand to achieve it. In this
paper, we call this low-quality speech recorded using consumer de-
vices “device-recorded speech”.

One possible solution is the transformation from device-recorded
speech to high-quality speech before voice conversion occurs or
before the speech-synthesis models are trained, and this may be
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Japan in 2017. This work was partially supported by MEXT KAKENHI
Grant Numbers (15H01686, 16H06302, 17H04687).

approached from two different directions [1]. One direction of han-
dling device-recorded speech is to apply speech-enhancement tech-
niques for denoising [2–4], dereverbration [5, 6], decoloration [7],
or bandwidth expansion [8].

However, speech-enhancement techniques do not always han-
dle quality degradation caused by hardware with bad frequency
characteristics. We have to enhance clean but poor-quality speech
recordings using hardware with bad frequency characteristics to
high-fidelity speech. Therefore, the second direction is data-driven,
non-linear, direct mapping from device-recorded speech to high-
fidelity speech using machine-learning techniques such as deep
learning [9].

In this paper, we propose a deep-learning-based method to trans-
form low-quality device-recorded speech to high-quality speech. To
that end, we recorded a new variant of the voice cloning toolkit
(VCTK) dataset [10]: device-recorded VCTK (DR-VCTK), where
the high-quality speech signals recorded in a semi-anechoic chamber
using professional audio devices are played back and re-recorded in
office environments using relatively inexpensive consumer devices.
Using the parallel database of the original VCTK and DR-VCTK, we
can try the mapping between device-recorded and high-quality au-
dio. Since the VCTK database includes a sufficient amount of speech
data and we hypothesize that degradation due to frequency character-
istics of microphones and loudness speakers, as well as degradation
due to noise and reverberation, is beyond what is assumed with nor-
mal speech enhancement, we use deep-learning techniques for the
new mapping problem instead of signal-processing techniques such
as Wiener filtering [11].

The chosen neural-network-mapping model is the recently pro-
posed speech enhancement generative adversarial network (SEGAN)
[12], which is an end-to-end model for directly enhancing the
noisy speech in the time domain. This is in contrast to previous
DNN-based speech-enhancement techniques, which are based on
short-time Fourier analysis/synthesis. Rethage’s speech denois-
ing model [13] and WaveMedic [14] are other time domain-based
speech enhancers that use the WaveNet model [15] for enhancing the
degraded speech signal. However, unlike Wavenet, SEGAN is a re-
gression model and consists of a convolutional network architecture
trained using the GAN criterion [16]. Using this time domain-based
architecture, we can expect that the phase spectrum of the noisy
signal may be transformed into the clean phase spectrum, and that it
may have a good effect in improving speech quality [17]. The use of
a GAN may also alleviate the over-smoothing problem and improve
the quality of enhanced speech.

In our preliminary experiments, however, we found that even the
recent SEGAN is negatively affected when mapping from device-
recorded speech to high-quality speech recorded in a semi-anechoic
chamber using professional devices. Therefore, we propose a new
training procedure for the SEGAN model to improve the final qual-
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Fig. 1. Setup for device-recording in office. The clean studio record-
ings were played through loudspeaker and recorded on either iPad,
iPhone 5S, Mac Book Air, Blue Snowball, or Apogee Mic micro-
phones. This setup captured noise and reverberation of room as well
as limitations of recording hardware.

ity of enhanced speech. The key of the proposed method is to use
directed references for training SEGAN at the initial training epochs.
By using this directed reference for training the generator model, we
can achieve better weight initialization; thus, we were able to ro-
bustly and quickly train the generator model. We also found that
this method significantly reduces the appearance of annoying arti-
facts called “musical noise”, something that conventional-speech-
enhancement methods are commonly affected by. The performance
of the proposed method was evaluated through objective and subjec-
tive experiments.

This paper is structured as follows: We introduce the new DR-
VCTK dataset in Section 2. In Section 3, we describe SEGAN model
for speech enhancement. We describe the proposed training proce-
dure of SEGAN in Section 4 and the experimental setup and objec-
tive and subjective evaluation results in Section 5. Finally, we give
conclusions and discuss future work in Section 6.

