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Abstract
The absence of convincing intonation makes current paramet-
ric speech synthesis systems sound dull and lifeless, even when
trained on expressive speech data. Typically, these systems use
regression techniques to predict the fundamental frequency (F0)
frame-by-frame. This approach leads to overly-smooth pitch
contours and fails to construct an appropriate prosodic struc-
ture across the full utterance. In order to capture and reproduce
larger-scale pitch patterns, this paper proposes a template-based
approach for automatic F0 generation, where per-syllable pitch-
contour templates (from a small, automatically learned set) are
predicted by a recurrent neural network (RNN). The use of syl-
lable templates mitigates the over-smoothing problem and is
able to reproduce pitch patterns observed in the data. The use
of an RNN, paired with connectionist temporal classification
(CTC), enables the prediction of structure in the pitch contour
spanning the entire utterance. This novel F0 prediction system
is used alongside separate LSTMs for predicting phone dura-
tions and the other acoustic features, to construct a complete
text-to-speech system. We report the results of objective and
subjective tests on an expressive speech corpus of children’s au-
diobooks, and include comparisons to a conventional baseline
that predicts F0 directly at the frame level.
Index Terms: speech synthesis, intonation modelling, F0 tem-
plates, LSTM, CTC

1. Introduction
Despite decades of research, synthetic speech is still not con-
vincingly natural [1]. A particular shortcoming is prosody: dur-
ations, energy, and intonation tend to be dull, inappropriate, and
unattractive. These issues prevent the use of synthesised speech
in otherwise appealing applications, such as audiobooks.

In this paper we focus on intonation (pitch contour) gen-
eration in statistical parametric speech synthesis (SPSS). Al-
though intonation is a supra-segmental property, conventional
approaches, such as HTS [2], predict F0 frame-by-frame, based
on limited linguistic contextual information (quinphone, part-
of-speech and positional information). Predictions within an
HMM state are assumed conditionally independent of surround-
ing F0 predictions, given the linguistic information. Surround-
ing F0 values only affect the local smoothing of the final contour
(via MLPG [3]). Such a myopic approach may not be the best
way to produce utterance-level supra-segmental structure.

We propose to generate more variable and naturalistic in-
tonation through the use of syllable-level pitch-contour tem-
plates learned from data. The hope is that treating intonation
prediction as a classification rather than a regression problem
will mitigate the over-smoothing seen in conventional tech-
niques. By using a recurrent neural network (RNN) to predict

the pitch-template sequence, long-range information about lin-
guistic context and surrounding predictor state can influence the
output, enabling high-level prosodic structure to be expressed.

To the best of our knowledge, our proposal to use an RNN
to predict syllable-level F0 templates is new. We also consider
improvements to this basic idea, including learned smoothing
of template joins and hierarchical prediction of the templates,
and evaluate against a state-of-the-art SPSS baseline.

2. Background
2.1. Conventional intonation modelling

Conventional HMM+regression tree speech synthesis predicts
frame-wise F0 from contextual linguistic features either using
a multi-space probability distribution (MSD) [4] or by continu-
ous F0 modelling [5]. Recently [6] the regression tree has been
replaced by a deep neural network (DNN), significantly improv-
ing subjective naturalness [7].

2.2. Long memory in prosody modelling

Recurrent neural networks (RNNs), in principle, enable long-
range dependencies to affect prediction output. They provide
superior output compared to feedforward DNNs for acoustic
modelling [8, 9], at least when natural speech durations are used
for synthesis. Our investigation considers the more practical
scenario of F0 prediction with RNNs in a full synthesis sys-
tem, without ‘oracle’ cues from natural speech durations. [10]
proposes predicting state-level F0 statistics and durations using
so-called long short-term memory (LSTM) units. However, pre-
dictions were made at the state level (3-state HMM), while we
predict syllable-level templates that do not assume within-state
stationarity. We use simplified LSTMs [9], and parametrise our
F0 contours using templates. [11] proposes two different model
structures: cascade and parallel DNN, to embody hierarchical
and additive properties of F0. Similarly, part of our approach
considers using a hierarchy of DNNs for predicting F0.

2.3. Template-based F0 generation

While the vast majority of F0 prediction approaches are based
on regression rather than classification, the idea of clustering
and/or discretising F0 contours is not new (cf. [12, 13]). In [14],
k-means clustering identified representative accent shapes over
syllables, with phrase-level structure predicted by a regression
tree. Modelling local and global components of F0 separately
was shown to improve upon conventional F0 models.

We combine key elements of a template-based approach
similar to [14] with much stronger, long-range predictors
(LSTMs). The use of templates is intended to capture and repro-
duce salient, syllable-level features of the F0 contour without
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over-smoothing. The choice of template per syllable should not
be made independently of surrounding choices, so we exper-
imented with the connectionist temporal classification (CTC)
framework [15] to predict sequences of templates.

