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Bayesian Analysis of Phoneme Confusion Matrices
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Abstract—This paper presents a parametric Bayesian ap-
proach to the statistical analysis of phoneme confusion matrices
measured for groups of individual listeners in one or more test
conditions.

Two different bias problems in conventional estimation of
mutual information are analyzed and explained theoretically.
Evaluations with synthetic datasets indicate that the proposed
Bayesian method can give satisfactory estimates of mutual infor-
mation and response probabilities, even for phoneme confusion
tests using a very small number of test items for each phoneme
category.

The proposed method can reveal overall differences in perfor-
mance between two test conditions with better power than con-
ventional Wilcoxon significance tests or conventional confidence
intervals. The method can also identify sets of confusion-matrix
cells that are credibly different between two test conditions, with
better power than a similar approximate frequentist method.

Index Terms—Speech recognition, parameter estimation, mu-
tual information, Bayes methods

I. INTRODUCTION

PHONEME confusions that arise when humans listen to
distorted or noise-corrupted speech is a central topic in

the field of communication acoustics, as first established in
the early 1900s. An important goal of early studies was to
determine necessary technical requirements on the telephone
speech transmission network [1]–[3], but phoneme confusions
continue to be studied also today. The topic is relevant for
many practical purposes, since the early studies also showed
that phoneme identification of nonsense syllables is positively
correlated with understanding the meaning of complete sen-
tences, e.g., [4, Fig. 11].

The present study is aimed at the following experimental
scenario: The goal is to find out whether a new signal-
processing system provides better phoneme recognition than
a state-of-the-art reference system. To this end, phoneme
identification ability is measured for a group of participants.
For example, each participant might listen to a speech test
material using different speech-coding algorithms in a cochlear
implant system, or hearing aids adjusted using different fitting
principles.

The experimenter wants to answer these research questions:
• Can we safely conclude that the new system improves

phoneme recognition, compared to the reference system?
• What degree of improvement is to be expected in the pop-

ulation from which the test participants were recruited?
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• For which phonemes, and for which types of identifica-
tion errors, can we safely conclude that the new system
improves performance?

The experimenter must choose a single-number measure to
quantify the overall phoneme identification ability. The most
obvious choice, used in a vast number of studies, is to simply
report the percentage Score of Correct responses (SC) with
the given speech test material.

Further insight can be obtained if the recognition results
are organized in the form of a confusion matrix, displaying
for each stimulus category the number of responses in each of
the possible response categories. Typically, a confusion matrix
for consonant recognition in noise reveals many errors among
acoustically similar consonants such as /p/, /t/, /k/, or among
nasals, /m/, /n/, but much fewer confusions between more
dissimilar consonants, e.g., /s/ vs. /m/.

Miller & Nicely [5] introduced the Mutual Information
(MI) between stimulus and response categories1 as an inter-
esting overall performance measure. The mutual information
quantifies the average amount of information reeived by the
listener about the stimulus phonemes [6]. This measure is
appealing because information transfer is the fundamental goal
of communication.

There are good reasons to use both SC and MI as per-
formance measures. The SC is easy to understand and also
has one notable statistical advantage: The observed SC is an
unbiased and consistent estimate of the underlying Probability
of Correct response (PC). This means that, if the same test
would be repeated many more times with other listeners in
the population for which the test group is representative, the
average test result will converge towards the true probability
in the population.

The MI measure does not only consider the number of
correct identifications, but also takes into account all the types
of identification errors that the listener can make. Theoreti-
cally, MI can be maximal while PC is minimal (zero), e.g., if
recognized phoneme labels are cyclically permuted compared
to the true labels. Thus, MI and PC are two fundamentally
different concepts. An acoustic signal transformation that
improves the MI might improve the long-term PC, although
the PC initially decreases. This result occurs if the listener
consistently misinterprets the presented phonemes with the
new signal processing, but the identification errors are more
systematic with the new system and more random in the
reference condition. Such a result would suggest that the
new processing actually makes it easier for the listener to
distinguish between the different presented sounds, but the

1In [5], the MI was calculated not only as a single measure for all conso-
nants, but also separately for five articulatory distinctive features. However,
this paper uses the MI only as a single-number measure of the total transfer
of phonemic information.
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listener’s labeling of the sound categories is still somewhat
incoherent.

The MI quantifies the ability to discriminate between the
test stimuli, which is a necessary but not sufficient condition
for correct identification, which is quantified by the PC. There-
fore, improved MI should be considered as a promising result,
even if the PC does not immediately improve. Of course,
additional experiments are then still needed to indicate if
listeners actually can learn to benefit from the new processing
after sufficient acclimatization.

Well-established conventional methods are available for the
analysis of the statistical reliability of speech recognition
test results with words or sentences [7]–[9]. If the items in
a recognition test are statistically independent and equally
difficult, the number of correct responses follows a binomial
distribution. Even if the stimulus items are not exactly equally
difficult, the binomial distribution can still be applied to
estimate the test-retest reliability [7].

However, consonant recognition tests with nonsense sylla-
bles usually exhibit a very wide range of recognition per-
formance among the different stimulus phonemes, even for
listeners with normal hearing [5], [10]–[12]. These variations
are even larger among listeners with impaired hearing [13]–
[16]. Thus, when consonant identification tests are used to
evaluate a new signal processing algorithm, an improvement
may be seen only for a small subset of the presented conso-
nants. This variability makes it difficult to apply the classical
method to analyze the reliability of the overall SC in consonant
recognition data.

The binomial (or multinomial) model is appropriate for
data in each cell of a confusion-count matrix, and statisti-
cal estimation of the unknown proportion parameter of the
binomial distribution has been studied extensively, e.g., [17]–
[21]. Phoneme confusions have been measured in a very large
number of studies; see, e.g., recent reviews in [16], [22], [23].

