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ABSTRACT

Decades of gradual advances in speech synthesis have re-
cently culminated in exponential improvements fuelled
by deep learning. This quantum leap has the potential to
finally deliver realistic, controllable, and robust synthetic
stimuli for speech experiments. In this article, we dis-
cuss these and other implications for phonetic sciences.
We substantiate our argument by evaluating classic rule-
based formant synthesis against state-of-the-art synthes-
isers on a) subjective naturalness ratings and b) a be-
havioural measure (reaction times in a lexical decision
task). We also differentiate between text-to-speech and
speech-to-speech methods. Naturalness ratings indicate
that all modern systems are substantially closer to natural
speech than formant synthesis. Reaction times for sev-
eral modern systems do not differ substantially from nat-
ural speech, meaning that the processing gap observed in
older systems, and reproduced with our formant synthes-
iser, is no longer evident. Importantly, some speech-to-
speech methods are nearly indistinguishable from natural
speech on both measures.

Keywords: Speech synthesis, scientific methodology,
speech technology

1. INTRODUCTION

The artificial modelling of human speech depends on an
ongoing dialogue between phoneticians and engineers.
Indeed, speech science helped synthesis get started [18]:
phonetics was instrumental in speech processing and en-
gineering in the formant synthesis age, when data was
sparse and modelling took place in wetware rather than
software. Likewise, in today’s data-driven speech techno-
logy with algorithms and machine learning, perception-
based modelling, such as the mel scale, is standard. Also,
advanced evaluation methods crossed over from percep-
tual phonetics to text-to-speech (TTS) and benchmark
TTS robustness and precision.

As in any dialogue, the influence is reciprocal. Mile-
stones in phonetic sciences, such as evidencing categor-
ical speech perception, were reached with the use of syn-
thetic sound continua [21]. Consequently, theoretical ad-
vances such as the motor theory of speech perception [20]
or acoustic cue analysis were made possible by experi-
ments with synthetic stimuli. Natural speech contains re-
dundant and residual cues to place of articulation which
are difficult to exclude in, e.g., manipulation of formant
transitions using natural speech [3]. Synthetic stimuli

offered control over single-cue variability limiting con-
founds, making it viable to assess listeners’ sensitivity to
a particular acoustic cue in isolation.

Arguably, control over numerous meaningful, relat-
ively low-level signal properties such as pitch, VOT, etc.
has been the central feature of rule-based formant syn-
thesis (henceforth: classical speech synthesis) in phon-
etic research. Conversely, the inability of concaten-
ative signal generation methods to create a continuum
of acoustic cues in response to input control has ex-
cluded these from much such research. The one not-
able exception is MBROLA [8], which uses a waveform-
modification technique similar to PSOLA [25] to allow
control of pitch and duration given a sequence of allo-
phones to speak. Applications include speech distortion
and de-lexicalisation, empirical paradigms where cues to
particular structures, such as prosody, are removed.

TTS continues to provide tools and heuristics for
the everyday phonetic business (stimuli creation) but it
also offers whole modelling frameworks used for testing
phonological models (analysis by synthesis) [41, 5].

Unfortunately, the many differences in human percep-
tion between natural and classical synthesised speech
have cast doubt on the universality of research findings
reliant on synthetic speech [15]. Classical synthesis has
proven to be generally less intelligible and to overburden
attention and cognitive mechanisms resulting in slower
processing times [7]. Winters & Pisoni [39] present a
comprehensive review of such effects and explain them
by showing that stimuli from formant synthesis are “im-
poverished” in terms of perceptual cues.

2. WHAT CAN MODERN SYNTHESIS DO?

Having pointed out some of the traditional uses, benefits,
and drawbacks of using classical synthesis in phonetic
research, we now discuss how modern speech synthesis
(statistical parametric and end-to-end TTS approaches
plus neural vocoders) can address these points in terms
of output control and realism. We also consider the re-
sources needed for state-of-the-art performance. The dis-
cussion is closely tied to the overview of speech techno-
logy for phonetic research presented in Figure 1.

2.1. Control

The vast majority of synthesis systems have an input that
allows control over the phoneme sequence expressed by
the system. The input can be either text or phones (like
in text-to-speech) or speech (like in voice conversion).
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Figure 1: A unifying view of speech representations (capital letters), optional transformations (horizontal arrows), and control-
lable manipulations (vertical arrows). The main inputs are shown on shaded backgrounds. The representation axis along the
bottom shows the domains and abstract-to-concrete ordering of common speech representations.
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These key inputs are shown shaded in Figure 1. The input
is then transformed between different intermediate rep-
resentations by processing steps (arrows in the figure) to
eventually produce a speech output waveform. However,
a phonetician often requires the ability to manipulate ad-
ditional aspects of the output at various levels of abstrac-
tion. Such controllable manipulations are illustrated by
squiggly vertical arrows in Figure 1.