2.4. Time-frequency decomposition for F0 modelling

In [16, 17], discrete cosine transform (DCT) coefficients were
proposed for representing F0 patterns. The use of DCTs to rep-
resent F0 at, e.g., syllable and phrase levels, enables a compact
representation of complex contours of varying durations [18].
The continuous wavelet transform (CWT) has also been found
to improve F0 modelling in HMM SPSS [19]. [20] explored a
multi-level representation of F0 by combining both DCT and
CWT representation, at different wavelet scales representing
F0-contour variations from phone up to utterance/phrase.

In [21], a regression tree was used to model DCT-
parametrised phrase-level F0 trajectories, to generate smoothly
varying contours. We similarly consider using the DCT to para-
meterise each syllable-level template, but with template class
predicted, and joins smoothed, using deep learning techniques.

3. Proposed template-based approach
Our proposed method has three parts (Figure 1): 1) An invent-
ory of syllable-level templates derived from training data; 2) A
neural network classifier to predict template class from input
text features; 3) F0 contour reconstruction from this sequence
of templates.

3.1. Creating the inventory of syllable F0 templates

In a training database, the F0 contour (on the equivalent rectan-
gular bandwidth (ERB) scale [22]) of each utterance is interpol-
ated through unvoiced regions, including pauses then segmen-
ted into syllables using force-aligned phone labels. The data-
base is described in Section 4.

We then (approximately) decompose each syllable contour
into a sum of N weighted zero-phase cosine functions. If x is a
contour of length N , then

c[k] = 2w[k]

N−1∑
n=0

x[n] cos

(
π(2n+ 1)k

2N

)
(1)

for 0 ≤ k < N , where

w[k] =

{
1√
4N

if k = 0
1√
2N

if 1 ≤ k ≤ N .
(2)

This yields outputs: c0, representing the mean F0 over the
syllable, and c = [c1, . . . , cN−1]

ᵀ, representing the shape of the
contour. This representation is clustered hierarchically [23] to
group similar intonation pattern vectors c together, as follows:

1. Assign each syllable F0 contour to a separate cluster.
With M such contours there will be M clusters, each
containing a single contour.

2. Find the pair of clusters with the smallest Euclidean dis-
tance between their mean contours and merge them into
a single cluster.

3. Repeat previous step until stopping criterion is met.

We stop when the correlation between clusters calls below
a threshold, or until we arrive at a specific number of clusters.
Figure 2 illustrates a 6-template model. Figure 3 shows an ex-
ample utterance represented as a sequence of these templates.

Following previous work on intonation modelling using
DCT [17, 18], we used N = 9 coefficients for our model.
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Figure 1: Schematic diagram of the proposed synthesis system
CTC in Section 3.2.2 using syllable templates. A single LSTM
unit is shown, although there is a full hidden layer of such units.
Connections crossed out in red are present in standard LSTMs,
but are omitted in the simplified LSTM units [9] used here.

3.2. Predicting templates using neural network classifiers

We now describe two different systems for predicting F0 tem-
plates using neural networks:

1. A hierarchical deep neural network classifier (HC).
2. A simplified LSTM with a connectionist temporal clas-

sification (CTC) output layer (SLSTM-CTC).

3.2.1. Hierarchical classifier

Table 1 reveals that the frequency distribution of templates is
far from uniform. Template 4 (Figure 2), by far the flattest, ac-
counts for 65% of the training data, presumably corresponding
to unstressed syllables. Classifications made by a DNN trained
to minimise either mean square error or cross-entropy on this
data were even more biased towards predicting the single most
frequent class (cf. “DNN” in Table 1), since it had such a large
prior probability. This would produce flat and boring intonation.

We propose to use a hierarchy of DNN classifiers to diver-
sify F0 template generation. A first classifier predicts whether
or not to use the most frequent (and, here, flattest) template for
the current syllable. If a less common template is called for, a
second classifier chooses among the remaining templates. This
gave a more diverse template distribution (cf. “HC” in Table 1),
which should produce more interesting synthetic speech.

In our implementation, the first classifier is a simplified
LSTM (S-LSTM) as in [9], while the second is a feed-forward
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Figure 2: A set of six syllable F0 templates found by clustering
of the data described in Section 4.1, plotted at the average F0
(180 Hz) and syllable duration (20 frames) of the speaker.
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Figure 3: Natural F0 and reconstructed F0 contours for the sen-
tence “Goldilocks and the three bears” at 5 ms frame rate.

DNN. (Using an RNN would not be straightforward, since the
state has to be propagated through time instances where no
second-level classification is needed.)