2. DEVICE-RECORDED VCTK

We used the centre for speech technology research (CSTR) VCTK
corpus [10] as the clean speech-signal source for the device-recorded
signals, as it was recorded at high-quality using professional audio
devices. This dataset contains recordings of 109 English speakers
with different accents. There are around 400 sentences available
from each speaker.

Audio signals included in the CSTR VCTK corpus were played
back from a loudspeaker and re-recorded using relatively inex-
pensive consumer devices in office environments. We used eight
different microphones for the recording of device-recorded speech
signals (MacBookAir’s two microhpones, Apogee MiC, Blue Snow-
ball, iPhone 5S’s two microphones, and iPad’s two microphones).
The setup for device-recording is shown in Fig. 1. Bose 404600
SoundLink speaker III was used as a high-quality speaker and
was set 2 meters from the microphones. Recording was done in a
medium-sized office under two background-noise conditions (i.e.
windows either opened or closed). We recorded device-recorded
signals under 16 conditions (8 microphones x 2 background noise
conditions). All data were sampled at 48 kHz.

Among the 109 speakers, we selected 28 speakers (14 male and
14 female with British received pronunciation accent) for training

and selected 2 speakers (1 male and 1 female) who had the same
accent for testing. Twelve out of the 16 recording conditions were
used for training and the remaining 4 recording conditions were used
for testing. Half of the recording conditions in the training set (6
out of 12 sets) and half of those in the test sets (2 out of 4 sets)
were selected from the windows-open background-noise condition.
In other words, there was neither overlapped speakers nor record-
ing conditions between training and test sets. However, each of the
training and test sets included speech data under both windows-open
and windows-closed background-noise conditions.

We used auto-correlation for removing the delay between clean
and playback data. Silence segments longer than 200 ms were
trimmed from the beginning and end of each sentence. To have a
suitable input-chunk size in training, we down-sampled the dataset
to 16 kHz.1

We also used a publicly available noisy-speech dataset [19] for
fair comparison of our proposed method with previous methods un-
der wider type and noisy conditions. This dataset is a collection of
artificially corrupted noisy speech based on the CSTR VCTK cor-
pus, publicly available in the DataShare repository of University of
Edinburgh2. We call this dataset the Edinburgh noisy speech dataset.
Since both datasets are based on the CSTR VCTK corpus, speakers
and utterances of the Edinburgh noisy speech dataset are similar to
those of the DR-VCTK dataset presented above. For the training
set, 40 different conditions were considered [19]: 10 types of noise
(2 artificial and 8 from the Demand database) with 4 signal-to-noise
ratios (SNR) each (15, 10, 5, and 0 dB). There were around ten dif-
ferent sentences for each condition per training speaker. To make
the test set, a total of 20 different conditions were considered [19]:
five types of noise (all from the Demand database) with four SNRs
each (17.5, 12.5, 7.5, and 2.5 dB). There were around 20 different
sentences for each condition per test speaker. For this experiment,
we down-sampled the dataset to 16 kHz.

3. GAN-BASED WAVEFORM ENHANCEMENT

Generative adversarial nets were introduced as a novel way to train a
generative model. They consist of two “adversarial” models: a gen-
erative model G that captures the data distribution and a discrimina-
tive model D that estimates the probability that a sample came from
the training data rather than G. To learn the generator distribution
pg over data x, the generator builds a mapping function from a prior
noise distribution pz(z) to the data space as G(z; θg). The discrim-
inator D(x; θd) outputs a single scalar representing the probability
that x came from training data rather than pg [16].

The G and D are both trained simultaneously. The parameters
for G are adjusted to minimize log(1 − D(G(z))) and parameters
forD are adjusted to maximize log(D(x)), as if they were following
the two-player min-max game with value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))].
(1)

This model can be extended with a conditioned version of a GAN,
where we have extra information in G and D to execute mapping
and classification [20]. In this case, we added an extra input xc from
which we change the objective function to

1This processed subset [18] is publicly available from
https://doi.org/10.7488/ds/2316.