Recent speech technology solutions concentrate on
learning rather than designing methods for speech out-
put control. Hence, the manipulation arrows in Figure
1 are realised through mappings learned by supervised
machine learning. In principle, this enables control of ar-
bitrary concepts that are hard to define acoustically, such
as speaker identity, age, and gender [23], emotional state
[12], and prosodic prominence [24]. These approaches
can easily be adapted to learn to control other character-
istics such as formant frequencies.

There are no guarantees that a particular type of control
is learnable, although the listed successes suggest great
potential for speech perception applications. Addition-
ally, learned control can be made more precise by includ-
ing a human in the loop who adjusts the control inputs
until the output is satisfactory, as seen in Figure 1.

2.2. Realism

Improving the realism of the generated output is of prime
concern for applications in speech research to avoid the
issues listed in [39]. However, it is difficult to ex-
haustively define the necessary cues to make synthesis
realistic, e.g., natural, easily intelligible, and specific to
a given speaker. Substantial advances in realism have
therefore come from improved signal processing and,
particularly, from including ever more machine learning
and statistical modelling into the speech processing steps
(the various arrows in Figure 1). Intelligibility in quiet, a
prominent issue with formant synthesis [39], has been on
par with natural speech since the era of hidden Markov

models and decision trees in TTS [17]. Replacing de-
cision trees with neural networks subsequently improved
the rated speech quality of these systems [38].

Since 2016, important breakthroughs have come from
introducing deep learning for generating audio wave-
forms, i.e., neural vocoders like WaveNet [26], and for
analysing text input (Tacotron [36]). These innova-
tions have radically increased the mean opinion score
(MOS) quality ratings of text-to-speech [31] and speech-
to-speech [22]. The best results tend to come from sim-
ultaneously learning to perform as many processing steps
as possible, known as end-to-end synthesis (cf. Figure 1).

Speech waveforms have a much higher information
rate than text, since they also express speaker and chan-
nel properties, emphasis, and so on. To generate speech
signals from text requires filling in missing information
as one progresses along the representation axis in Fig-
ure 1. This is not easy, and realism is oftentimes higher
when stimuli are generated from high-rate speech audio
input (like voice conversion) rather than low-rate text in-
put (like TTS). Perhaps for this reason, speech-in-speech-
out (SISO) pipelines tend to be more prevalent than text-
in-speech-out (TISO) pipelines in phonetic research. Hy-
brid approaches combining speech and text input (both of
the shaded boxes in Figure 1) can be used to compensate
for TTS weaknesses, e.g., by imposing prosodic charac-
teristics extracted from natural speech onto TTS [11, 33].

2.3. Resource needs

Modern synthesis methods leverage learning to improve
from increased resources, such as speech recordings, an-
notation, and computation power. Massive computational
resources were a pre-requisite for breakthroughs such as
WaveNet [26] and Tacotron 2 [31]. This performance
scaling contrasts with classical speech synthesis and ma-
nipulation methods based on explicit modelling, which
do not improve with additional resources.

However, the trade-off between results and resources
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can be circumvented. Modern systems can mimic new
speaker voices from limited adaptation data [23, 16], re-
moving the need to record full TTS corpora for each new
speaker. Extending these capabilities to under-resourced
languages and language varieties seems possible, given
more research into multilingual synthesis technology.

Speech technology trends that push towards making
data and code fully available, and the dropping cost of
computation, inspire confidence that resources will not be
a limiting factor in the future. As done in image and text
processing, speech technologists could share pre-trained
controllable synthesis systems to facilitate wider adop-
tion of these methods for phonetic research.

3. COMPARATIVE PARADIGM EVALUATIONS

We now describe an experiment to assess the decreased
perceptual difference between natural speech and modern
synthesis, relative to the differences described by Win-
ters & Pisoni [39] for classical synthesis. We, there-
fore, compare classic synthesis (as a baseline) and mod-
ern synthesisers in terms of listener ratings and listener
behaviour. This evaluation focuses on building TISO and
SISO systems with realism levels representative of what
can be achieved by open code and databases with mod-
est computation, leaving pronunciation/output control as
future work along with resource-demanding neural vo-
coders. Our test stimuli, anonymised responses, and ana-
lysis scripts can all be found at doi.org/10.7488/ds/2520.