3.2.2. SLSTM-CTC

In another approach, we added a connectionist temporal clas-
sification (CTC) output layer [15] mapping from phone-level
linguistic features to syllable-level templates, after the S-LSTM
layer. The CTC output is a softmax output layer with N + 1
nodes, representing a probability distribution over the syllable
templates plus an additional “blank” unit. The blank unit is
the most common softmax output, particularly for phones in
the beginning and middle of syllables; only when the network
believes it is at the end of a syllable is the predicted template
output node activated. Similar to HMMs, the CTC loss func-
tion also makes use of the forward-backward algorithm to make
utterance-spanning decisions. This should enable a more appro-
priate distribution of predicted templates even for non-uniform
data, without the need for two different predictors as in the pro-
posed hierarchical DNN classifier.

3.3. F0 contour reconstruction

A preliminary F0 contour is reconstructed from the sequence of
predicted templates using the inverse discrete cosine transform
(IDCT) per template

x[n] =
c[0]√
N

+

√
2

N

N−1∑
k=1

c[k] cos

(
π(n+ 0.5)k

N

)
. (3)

Template 1 2 3 4 5 6
Train 852 5216 1853 26725 5784 1013
Dev. 26 139 50 653 147 28
Test 65 362 106 1553 377 40
DNN 0 127 4 2247 155 0
HC 15 298 27 1676 499 18
CTC 16 200 61 1958 287 11

Table 1: Template counts in the data (see Section 4.1) and cor-
responding test-set predictions by the methods of Section 4.3.

with the mean F0 (c0) taken from the baseline system and c1–
cN−1 from the selected template. This contour may be discon-
tinuous at template joins, which was found to degrade perceived
naturalness. To solve this, the discontinuous F0 contour value at
each frame was appended to the frame-level linguistic features
used as inputs to the acoustic model (see Figure 1), allowing that
model to predict the final F0 (as statics and dynamics) and the
voiced/unvoiced flag needed for waveform generation. During
training, a template decomposition of the natural F0 was used
to train the S-LSTM acoustic model to reconstruct smooth and
natural F0 contours from discontinuous input. Figure 3 shows
the preliminary (discontinuous) reconstruction along with the
output after smoothing. A pilot listening test indicated that this
smoothing removed discontinuity artifacts in the F0 contours.

4. Experimental set-up
4.1. Data

We evaluated on prosodically interesting data from children’s
audiobooks, as provided by Usborne Publishing Ltd. for the
2016 Blizzard Challenge1, containing text and speech (down-
sampled to 16 kHz) of 50 children’s audiobooks read by a Brit-
ish female speaker. Three stories with a combined duration of
approximately 13 minutes (6% of all data) were set aside as a
test set, leaving approximately 3.5 hours of audio for training.

4.2. Feature extraction

The data was force-aligned at state level using monophone
HMMs. Festvox’s ehmm [24] was used to insert pauses into
the phone-label sequences based on the acoustics. The result-
ing label sequences were coupled with text-derived linguistic
features encoding a subset of the questions used by the decision-
tree clustering in HTS [2]. This produced a vector of 592 binary
input features, to which 9 numerical features were appended as
in [25] and all features normalised to the range [0.01, 0.99].

The proposed CTC system only utilised the phoneme-level
binary input features to predict a distribution over the syllable
templates from Sec. 3.1. For HC, per-syllable input feature vec-
tors were created by removing phoneme-level features for po-
sition and articulation, and replacing quinphone identities by a
syllable-identity vector concatenating 7 50-dimensional one-hot
phone vectors, allowing seven phones per syllable.

Duration prediction, identical for all systems, used the un-
modified binary features as input to a DNN to predict a six-
dimensional vector, comprising five-state durations and total
phone duration (the last to regularise training, and thus not used
in synthesis).

STRAIGHT [26] was used to extract 60 MGC, 25 BAP and
logF0, along with delta and delta-delta features every 5ms. Per-
component mean and variance normalisation was performed.

1http://www.synsig.org/index.php/Blizzard Challenge 2016
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Classification measures F0 measures
Model Accuracy F1 score RMSE Corr.
MSE - - 45.9 0.40
HC 61.1% 0.590 46.9 0.36
CTC 63.8% 0.593 46.1 0.40
Oracle 100% 1 40.8 0.58

Table 2: Classification correctness and F1 score of predicted
syllable templates, along with RMSE and correlation of the pre-
dicted F0 contour, all measured w.r.t. held-out natural speech.