However, surprisingly few studies have applied the multi-
nomial model to analyze the statistical reliability of observed
confusion matrices. Jürgens et al. [24] assumed a multinomial
distribution of response counts and estimated confidence in-
tervals for response probabilities using the Clopper-Pearson
method [17], [21]. A similar approach was used in [14],
[15]. Multiple joint comparisons for several matrix cells were
not considered in these studies. Such comparisons are more
complicated, firstly because of the general problem of multiple
hypothesis testing, and secondly because the counts of differ-
ent responses to the same stimulus category are statistically
dependent.

Conventional statistical tests for the significance of an
observed difference in PC or MI between test conditions
must use the observed variations among individual results
to estimate the reliability. Parametric test methods such as
ANOVA have been applied, e.g., in [22], [25], [26]. When PC
and MI results are close to their upper or lower limits, it is
obviously questionable to assume that data follow a Gaussian
distribution. A non-parametric test such as the Wilcoxon
signed-rank test might generally be more appropriate.

Unfortunately, using the MI as an overall performance
measure raises an additional difficulty: The conventional MI

calculation over-estimates the true individual value, unless the
number of test items is very large [5], [27]–[29]. Thus, if
individual MI results are first estimated for each test partic-
ipant, and the results then are averaged across listeners, an
overestimation bias remains in the final average.

Many studies of phoneme confusions have simply avoided
estimation of individual MI results. Instead, following [5], it
has been common practice to pool the individual results by
first adding the confusion matrices for all listeners, before
estimating a single MI value [29]. Sagi and Svirsky [29] sug-
gested that the biased individual estimates might still be used
for statistical comparisons, assuming that the bias is constant.
However, the present study shows that this assumption is false.
We also show that pooling leads to another type of bias that
has previously been overlooked.

The present paper provides several novel contributions that
offer a solution to the problems mentioned above:
• A parametric Bayesian framework is presented for the

analysis of phoneme confusion data.
• The proposed method shows more accurate results than

conventional statistical methods when applied to data
from simulated consonant recognition tests.

• Two different kinds of MI bias are explained theoretically
and quantified by simulations. The proposed method
nearly eliminates both types of bias.

• The proposed approach can also determine the statistical
credibility of observed changes jointly for multiple cells
in different confusion matrices.

The paper is organized as follows: Section II defines the
theoretical approach. Proofs of the two MI bias problems
are given in Appendix A. Other mathematical details are
deferred to later appendices. Sections III and IV describe
simulations showing that the proposed method improves on
the performance of the conventional approach. Finally, the new
contributions are discussed and summarized in Secs. V and VI.

II. THEORY

A. Bayesian vs. Frequentist Hypothesis Testing

Assume that we have collected recognition scores SCA and
SCB from two different test conditions, A and B, for example
using two different signal processing algorithms in a hearing
aid. The experimental results might be SCA = 66% and
SCB = 74%. We need to determine whether the observed
improvement D = SCB − SCA is caused by a genuine ad-
vantage of B over A, or if the difference might just have been
caused by random variations in the phoneme identification test.

The well-known classical frequentist approach would then
be to assume a null hypothesis, stating that the underly-
ing probabilities of correct recognition PCA and PCB are
equal in both conditions. Using the null hypothesis, the total
probability p is calculated for all possible random results as
extreme as, or more extreme than, the observed difference.
If this probability is smaller than a pre-selected signficance
level (e.g., 0.05), the null hypothesis is rejected, and the
researcher concludes that it is acceptable to act as if the
observed difference is known to be real.
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By convention, researchers are usually satisfied if they find
a significant result indicating that PCB is better than PCA,
although the classical method actually does not calculate the
probability that PCA > PCB . This and other weaknesses in
the frequentist methods are discussed in depth in [30, Ch. 5].

There is always a scientific (and perhaps financial) cost
incurred by acting as if an improvement is real when, actually,
there is no improvement, and the calculated p-value can be
used to estimate the expected value of this cost. However,
there is always also a risk that we might incorrectly conclude
that there is no real difference between A and B, when there is
in fact a difference. The simple classical significance test does
not quantify the risk for this opposite “type-II error,” although
this error may actually be more costly in many scenarios.

The Bayesian approach quantifies the probability of the
tested hypotheses and both types of error, by estimating a prob-
ability distribution for all underlying model parameters, given
the observed experimental result. In the example discussed
above, the Bayesian analysis would estimate the conditional
probability q for the event that PCB > PCA, given the
observed data. This result implies that the probability is 1− q
for the opposite event that PCB ≤ PCA. The same approach
is used for any other performance measure, e.g., the MI or the
response probability in any confusion-matrix cell.

How should the researcher interpret this q-value? Obviously,
a very large q of 0.99 or so strongly suggests that B is
genuinely superior to A, and vice versa if q is very small.
However, it is not possible to define a fixed decision threshold.
For example, if there is no other information to point in either
direction, the researcher should act as if B really is better than
A whenever the probability q > 0.5.

Interesting philosophical discussions of the Bayesian vs. fre-
quentist viewpoints are given in [30], [31]. Bishop’s textbook
[32] presents many applications of the Bayesian approach for
machine learning.

B. Notation and Definitions
The primary result from a phoneme-identification test, for

one listener in one test condition, is a confusion-count matrix
x with one row for each stimulus category and one column
for each response alternative. Each matrix element xsr is
an integer counting the number of events where a stimulus
of category s was presented and the listener responded by
category r. In many forced-choice experiments the confusion
matrix is square, but there may also be one or more additional
columns for “no response” or “noise only” as in, e.g., [10].
If allowed in the experiment, such responses are regarded
here as legitimate alternatives and treated statistically just
like the responses that identify a phoneme. The correct-
response counts are then found in the elements along the
main diagonal. In some experiments, e.g., [12], [16], different
tokens (phones) are presented for each phoneme category, and
the same response category is considered correct for these
different stimulus variants. Then the responses considered
correct are not on the main diagonal. In any case, the number
of presented test items from the sth stimulus category is

Ns =
∑
r∈R

xsr (1)

and the total number of presented test items is N =
∑
s∈S Ns.