2http://datashare.is.ed.ac.uk/handle/10283/1942



min
G

max
D

V (D,G) = Ex∼pdata(x,xc)[log(D(x,xc))]+

Exc∼pdata(xc),z∼pz(z)[log(1−D(G(z,xc)))].
(2)

The original GAN approach was affected by the vanishing gra-
dient problem due to the sigmoid cross-entropy loss function that
was used to compute the cost. To solve this, the least-squares GAN
(LSGAN) approach was proposed [21], which substitutes the cost
function by the least-squares function with binary coding (1 is real,
0 is fake). With this approach, the formulation in Eq. 2 changes to

min
D

V ′(D) =
1

2
Ex∼pdata(x,xc)[(D(x,xc)− 1)2]+ (3)

1

2
Exc∼pdata(xc),z∼pz(z)[D(G(z,xc))

2]

min
G

V ′(G) =Exc∼pdata(xc),z∼pz(z)[(D(G(z,xc))− 1)2]. (4)

Based on the criterion of LSGAN, SEGAN model [12] has been
proposed for the task of speech enhancement. The generator in
SEGAN G(.) adopts a decoder-encoder structure to convert the de-
graded speech waveform x̃ and a random vector z into an enhanced
waveform x̂, which can be written as x̂ = G(x̃,z). Specifically, the
encoder in G(.) uses multiple strided convolution layers to trans-
form x̃ into an embedded vector c. After concatenating c and z,
the decoder part uses several fractional-strided convolution layers to
produce x̂. Note that skip connections are added to connect each en-
coding layer to its homologous decoding layer, which is expected to
facilitate the feature propagation between the encoder and decoder.
The discriminator in SEGAND(.) takes x̃ or the clean natural wave-
form as the input then outputs a real-valued number that can be used
to evaluate the least-square criterion in Eqs. (3) and (4). The D(.)
has a similar convolutional structure as the encoder in G(.), how-
ever, it includes an additional 1 × 1 convolution layer and a fully
connected output layer with a linear activation function. Although
SEGAN can be directly trained on the basis of LSGAN’s criterion, it
was found that SEGAN performed better when an the L1 norm term
was added to Eq. (4), which becomes

min
G

V ′′(G) =Exc∼pdata(xc),z∼pz(z)[(D(G(z,xc))− 1)2]

+ λ ‖G(z, x̃)− x‖1 .
(5)

Here the L1 norm is weighted by a hyper-parameter λ.

4. ROBUST SEGAN TRAINING

In this study, we started with SEGAN [12]; however, it was found
that the training process was sensitive to the noise levels in the in-
put speech. To make the training process more robust and stable, we
introduce a modified training strategy for the generator of SEGAN.
Suppose a baseline speech-enhancement modelB(.), either a simple
signal processing module or an unsophisticated neural network, is
available for generating enhanced waveforms B(x̃). The proposed
strategy is to replace the clean signal x in Eq. (5) with B(x̃) at the
initial training phase. In this model, after K iterations in discrimina-
tor [16], we have J iterations in generator. Accordingly, Eq. (5) can
be re-written as

min
G

V ′′′i (G) =Exc∼pdata(xc),z∼pz(z)[(D(G(z,xc))− 1)2] (6)

+ λ ‖G(z, x̃)− ri‖1 ,
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Fig. 2. Steps of the modified SEGAN training strategy.

where i is the index of J iterations for G(.) and ri is specified ac-
cording to the schedule

ri =

{
B(x̃) if 1− i

J
≤ PJ , 0 ≤ i < J

x, otherwise,
. (7)

In the above schedule, PJ is the predefined probability for selecting
B(x̃) instead of x. By using the above criterion, with PJ prob-
ability, B(x̃) rather than x is used for weight initialization in the
initial training epochs. We hypothesize that SEGAN can be trained
more stably as the pre-enhanced sample B(x̃) is less stochastic than
x; however, it still sounds relatively clean. The modified SEGAN
training strategy is illustrated in Fig. 2.