4.3. Reference systems

Alongside the two proposed systems (Section 3.2) we created
several reference SPSS systems which, except where noted, also
predicted all acoustic outputs from linguistic features: MSE was
a framewise-regression baseline predicting F0 using S-LSTMS.
BMK used forced-aligned natural durations and natural F0 con-
tours from the test-set recordings. VOC was a top line of vo-
coded speech. BOT was a bottom line using piecewise-constant
F0 per syllable (the mean natural F0). Oracle used templates
derived from the natural F0 contour of the test utterance. How-
ever, all systems except VOC used the same acoustic S-LSTM
to generate frame-level acoustic features (MGC+BAP).

4.4. Training and synthesis

The SLSTM-CTC system used a six-layer network with the
first four layers being feed-forward DNNs with tanh activation
functions of 1024 nodes each, followed by an S-LSTM layer
with 512 nodes and finally a softmax layer with seven output
nodes. The hierarchical DNN used a similar architecture with
softmax output layers of two and five output nodes.

Each network was initialised using small random weights
and subsequently optimised using stochastic gradient descent
(no pre-training) with a fixed learning rate, manually tuned
to yield close-to-optimal results on the development set in 30
epochs or less. Early stopping was used to avoid over-fitting,
selecting the model with best dev-set performance.

One acoustic-model S-LSTM and one duration S-LSTM
were trained, similar in structure to the intonation-prediction
S-LSTM but with a linear output layer. Meta-parameters such
as batch size and regularisation criteria followed [25].

For synthesis, ehmm phone sequences derived from the test
data were used as inputs to duration and intonation prediction.
This simply amounts to using oracle pause insertion, with no
other acoustics-derived information provided to the predictors.

After duration prediction, a sequence of frame-level lin-
guistic features was generated using the predicted durations,
and fed into the acoustic model to generate post-filtered MLPG
[3] parameter trajectories as in [25]. Global variance from
the dev. data was applied to the generated MGCs and traject-
ories further enhanced using conventional post-filtering. Fi-
nally, waveforms were synthesised using the STRAIGHT vo-
coder [26] and normalised according to ITU P.56 [27].

5. Results
5.1. Objective measures

To evaluate the different systems, we calculated the root-mean-
square error (RMSE) and Pearson correlation between natural
and predicted F0 contours. The template-based approaches
were additionally evaluated by classification accuracy and F1
score (Table 2). The objective numbers for the Oracle sys-
tems (correlation 0.6; lowest RMSE) indicate that natural F0
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Figure 4: Box plot of aggregate ranks from listening test. Red
lines are medians, orange squares means. Box edges (which
may coincide) show quartiles. Whiskers cover 90% of the data.

contours can be reasonably reconstructed from just six syllable
templates. Note, however, that Oracle, HC, and CTC all used c0
values based on the mean F0 predicted by MSE. Instead using
natural mean F0 for c0 increased the Oracle correlation to 0.89.

5.2. Subjective evaluation

Next, the systems were evaluated subjectively using a hybrid
between a MUSHRA [28] and a preference test. 20 native Eng-
lish speakers with no known hearing impairments, who were
remunerated for their time, used GUI sliders to rank the rel-
ative naturalness of different systems producing the same sen-
tence. Each listener scored 20 out of 32 held-out sentences in
a randomised but balanced design; this was preceded by a two-
sentence training phase and a tutorial screen. Tests took place
in sound-insulated booths over high-quality headphones.

Figure 4 shows the results. Vocoded speech was clearly
ranked the highest, followed by the natural-F0 BMK system;
the bottom line was definitely the least preferred. A Mann-
Whitney U test and a Wilcoxon signed-rank test both found all
pairs of systems to be significantly different (p < 0.05) except
(MSE, CTC) and (HC, Oracle). Holm-Bonferroni [29] correc-
tion was applied because of the multiple comparisons. The pro-
posed CTC system performed as well as but unfortunately not
(yet) better than the conventional baseline (MSE).

In stark contrast to the objective results (Table 2), the Or-
acle F0 contour was the least preferred among the main sys-
tems. This may point at an interesting interaction between dura-
tion and F0 that would affect many other results in the literature
from systems that use oracle values for one, but synthesise the
other. Perhaps a mismatch between the durations of the natural
speech from which the templates were taken, and the durations
of the synthetic speech onto which they were imposed, causes
some inconsistency that listeners attend to. This explanation is
consistent with [10], which suggests that joint prediction of dur-
ation and F0 may be important in DNN-based acoustic models.

6. Conclusion
We have described a classification-based approach to intona-
tion prediction with syllable F0 templates replacing frame-level
regression. The listening test suggests two things: that the pro-
posed CTC approach matches the performance of the conven-
tional approach, and has potential to exceed it once the issues
with the Oracle template system are overcome; and, that there
may be an important but under-explored interaction between
duration and F0 that needs careful attention in the future.
This work was partially supported by EPSRC Programme Grant
EP/I031022/1 Natural Speech Technology (NST). The NST research
data collection can be accessed at http://hdl.handle.net/10283/786.
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