Here, S is the set of all stimulus categories, and R is the set
of all allowed responses.

When all confusion-count matrices from an experiment
have been collected, the complete dataset will be denoted
x = (. . . ,xlt, . . .), where xlt is the count matrix for the lth
listener in the tth test condition.2

Here and forthwith, matrices and vectors are written with
bold symbols. Random variables are denoted by upper-case
letters, while lower-case letters are used for specific outcome
values of the random variable.

In both the classical frequentist as well as the Bayesian
approach, the observed response counts are considered to be
outcomes of discrete random variables. It is assumed that when
a stimulus of type s is presented, the listener will respond
by alternative r with some probability, here called usr. This
conditional probability is a real number between 0 and 1. Of
course, the exact value of each usr is not known. It is a model
assumption that all these probabilities have fixed values for
each listener in each test condition.

An observed confusion-count matrix x, with rows xs and
elements xsr, is seen as just one outcome of a matrix-valued
random variable X with a multinomial probability mass

P [X = x] =
∏
s∈S

c(xs)
∏
r∈R

uxsr
sr ; c(xs) =

Ns!

xs1! · · ·xs|R|!
(2)

for any event X = x. The responses to all items are assumed
to be conditionally independent,3 given the probabilities usr.
If only two response alternatives are considered, i.e., |R| = 2,
expression (2) reduces to a product of binomial distributions.

The expected value of the response count is E [Xsr] =
Nsusr for any stimulus-response pair (s, r), and the variance
is var [Xsr] = Nsusr(1 − usr). Thus, the expectation and
variance for the relative response rates are E [Xsr/Ns] = usr
and var [Xsr/Ns] = usr(1−usr)/Ns. The counts within each
matrix row are correlated, with cov [Xsr, Xsq] = −Nsusrusq ,
for q 6= r, but elements in different rows are independent.

In the frequentist view, the parameters usr are simply
numbers, and not endowed with a probability distribution. The
frequentist model can therefore only calculate the probability
of events X = x given u.

The Bayesian approach, in contrast, regards the individual
response-probability matrix u as an outcome of a matrix-
valued random variable, here called U . The goal of the
Bayesian approach is to estimate a conditional probability
distribution for U , given the observed outcome X = x.

In the Bayesian view, the conditional probability mass for an
observed eventX = x, given an outcome u for the parameters
U , can now be expressed as

pX|U (x | u) ∝
∏
s∈S

∏
r∈R

uxsr
sr . (3)

2To avoid clutter, the listener and condition indices will be omitted when
not essential to the discussion.

3This assumption is appropriate, because phoneme identification tests
usually use nonsense speech material. This makes the results most sensitive
to the acoustic characteristics of the speech signal and eliminates influence
from syntactic and semantic context.
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Here, the normalization factors c(xs) in (2) have been omitted,
because the observed x is from now on regarded as fixed, and
because (3) only will be used to find a conditional probability
density for U , given the observed x.

The random-variable elements Usr of the parameter matrix
U are defined as conditional probabilities for the random
response variable R, given the random stimulus variable S,

Usr = P [R = r | S = s] ;
∑
r∈R

Usr ≡ 1, for all s, (4)

since in most phoneme recognition tests the number of stimu-
lus items Ns in category s is not the result of random choice,
but is determined in advance by the phoneme test material.

To complete the Bayesian model specification, a prior
probability density function pU (u) is required. This density
summarizes all information available about the distribution
of U in the population of interest, before considering the
observed data. In some situations, such prior information can
be gleaned from previous studies, but usually the prior density
function is not known in advance. Methods to select the prior
distribution are discussed in Appendix B.

The core of the Bayesian approach is now to determine
the posterior conditional probability density of the parameter
matrix U , given the observed data x, as

pU |X(u | x) ∝ pX|U (x | u) pU (u). (5)

The precise mathematical form of the density functions pU (u)
and pU |X(u | x) are defined in Appendix B.

If Ns is small, a wide range of probability values usr is
compatible with the observed event Xsr = xsr. An example
of the result of applying (5) is presented in Fig. 2, showing
conditional probability distributions for the response probabil-
ities Usr in three selected matrix cells for one listener.

C. Performance Measures

Once the posterior probability density pU |X(u | x) in
(5) has been determined, it is straightforward to estimate the
statistical properties of any performance measure that is a
function of U .

Several interesting such measures have been proposed in the
literature: For example, [33] introduced Confusion Patterns,
i.e., logUsr as a function of signal-to-noise ratio (SNR), to il-
lustrate phoneme confusions. The overall log error probability
log(1−PC(U)) was shown to have an interesting relation to
the Articulation Index [15], [33]. The Response Entropy [15]
quantifies the degree of response randomness.

This paper is focused on response probabilities in specific
cells, total probability of correct responses (PC), and mutual
information (MI), but the proposed estimation methods can
also be used for other measures.

1) Response Probabilities: The posterior distribution of
response probabilities can be summarized by the marginal
means and/or quantiles for any element Usr, independently of
other matrix elements. The q-quantile ũsr(q) is defined from
the cumulative posterior density as the solution to

P [Usr ≤ ũsr(q) |X = x] = q. (6)

The median is the quantile ũsr(0.5).

2) Probability of Correct Response: The posterior total
probability of Correct Response is a weighted average,

PC(U) =
∑
s∈S

Ns
N
Us,c(s), (7)

where c(s) is the response category defined as “correct” for
stimulus s; usually c(s) = s. Quantiles for the PC are
calculated in analogy with (6).

3) Mutual Information: The mutual information between
stimulus and response random variables S and R, conven-
tionally written as I(S;R) in information-theory literature,
indicates the average amount of information about the stimulus
identity received by the listener for each test item. The MI
quantifies the reduction in the listener’s uncertainty about the
stimulus label, achieved by hearing the presented sound.