For further improving SEGAN training, an additional skip-
connection was added around the generator G(.). Differing from
the original skip-connections between the encoder and decoder in
G(.), the proposed skip-connection directly delivers the input x̃ to
the output side ofG(.). Accordingly, the generated enhanced speech
becomes x̂ = G(x̃,z) + x̃. In this way, the task of G(x̃,z) is not
to generate enhanced speech from scratch but to generate a residual
signal that refines the input speech [22]. By replacing G(x̃,z) in
Eq. 6 with G(x̃,z) + x̃, the proposed method encourages the gen-
erator to learn the detailed differences between clean and enhanced
speech waveforms.

5. EXPERIMENTS AND RESULTS

Similar to the original SEGAN training strategy, we extracted
chunks of waveforms with a sliding window of 214 samples at
every 213 samples (i.e. 50% overlap). At testing time, we con-
catenated the results at the end of the stream without overlapping.
For the last chunk, instead of zero padding, we pre-padded it with
the previous samples. For batch optimization, RMSprop [23] with
0.0002 learning rate and batch size of 100 was used. The modified
SEGAN model converged at 120 epochs, and we set J to 2 and PJ

to 50% for the first 50 epochs.
For selecting the pre-enhancement method, we compared

Wiener [11], harmonic regeneration noise reduction (HRNR) [24],
and Postfish [25] algorithms. In our preliminary experiments, apply-
ing Postfish and HRNR sequentially showed better quality enhanced
samples. We used this compound method to generateB(x̃) in Eq. 7.

Based on our initial experiments, we fixed the λ in Eq. 6 to
100. With this configuration, we observed equilibrium behavior in
the adversarial training and obtained samples with better quality.
Like the generator in original SEGAN, we used 22 one-dimensional
strided convolution layers with a filter width of 31 and stride of
2. The encoder part of the generator used 11 strided convolution
layers. If the size of each layer’s output feature matrix is de-
noted by length ×dimension, then this size changes as 8192×16,
4096×32, 2048×32, 1024×64, 512×64, 256×128, 128×128,



Table 1. Objective evaluation on DR-VCTK and Edinburgh datasets
CSIG CBAK COVL PESQ SSNR DAU STOI

D
R

-V
C

T
K Noisy 2.17 1.43 1.58 1.24 -3.66 0.71 0.72

Postfish+HRNR 1.62 1.63 1.31 1.27 -1.66 0.69 0.72
Original SEGAN 1.66 1.60 1.32 1.24 -1.09 0.58 0.65
Proposed SEGAN 1.96 1.60 1.50 1.28 -1.72 0.72 0.73

E
di

nb
ur

gh Noisy 3.34 2.44 2.63 1.97 1.73 0.90 0.92
Postfish+HRNR 2.11 2.38 1.95 1.93 6.26 0.87 0.90
Original SEGAN 3.00 2.65 2.55 2.14 8.21 0.92 0.93
Proposed SEGAN 2.32 2.49 2.07 1.94 6.33 0.89 0.91

64×256, 32×256, 16×512, and 8×1024. The output of the encoder
is then concatenated with the latent vector z, which was drawn from
a normal distribution of dimension 8×1024. The decoder part was a
mirror of the encoder part, except for the additional skip connections
and input latent vector, which doubled the number of feature maps
in every layer.

The discriminator network is like the encoder part of the gen-
erator network; however, it uses virtual batch-norm [26] before
LeakyReLU non-linearities with α = 0.3 followed by 1× 1 convo-
lution and one fully connected layer with a linear activation function.
The implementation of the improved SEGAN is publicly available3.

5.1. Objective Evaluation

We first objectively compared the performance of SEGAN and other
baseline models with that of the proposed model. Even if transfor-
mation of low-quality device-recorded speech to high-quality speech
is a different task from conventional speech enhancement, the objec-
tive measures are still relevant. Therefore, we discuss the objective
measures used for speech enhancement in addition to other objec-
tive measures. Using the following objective measures (the higher
the better), this evaluation was done on both DR-VCTK and Edin-
burgh datasets:

• CSIG: Mean opinion score (MOS) prediction of the signal
distortion attending only to the speech signal (from 1 to 5).

• CBAK: MOS prediction of the intrusiveness of background
noise (from 1 to 5).