3.1. Data for training and evaluation

We used a male RP British English speaker recordings
[6], available at doi.org/10.7488/ds/2482, downsampled
to 16 kHz using sox -r 16k. This data contains ca.
2000 sentences for system building, plus 720 Harvard and
300 modified rhyme test (MRT) utterances, detailed in
Section 3.4, that we set aside for evaluations.

3.2. Systems

We introduce the systems we evaluate below and in Table
1. All test stimuli were normalised to the same active
speech level using ITU P.56.

NAT Natural speech recordings held out from training.
VOC Copy synthesis (acoustic analysis followed by

re-synthesis) with the MagPhase vocoder [9]. MagPhase
is a high-fidelity signal generator that, for better quality,
retains both magnitude and phase spectrum information.

MERLIN Synthetic speech generated by the Merlin
TTS system [40] using the MagPhase vocoder. Spe-
cifically, this system uses feed-forward deep neural net-
works trained to predict F0, magnitude, and phase from
so-called linguistic features extracted from text using the
Festival [35] front-end with the Combilex [28, 29] RP
British English dictionary. This system represents state-
of-the-art research-grade statistical parametric TTS.

GL Copy synthesis from magnitude mel-spectrograms
using the Griffin-Lim algorithm [10] for phase recon-
struction. This is a classic technique from signal pro-
cessing that has seen a resurgence with end-to-end sys-
tems as a simple and fast baseline signal generator.

Table 1: System labels, input and output feature types,
modelling paradigms, and signal generation methods
for the systems compared in this study. Inputs and out-
puts are SI: speech in, TI: text in, SO: speech out.

System Type Paradigm Signal gen.
NAT - Natural Vocal tract
VOC SISO Copy synthesis MagPhase
MERLIN TISO Stat. parametric MagPhase
GL SISO Copy synthesis Griffin-Lim
DCTTS TISO End-to-end Griffin-Lim
OVE TISO Rule-based Formant

DCTTS Text-to-speech using deep convolutional net-
works as in [34] with Griffin-Lim signal generation. Like
Tacotron [36], DCTTS is closer than Merlin to full end-
to-end speech synthesis. Tacotron-like systems combined
with neural vocoders can produce highly realistic speech
output [31], surpassing all other TTS paradigms. Sim-
ilar to [33, 37], instead of graphemes, we used Com-
bilex phonetisations of words as input, retaining punctu-
ation to enable synthesising more appropriate intonation.
For accurate pronunciation, DCTTS was trained both on
our speaker and on about 11,600 utterances from another
English speaker from [19]. The last network in the model
was fine-tuned to adapt to the target voice.

OVE The multilingual rule-based formant TTS system
[4] (OVE III), implemented as a Tcl module by [32] and
configured to use a male RP British English voice. This
system is representative of research-grade formant-based
TTS. Unlike other systems, OVE permits optional pros-
odic emphasis control of individual output words.

3.3. Subjective rating experiment

To assess realism we use a setup closely resembling
the ITU standard MUSHRA [14] (MUltiple Stimuli with
Hidden Reference and Anchor). This test presents listen-
ers with randomly ordered, unlabelled, parallel stimuli
from different systems all speaking the same text. Listen-
ers rate the naturalness of each stimulus against a desig-
nated natural reference (here NAT). They can listen to the
stimuli in any order as many times as they like and adjust
their ratings until they are satisfied. These tests have been
found to resolve system differences better than traditional
MOS evaluations [27]. The MUSHRA rating scale from
0 to 100 was anchored by assigning the standard MOS
labels “Bad”, “Poor”, “Fair”, “Good”, and “Excellent” to
successive 20-point intervals along the rating scale.

The test used 20 native English-speaking listeners (stu-
dents at the University of Edinburgh) with no known
hearing impairments. Listeners rated stimuli representing
the different systems speaking four sets of ten Harvard
sentences [30] (designed to be approximately phonetic-
ally balanced) and were remunerated for their efforts.