Given any response-probability matrix outcome u of the
random matrix U , the MI is defined as

MI(u) = I(S;R | U = u) =

= ER,S

[
log

p(R | S,U = u)

p(R | U = u)

∣∣∣∣ U = u

]
=

=
∑
s∈S

∑
r∈R

Nsusr
N

log
Nusr∑
z∈S Nzuzr

. (8)

If the test material includes different sets of phoneme tokens,
e.g., for different speakers, the MI should be calculated to
quantify the listener’s ability to identify the phoneme class,
regardless of the speaker. As the response patterns can differ
consistently between token variants of the same phoneme [12],
the response counts should not be averaged across variants of
the same phoneme. Instead, the MI should first be estimated
separately for each token set, and then averaged across sets if
a single overall measure is needed.

Once the posterior distribution (5) for U has been deter-
mined, given an observed test result, MI quantiles M̃I(q) are
defined in analogy with (6) as the solution to

P
[
MI(U) ≤ M̃I(q)

∣∣∣X = x
]

= q. (9)

The conventional estimate, introduced in [5], is obtained by
plugging in the observed relative frequencies ûsr = xsr/Ns as
point estimates of usr in (8). This MI estimate then becomes

M̂I(x) =
∑
s∈S

∑
r∈R

xsr
N

log
Nxsr
Nsnr

; nr =
∑
z∈S

xzr. (10)

D. Bias of Mutual-Information Estimates

It has been noted in the literature that (10) overestimates
the true MI(u) in (8) for individual listeners, if too few
stimulus items are used in the test [5], [27]–[29]. The proof
in Appendix A shows that the bias problem is caused by the
fact that MI(u) in (8) is a convex function of u.4

A common alternative approach [5], [29] is to pool the
results across test participants, i.e., to sum the confusion-
count matrices for all listeners, before estimating a single MI
value for the group of listeners. However, this pooling tends to

4Thus, the Response Entropy [15] suffers from the opposite bias problem,
because it is a concave function of response probabilities [6, Theorem 2.7.3].
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underestimate the true mean MI in the population from which
the listeners were recruited. This paper is the first to identify
this persistent underestimation property of the pooled analysis.
Appendix A shows that this second type of bias cannot be
reduced by increasing the number of test participants, or by
increasing the number of test items for each listener, because
the bias is caused by the inherent true variability among
individuals in the population.

The main advantage of the Bayesian approach is that it
estimates the complete posterior distribution of U , instead of
just a single point value as in the classical method. This makes
it possible to reduce both kinds of bias, as shown in Sec. IV.

E. Difference Between Test Conditions

The Bayesian approach is easily extended to comparisons
of performance results across test conditions.

1) Single-Number Performance Measure: Assume a pair of
confusion-count matrices, (x,y), have been collected, e.g., for
a single listener using two different transmission systems. A
posterior density function for the corresponding pair (U ,V )
of response-probability matrices, pU ,V |X,Y (u,v | x,y), is
then estimated using the principle in (5), given the observed
pair of confusion-count matrices.

Once this joint posterior probability density for (U ,V ) has
been calculated, it is straightforward to characterize the overall
difference between test conditions by any measure defined as
a function of the response-probability matrix. For example, the
probability that the MI is higher in the second condition is

q = P [MI(V ) > MI(U) |X = x,Y = y] (11)

The interpretation of this q-value was discussed in Sec. II-A.
Quantiles for the difference MI(V )−MI(U) are calculated
in analogy with (6).

2) Responses in Multiple Cells: If an overall performance
measure indicates a credible difference between test condi-
tions, it is interesting to find a subset of stimulus-response
pairs showing the most reliable differences. A conventional
Bonferroni correction might be used to compensate for the
effect of multiple hypothesis testing, but this approach may
be too conservative as it does not account for the statistical
dependence between cells in the confusion matrices.

Appendix C describes a computational procedure to find
a subset of stimulus-response pairs that are all jointly cred-
ibly different between test conditions. As the probability is
computed jointly for all the pairs, no further corrections for
multiple hypothesis testing are needed.

F. Sampling Approximation

All the performance measures discussed in Sec. II-C can
be defined as some function g(U) of the random probability
matrix U . However, the exact posterior density function for
g(U) is usually not computationally tractable. Therefore, the
distributions of these result measures are estimated by sam-
pling. A large number of random sample matrices u(n), n =

Priors

u1A,u1B x1A,x1B

uLA,uLB xLA,xLB

Eq. (B.6)

Eq. (B.6)

(B.8)

Fig. 1. Block diagram for the simulation of two test conditions, A and
B. Pairs of response-probability matrices (ulA,ulB) and confusion-count
matrices (xlA,xlB) are generated at random (dashed lines) for L listeners.
The Bayesian analysis (solid lines) first adapts two prior distributions as
described in Appendix B, then estimates L individual pairs of response-
probability distributions by (B.6), and finally combines all results into an
estimated group distribution of (UA,UB) using (B.8).

1, . . . , Nu, are drawn from the posterior density (5). The
sample average then approximates the exact expectation, as

ḡ =
1

Nu

Nu∑
n=1

g (u (n)) ≈ E [g(U)] . (12)

Distribution quantiles g̃(q) are estimated as the empirical
quantiles in the set of samples, using linear interpolation
between sorted sample values [34].

This approach is also applicable to entire datasets. Proba-
bility models U lt are fitted for the lth participant in the tth
test condition, using the confusion-count matrix xlt. Sample
matrices ult(n) are generated from each posterior model U lt.
The complete set of samples, for all listeners, are compared
between test conditions in the same way as before. The results
indicate the difference between test conditions for the entire
population for which the participants are representative.

III. SIMULATION METHODS

To evaluate the proposed analysis methods, the calculated
results must be compared to known true values, but the true
values can only be known for synthetic data, necessitating the
use of simulations.

Three levels of distributions were considered: (1) A pop-
ulation was simulated with known distributions of response-
probability matrices in each test condition; (2) A listener group
was drawn at random from the population model; (3) A single
confusion-count matrix was generated at random from each
listener model in each test condition. The complete procedure
is illustrated in Fig. 1 for two test conditions.