• COVL: MOS prediction of the overall effect (from 1 to 5).
• PESQ: Perceptual evaluation of speech quality, a metric used

in telecommunications for estimating the perceived quality of
speech audio. Five-point scale in MOS-LQO (from -0.5 to
4.5).

• SSNR: Segmental SNR (from -10dB to 35dB). See [27].
• DAU: Prediction of speech intelligibility based on an auditory

pre-processing model (from 0 to 1).
• STOI: An algorithm for intelligibility predicting time-frequency

weighted noisy speech (from 0 to 1).

The evaluation results are listed in Table 1. In the DR-VCTK
dataset, quality (PESQ) and intelligibility (DAU and STOI) mea-
sures of the improved SEGAN model were better than those of the
original SEGAN and a combination of Postfish and HRNR. On the
other hand, in the Edinburgh dataset, in which the energy of noise is
clearly lower than the DR-VCTK dataset, the original SEGAN had
better scores than the other models in terms of PESQ, SSNR, DAU,
and STOI.

3https://github.com/ssarfjoo/improvedsegan

Table 2. Subjective evaluation results on DR-VCTK and Edinburgh
datasets. MOS score for clean speech was 4.34.

Postfish SEGAN
Noisy +HRNR Original Proposed

DR-VCTK 2.54 2.78 1.14 2.80
Edinburgh 2.84 3.29 3.40 3.44

5.2. Subjective Evaluation

We also carried out a crowdsourced subjective evaluation to rate the
end-user impact of the proposed enhancement models . The evalua-
tion was aimed to rate the subjective listener’s perception in a 1-to-5
MOS framework, as is commonly done in speech-synthesis evalua-
tions [28]. To make the question clearer to the evaluators, we modi-
fied the wording to explicitly ask them to rate each sample in terms
of the degree of noise and sound-quality degradation, ranging from
1 (noise and/or quality degradation are clearly audible) to 5 (there is
no speech-quality degradation or noise).

The evaluation was carried by means of a web interface, where
the listeners were presented with a set of two blocks, each consist-
ing of nine screens. Each block contained one screen for each of
the nine evaluated conditions (i.e., 4 models × 2 datasets plus the
clean speech reference), always using the same evaluation utterance,
randomly selected from the test-sentence pool. That is, all nine con-
ditions were rated before listening to them again in a second different
utterance. The ordering of the systems in each block was also ran-
domized. Each screen then contained one evaluation sample and one
evaluation question. The samples could be played as many times as
desired by the evaluators, and they were not allowed to proceed to
the next system until the current one was played to completion and
rated. A total of 107 native Japanese speakers took part in the evalu-
ation, for a total of 1236 sets, i.e., 22248 evaluation samples or 2472
per condition. The evaluation results are listed in Table 2.

To study the significance of the subjective results, we carried
out unpaired t-test comparisons for a 95% confidence with Holm-
Bonferroni compensation to take into account the multiple pairwise
comparisons. The analysis showed that our proposed SEGAN
method is comparable to a combination method of postfish and
HRNR on the DR-VCTK dataset (p-value = 0.39691); however,
both were significantly better than the original SEGAN (p-value
< 2e−16). Also, the proposed SEGAN was comparable to the origi-
nal SEGAN in the Edinburgh dataset (p-value = 0.39691); however,
it was significantly better than the combination method of postfish
and HRNR (p-value = 0.00011). This means that the proposed
method is more noise-robust and stable than the original version.
We also hypothesize that the contrast between the objective mea-
sures and subjective results might be due to the SEGAN samples not
having musical noise artifacts.

6. CONCLUSIONS AND FUTURE WORK

We proposed a method for automatically transforming low-quality
device-recorded speech to high-quality speech. To that end, we
recorded the low-quality device-recorded version of the VCTK cor-
pus, DR-VCTK. We also proposed an improved SEGAN training al-
gorithm using pre-enhanced samples instead of clean data as ground
truth data. From a large-scale listening test, we confirmed that our
method can enhance the perceptual quality of speech signals on
both DR-VCTK and Edinburgh datasets. Our future work includes
studying SEGAN-based transformation of low-quality sounds such
as device-recorded musical sounds.
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