The box plot in Figure 2 visualises the 799 ratings for
each system analysed from the listening test. All pair-
wise system differences are statistically significant at the
0.01 level (p < 10−6) after Holm-Bonferroni correction
for multiple comparisons, using either paired Wilcoxon
signed-rank tests (for the median) or paired Student’s t-
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Figure 2: Box plot of per-system MUSHRA rat-
ings. 95% confidence intervals are shown for medians
(red box centre lines) and means (yellow diamonds).
Whiskers extend to cover 95% of all responses.
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tests (for the mean). Ignoring ties, VOC was rated above
NAT 5.7% of the time. The same number for MERLIN
was 0.38%, the highest for a TISO system. OVE was
rated below any other system 99% of the time or more.

3.4. Lexical decision task

To assess intelligibility and processing speed via correct-
response rate and a behavioural measure, namely, reac-
tion time, we set up a lexical decision task using Exper-
imentMFC, an interface for forced-choice listening tests
in Praat. Stimuli were CVC words from 50 minimal pairs
selected from the modified rhyme test [13], embedded in
a fixed carrier sentence rendered by the six different sys-
tems. We used emphasis control in OVE to approximate
the NAT productions of the MRT word token.

We tested 20 listeners that were selected and remuner-
ated as in the previous test. For each stimulus, listeners
were asked to push one out of two buttons to indicate
which word they heard out of the minimal pair, as soon
as they knew. Listeners heard each system speak each of
the 100 words once, producing 600 responses and reac-
tion times per listener. Stimuli were ordered randomly for
each listener while the order of the two response options
was balanced across listeners in two blocks.

Table 2 reports the results of mixed-effects linear re-
gression on logarithmic response-times with data trim-
ming and model criticism based on [2]. Apart from OVE
and DCTTS, reaction times to all synthetic systems do
not exhibit statistically significant differences relative to
NAT. This means that one state-of-the-art TISO and both
SISO systems analysed here are processed similarly to
natural speech by human listeners. Incorrect response
rates (final column of Table 2) are comparable to NAT
for VOC and MERLIN, with DCTTS and OVE showing
the worst performance on this indicator of intelligibility.

4. DISCUSSION

We have experimentally verified that modern synthetic
speech is perceptually closer to natural speech than are
classical synthesis methods, to such an extent that mod-
ern methods largely overcome the processing inadequa-
cies that have previously plagued synthesised stimuli in
speech sciences. As the next step, we want to extend this

Table 2: Results of mixed-effects linear regression
modelling on log reaction times and the percentage of
incorrect responses in the lexical decision task.

System Est. (±std. err.) p-value Incorrect
NAT (ref.) 2.6%
VOC 0.02 (±0.02) = 0.33 2.5%
MERLIN 0.02 (±0.02) = 0.14 3.0%
GL -0.001 (±0.02) = 0.94 4.0%
DCTTS 0.04 (±0.02) < 0.01 5.8%
OVE 0.09 (±0.02) < 0.001 6.0%

investigation to include speech manipulation and neural
vocoders, and also consider more evaluation paradigms.
We expect that this will confirm our hypothesis that mod-
ern speech synthesis can improve on the utility of classic
phonetic research tools in many scenarios. While it is al-
ways an option to use formant synthesis if a quality of
“artificial” speech is desired for an experiment, it seems
that findings from synthetic stimuli that are as close as
possible to natural speech should generalise better to nat-
ural speech perception for most tasks.

An interesting short-term technological goal is to cre-
ate neural vocoders that are controlled by formants, phon-
ological features, or other parameters frequently manip-
ulated in phonetic research. This should permit speech
manipulations in both a SISO framework (like [5]) and
a TISO framework (like KlaTTStat [1]) while simultan-
eously improving realism. With enough resources, this
paradigm might theoretically even surpass the realism at-
tained by PSOLA when manipulating pitch and duration.
The TISO approach would also benefit from end-to-end
learning to better predict the chosen vocoder parameters,
improving all aspects of the TISO pipeline.

More fanciful applications of synthesis technologies
can also be envisioned. Good neural vocoders trained
without any control input at all can generate highly real-
istic single-talker babble [26]. This seems like a prom-
ising tool for work on de-lexicalised speech. Another ap-
plication is the study of optional or paralinguistic phe-
nomena that stem from unplanned processes, such as
realistic hesitations, backchannels, or non-phonemic con-
versational clicks. As natural examples of such phenom-
ena are difficult to elicit from human speakers in empir-
ical designs, the ability to synthesise these phenomena on
demand would greatly benefit systematic study.

In the long run, we aim to demonstrate that new tools
from speech technology enable novel scientific discovery
in speech sciences, and ultimately advance research in
the field. To do this, we need input from the phonetic re-
search communities to identify suitable research targets.
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