1) Population: The distribution in the population was based
on the extensive data in [5, Tables II, III, IV, and V] presenting
square confusion-count matrices for 16 English consonants,
pooled across five female normal-hearing listeners. The speech
was presented with full frequency bandwidth in a background
of flat-spectrum noise with nominal signal-to-noise ratios
(SNRs) of −12,−6, 0, and +6 dB. Each matrix shows the
result of 4000 test items in total, with 200–300 presentations
for each consonant. Accurate mean response probabilities can
therefore be estimated from these data, but the inter-individual
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Fig. 2. Response probabilities in three selected confusion-matrix cells,
sh→sh, k→k, and th→p, for a single listener selected at random from a group
of L = 20 simulated listeners, drawn at random from the simulated population
shown in Fig. 3. Bayesian estimates are shown by posterior medians (◦) and
95-% credible intervals (vertical solid lines). Conventional results are shown
by 95-% Clopper-Pearson confidence intervals (adjacent dashed vertical lines)
and point estimates ûsr = xsr/Ns (×). All estimates should be compared
to the known true response probabilities usr shown by solid horizontal lines.

variability is not known, because the published matrices were
pooled across listeners and speakers.

The typical confusion patterns of normal-hearing listeners
depend on the spectrum of the masking noise [10], [11]. The
overall recognition scores as a function of SNR show rather
small variations among normal-hearing listeners [10, Fig. 3],
but there are notable systematic differences between consonant
phonemes and also between different tokens (from different
speakers) of the same phoneme category [12]. The variations
in overall performance are much larger among listeners with
impaired hearing, and the confusion patterns as a function
of SNR can also differ systematically from those of normal-
hearing listeners [16].

For the present model evaluation, the systematic differences
between consonant phonemes are not critical, as they are auto-
matically accounted for by the independent model distributions
(B.6) for each stimulus category. The conditional indepen-
dence assumption between test conditions (B.8) automatically
accounts for any systematic differences between different
token sets, e.g., as produced by different talkers. However,
an attempt was made to create a rather large inter-individual
variability in the simulated population, in the following way:

The distribution of response probabilities in the population
was simulated by a mixture of M = 30 Dirichlet distributions,
each representing a slightly different, randomly selected SNR.
To simulate a test condition corresponding to a nominal SNR
of st dB, a set of random SNR deviations (z1, . . . , zM )
were first generated from a Gaussian distribution with zero
mean and standard deviation SD = 1 dB. Mean response
probabilities umt were calculated for nominal SNRs st + zm
by linear interpolation between the values estimated from
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Fig. 3. Group estimates of posterior response-probability distributions in
three selected cells (sh→sh, k→k, and th→p) of simulated confusion-count
data for groups of L = 20 listeners tested with Ns ∈ {2, 5, 10, 20} items
per phoneme at a nominal SNR of 0 dB. The population distribution is
shown by solid horizontal lines for the medians (◦) and 90-% (5) and 10-
% (4) quantiles. These true population quantiles should be compared to the
corresponding estimated results marked by the same symbols. Interquartile
ranges among R = 100 random group replications are shown by vertical solid
lines for the Bayesian estimated quantiles and by adjacent vertical dashed lines
for the conventional sample quantiles.

confusion counts in [5, Tables II, III, IV, and V],5 with
extrapolation to chance performance at −20 dB SNR.

Dirichlet models Umt were then constructed such that the
mean response probabilities were equal to the interpolated
means umt. The additional random variability around these
means was controlled by setting each row sum of Dirichlet
concentration parameters in (B.2) as

∑
r∈R asr = 15.6 The

resulting “true” (reference) inter-individual variability can be
seen in Figs. 3, 5, and 7.

2) Group: A group of L listeners was generated from the
population model. First, L Dirichlet distributions were drawn
at random from the M mixture components, and then the
individual response-probability matrices ult were generated
at random from the selected distributions. This procedure was
repeated for each of R simulated groups. Examples of the
“true” individual performance are shown in Figs. 2 and 6.

3) Confusion Counts: For each individual response-
probability matrix ult a confusion-count matrix xlt was gen-
erated at random from the multinomial distribution (2) with
Ns ∈ {2, 5, 10, 20} simulated presentations per phoneme.

IV. SIMULATION RESULTS

The results in this section illustrate how the proposed
method performs in a scenario where a group of participants
has been tested with one confusion-count matrix measured for
each listener in each test condition.

5Response probabilities were estimated from the published confusion counts
by adding a pseudocount of 0.5 to each cell to prevent response probabilities
from being exactly equal to 0 or 1.

6This implies, for example, that the standard deviation is about 0.125 in a
cell with mean response probability 0.5.
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Fig. 4. Empirical Receiver Operating Characteristics (ROCs) for PC (left
panel) and MI (right panel), showing the estimated probability of correctly
detecting that performance is better in test condition B than in condition A,
with nominal SNRs of −6 dB for A and −4 dB for B, vs. the probability
of incorrect indication that B is better than A when the conditions are equal,
with SNRs (−6,−6) dB. The solid curves show results for the proposed
Bayesian method, and the dashed curves show similar results using a one-
sided Wilcoxon signed-rank test in a conventional frequentist approach. The
tests are simulated with Ns = 5 test items per phoneme and L = 20 listeners
in each group. Each ROC plot is based on R = 300 group simulations.

A. Single-cell Response Probabilities

1) Individual Results: Fig. 2 shows an example of esti-
mated response probabilities in three stimulus-response cells
of simulated confusion matrices for one listener randomly
selected from a group of L = 20 listeners tested at a nominal
SNR of 0 dB.

Although the observed response score is an unbiased and
consistent estimate of the corresponding true probability, a
particular observed result can be quite inaccurate just by
chance, if too few test items are used. For example, in the
matrix cell for k → k, where the true response probability
was about 0.6 for this listener, the observed score happened
to be 100% with Ns = 2 test items per phoneme and 0.8 for
Ns = 5. The estimated Bayesian credible interval ranged from
0.4 to 0.85 with Ns = 5 test items per phoneme.

The conventional Clopper-Pearson confidence intervals for
the response probabilities [17], [21], based on the binomial
distribution, are also shown in the figure. These are guaranteed
to cover the true value with the specified confidence level (on
average in infinitely many replications) but the interval width
becomes so large for small Ns that the result is practically
useless. Bayesian 95-% credible intervals,7 while significantly
narrower, included the true individual response probability in
{91, 90, 90, 92}% of all 256 cells for {2, 5, 10, 20} items per
phoneme, across L = 20 listeners in R = 100 replications.

2) Group Results: Fig. 3 shows posterior distributions of re-
sponse probabilities in three stimulus-response cells for groups

7Estimated interval limits were extended by 0.0001 to allow for sampling
inaccuracy in cells with extremely small response probabilities.
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Fig. 5. Estimated improvement of Mutual Information (MI) from test
condition A to condition B, simulated by nominal SNR pairs of (−6,−6),
(−6,−5), (−6,−4), and (−6,−3) dB. The true MI differences in the
population are shown by solid horizontal lines for the medians (◦) and 90-
% (5) and 10-% (4) quantiles. The estimated quantiles are marked by the
same symbols. Interquartile ranges among R = 100 replications are shown by
vertical solid lines for the Bayesian quantiles and by adjacent vertical dashed
lines for the empirical sample quantiles for the conventional results by Eq.
(10). Interquartile ranges for the pooled group estimates are shown by ×. The
simulations used Ns = 5 test items per phoneme and L = 20 listeners in
each group simulation.

of L = 20 listeners sampled repeatedly from a population
representing a nominal SNR of 0 dB.

The Bayesian estimated quantiles are generally quite close
to the corresponding true values for the population. When very
few test items are used, the test results can vary widely among
listeners. For example, with Ns = 2, the median probability
for k → k was about 0.5 in the population, but individual
sample scores are often 0 or 100% by chance alone. Of course,
with Ns = 2 the only possible individual response scores are
0, 0.5, or 1.

The true variability across listeners in the population is the
same regardless of how many test items are used. Thus, ideally,
the estimated quantiles should not change with the number of
test items.

Some of the individual Bayesian medians (◦) in Fig. 2
deviate from the observed score (×) towards the average group
results shown in Fig. 3. This is caused by the group-dependent
adaptation of the prior distribution described in Appendix B-4.

B. Two Test Conditions—Small Differences

For practical purposes, the most interesting situation is
when confusion-matrix data have been collected for a group
of listeners in two slightly different test conditions. This
section considers the problem of how to determine statistically
whether the performance is better in the second condition, in
relation to the true difference between the conditions.

1) Hypothesis Test: As discussed in Sec. II-A, the con-
ventional method to compare performance results from two
test conditions would be to apply a classical frequentist
significance test to the measured data. Fig. 4 contrasts the
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Fig. 6. Individual estimates of mutual information (MI) for simulated
confusion-count data with Ns ∈ {2, 5, 10, 20} test items per phoneme,
in three different test conditions with nominal SNRs of −12,−6, and +6
dB. Posterior medians (◦) and 97.5-% (5) and 2.5-% (4) quantiles may
be compared to the true individual values shown by short horizontal lines.
Conventional estimates obtained from each confusion-count matrix by Eq.
(10) are marked by ×. Data are simulated for groups of L = 21 listeners
randomly drawn for each test from the population shown in Fig. 7, but results
are only plotted for the listeners with the lowest, median, and highest true MI
in each group.

proposed method for detecting credible population differences
between two test conditions against a conventional significance
test using the Wilcoxon signed-rank test8 for simulated groups
of 20 listeners drawn repeatedly from the same simulated
population. The plotted Receiver Operating Characteristics
(ROCs) show the proportion of replications where the method
correctly indicated a real difference, versus the proportion
where the method incorrectly indicated a difference, when the
two conditions were equal. The ROC curve shows this pair of
estimated probabilities together, plotted as a function of the
decision threshold. For MI, the ROC for the proposed Bayesian
method is much closer to the upper left corner of the plot,
and the curves never cross, which indicates better detection
power than the Wilcoxon test for all significance levels. For
PC, the Bayesian approach has only slightly better detection
power. Of course, with a larger true difference between the
test conditions, both methods would perform better.

2) Magnitude of the Difference: When comparing perfor-
mance results from two test conditions, it is also interesting to
estimate how large the improvement might be from condition
A to condition B. Fig. 5 shows the estimated MI improvement
when there is no real difference and when there is a small true
difference corresponding to a nominal SNR improvement of
1, 2, or 3 dB.

The proposed Bayesian method predicts the true population
quantiles of the MI difference reasonably well, but the conven-
tional results using the individual plug-in estimates in (10) tend
to underestimate the true MI improvement. Conventional 95-

8The Wilcoxon results were calculated using the one-sided option of the
signrank function in MATLAB’s Statistical Toolbox.
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Fig. 7. Group estimates of mutual information (MI) for simulated confusion-
count data with Ns ∈ {2, 5, 10, 20} test items per phoneme, in three different
test conditions with nominal SNRs of−12,−6, and +6 dB. Posterior medians
(◦) and ranges (vertical lines) between 97.5-% (5) and 2.5-% (4) quantiles
may be compared to the corresponding true medians and quantiles (horizontal
lines) in the population. Conventional estimates obtained from the pooled
confusion-count results within each group are marked by ×. Data were
simulated for R = 11 complete group replications, each with L = 20
listeners, of which only the group results with the lowest, median, and highest
median estimate are displayed.

% nonparametric confidence intervals [35] for the median MI
improvement covered the true value in 83 of R = 100 replica-
tions with (A,B) = (−6,−5) dB, in 53% of replications with
(−6,−4) dB, and in only 26% for (−6,−3) dB. In contrast,
the Bayesian 90-% credible intervals included the true median
in more than 98% of replications in all pairs of test conditions.
This failure of the conventional MI estimation is caused by
the bias problem analyzed theoretically in Appendix A and
exemplified by simulation results in the following section.

C. Estimates of Mutual Information

1) Individual Results: Examples of MI estimates are dis-
played in Fig. 6 for a group with L = 21 simulated listeners,
tested at nominal SNRs of −12, −6, and +6 dB. The Bayesian
estimates were typically close to the true value for Ns ≥ 5 test
items per phoneme. The posterior credible intervals included
the true individual MI for {37, 75, 83, 90}% of the listeners
with Ns ∈ {2, 5, 10, 20}. The true value was typically overes-
timated by about 0.2 bits in the most difficult condition with
SNR at −12 dB, when only 2 test items were used for each
phoneme.

In contrast, the conventional MI estimates by Eq. (10),
marked by × in Fig. 6, severely overestimated the true individ-
ual MI values. For example, at a nominal SNR of −12 dB, the
true MI was about 1.3 bits per phoneme, but the conventional
MI estimates were typically about 2.2 bits per phoneme with
5 test items per phoneme, i.e., close to the true value at 6
dB higher SNR. In difficult test conditions the conventional
individual estimates must be considered unreliable even with
20 test items per phoneme.
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The amount of overestimation is not constant but varies
across test conditions. This explains why systematic errors
remain in the conventional estimates of the MI difference
between test conditions, shown in Fig. 5.

2) Group Results: Fig. 7 shows estimated medians and
quantiles for MI in simulated groups of L = 20 participants
tested at nominal SNRs of −12, −6, and +6 dB. The
Bayesian estimates of medians and quantiles are generally
close to the true values, except that the MI values are slightly
overestimated when only 2 test items were presented for each
phoneme, especially in the condition with −12 dB. With
Ns ≥ 5 the Bayesian credible intervals covered the true
population median at all SNRs in all replications, except for
Ns = 5 at −12 dB SNR, where the coverage was 91%.

The conventional pooled group estimates systematically
underestimated the true MI. This bias was most notable (about
0.4 bits) in the most difficult condition with nominal SNR at
−12 dB. The underestimation is about the same for any Ns.
As explained in Appendix A, this underestimation is caused
by the true variability among individuals in the population,
and the error therefore persists regardless of the number of
test items and the number of listeners in the group.

D. Cell Differences Between Two Conditions

To evaluate the proposed method for identifying a set
of stimulus-response pairs showing jointly credibly different
response probabilities in two matrices, a pair of population
models was constructed for nominal SNRs of −3 vs. −6 dB.
Confusion-count matrices were generated with Ns ∈ {5, 10}
simulated presentations per phoneme. Thus, each simulation
represents a pair of confusion-count matrices that might be
measured for L = 1 listener in two slightly different test
conditions.

A set of credibly different cells was estimated from each
simulated matrix pair, as described in Appendix C. For cells
to be included in the set, it was required that the response-
probability difference in (C.1) was greater than ε = 0.001 with
a joint probability qn ≥ 0.95 in (C.5). For each simulation, it
was noted how many confusion-matrix cells were identified as
credibly different in the correct direction, as well as how many
were identified as credibly different, but in the wrong direction
compared to the known true difference. The results are plotted
in Fig. 8. For comparison, similar results are also shown for
a corresponding sampling-based frequentist method to detect
significantly different sets of cells, using a significance level
α = 0.05. This method is described in Appendix D.

Both methods show very few cases of incorrect detection,
but the proposed Bayesian method appears to correctly identify
more cells as credibly different.

V. DISCUSSION

The simulation results indicate that reasonably good es-
timates of listeners’ phoneme recognition performance and
the difference between test conditions can be obtained
from confusion-count matrices using the proposed parametric
Bayesian estimation method, even when only five test items
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Fig. 8. Number of correctly identified cells with jointly credible differences
between two simulated test conditions with nominal SNRs (−6,−3) dB,
plotted versus the number of cells identified as credibly different in the wrong
direction, in confusion matrices with 16×16 = 256 cells. Results are shown
for Ns = 5 (left panel) and Ns = 10 (right panel) test items per phoneme.
Results for R = 40 simulations, each with L = 1 listener, are shown by
◦ for the Bayesian method in Appendix C, while × show results from the
alternative frequentist method in Appendix D. (Overlapping points have been
jittered slightly for clarity.)

are presented for each stimulus category and listener. Some
useful results may be obtained with even fewer test items.

The simulation results in Figs. 6 and 7 showed that the
bias problems in frequentist MI estimation can be substantial.
As shown in Figs. 4 and 5, the bias tends to weaken any
conventional statistical analysis of the MI difference between
test conditions. The proposed Bayesian method, in contrast,
produced results that were quite close to the true values, even
with a very limited number of test items per phoneme.

A key element of the Bayesian approach (Appendix B) is
the use of a prior distribution for the model parameters in
the analysis. In the absence of prior knowledge about the
population from which the listeners are recruited, the proposed
hierarchical method first adapts the prior to the test results
for all listeners, before individual models are adapted to each
participant.

The prior distribution has a regularizing influence on the
estimation results. This feature of the proposed approach
can thus be seen as a kind of well-tempered compromise
between the classical methods of using only the individual
results or using only the pooled results across all listeners.
This compromise utilizes the fact that the experimental group
usually is pre-selected to have some general characteristics in
common in scenarios where the main goal is to identify overall
group effects for the selected type of participants.

However, this adaptation of the prior also implies that
the estimates for individual listeners are partly influenced by
the average results among other participants. This method
may therefore not be appropriate if the main purpose of
the experiment is to reveal systematic individual differences

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2015.2512039

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING VOL. X, NO. X, MMM. 2016

between listeners.
Although the Dirichlet distribution (Appendix B) is a

well-established model for the probability parameters of any
multinomial-distributed data, we have not seen this model
applied to the analysis of phoneme confusion matrices in
previous work. Trevino and Allen [36] used the Hellinger
distance to quantify the dissimilarity between matrices to find
clusters of similar confusion matrices. Jürgens et al. [24] used
Pearson’s φ2, which is a similar measure of the dissimilarity.
Another related approach was proposed in [37] to evaluate
the ability of various models to explain observed confusion
data, using a measure closely related to the Kullback-Leibler
divergence to quantify the dissimilarity between observed
confusion counts and model-predicted probability vectors. All
these methods account for the dependencies within each matrix
row in a similar manner to that of the Dirichlet distribution,
but none are based on Bayesian probability.

Numerous studies have followed the approach in [5] and
analyzed the pattern of consonant confusions by characterizing
each consonant phoneme by distinctive features which reflect
different dimensions of similarity between phonemes; see, e.g.,
a recent review in [23]. It may be possible to extend the
Bayesian approach to derive an empirical set of feature dimen-
sions that are most likely to explain the observed confusion
patterns, but such extensions are left for future work.

VI. CONCLUSION

This paper proposed and evaluated a parametric Bayesian
approach for the analysis of phoneme confusion matrices.
Two different bias problems in conventional estimation of
mutual information were analyzed and explained theoretically.
Estimating the overall probability of correct response has no
such bias problems.

Simulations indicate that the proposed Bayesian method can
give satisfactory estimates of mutual information and response
probabilities, even for tests using as few as five presentations
for each phoneme.

The proposed method was capable of revealing small overall
differences in performance between two test conditions with
greater power than conventional significance tests or conven-
tional confidence intervals. The method could also identify
sets of confusion-matrix cells that are jointly credibly different
between two test conditions, with better power than a similar
approximate frequentist method.

APPENDIX A
PROOFS OF MUTUAL-INFORMATION ESTIMATOR BIAS

A. Individual Data

The overestimation of the conventional MI calculation in
(10) happens because any random variations in the observed
confusion-count matrix is interpreted as a variation in the un-
derlying response probability matrix, and any such variability
tends to increase the calculated MI estimate. Formally, this
tendency can be expressed as

E [MI(U)] ≥MI(E [U ]). (A.1)

This relation follows from Jensen’s inequality, because the
logarithmic transformation MI(u) in (8) is a convex function
of the response probabilities in u [6, Theorem 2.7.4]. Now,
assume the listener is characterized by a fixed matrix u of re-
sponse probabilities and the relative response rates ûsr(X) =

Xsr/Ns are plugged in to calculate M̂I(X) = MI(û(X)) as
in (10). The response rates are unbiased estimates of the true
response probabilities, i.e., E [û(X)] = u. Nevertheless, (A.1)
implies that the expected value of the MI estimate, across all
possible test results X , is biased as

E
[
M̂I(X)

]
= E [MI(û(X))] ≥

≥MI(E [û(X)]) = MI(u). (A.2)

The overestimation bias decreases as the number of test
items increases, because the variance of ûsr(X) is inversely
proportional to Ns.

B. Pooled Group Data

Assume that phoneme identification has been tested for
L different listeners. The random confusion-count matrix is
X l for the lth participant, who is characterized by some
fixed response-probability matrix ul. The participants are
recruited at random from the population of interest, so the
matrices ul are samples drawn from the distribution of U in
this population. Therefore, all individual matrices ul deviate
somewhat around the population mean E [U ]. The individual
confusion-count matrices are pooled as X =

∑L
l=1X l. This

sum is then used to calculate a point estimate for the group.
Since the pooled û(X) is a consistent estimate of E [U ], the
pooled point estimate converges as

E
[
M̂I(X)

]
= E

[
MI(û(X))

] L→∞−→ MI(E [U ]) ≤

≤ E [MI(U)] . (A.3)

Thus, the pooled estimate remains an underestimate of the
population mean, also in the limit of infinitely many partici-
pants, because of the inequality in (A.1).

The overestimation and underestimation tendencies might
neutralize each other, if the confusion counts are first pooled
within smaller subgroups of listeners, and the MI estimates
from the subgroups are then averaged. However, since the
underestimation bias depends on the unknown true variability
in the population, it would be difficult in practice to select an
appropriate size of such subgroups.

APPENDIX B
DIRICHLET RESPONSE-PROBABILITY MODEL

This section defines the precise mathematical model for
the distribution of each response-probability matrix U lt which
determines the distribution (3) of observed confusion counts
X lt for the lth listener in the tth test condition. The model
involves the Dirichlet distribution which is well established
in the machine-learning literature, e.g., [32], as a convenient
model for the distribution of the probability parameters of any
multinomial distribution. The Dirichlet is a conjugate prior for
the multinomial.
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1) Prior Density: We define the prior distribution for the
parameter matrix U lt as a product of independent Dirichlet
distributions for all row vectors U s,lt, as

pU lt
(u) =

∏
s∈S

pUs,lt
(us), (B.1)

with Dirichlet probability densities for each row vector,

pUs,lt
(us) = C(as,t)

∏
r∈R

uasr,t−1sr . (B.2)

The normalization factors are

C(as,t) =
Γ
(∑

r∈R asr,t
)∏

r∈R Γ (asr,t)
, (B.3)

where Γ(z) =
∫∞
0
e−ttz−1dt is the gamma function.

The mean of each row vector U s,lt is determined by the
parameter vector as,t with nonnegative elements asr,t as

E [U s,lt] =
as,t∑
r∈R asr,t

. (B.4)

Increasing the parameter values reduces the variance.
The prior distributions are assumed identical and indepen-

dent for all listeners in each test condition t, since these
distributions represent the general prior knowledge about the
performance of any listener drawn at random from the popu-
lation. Therefore, the prior parameters asr,t are the same for
every listener l.

2) Posterior Density: The posterior distribution of the ma-
trix U lt for the lth listener in the tth condition, given the
confusion count matrix xlt, is obtained by combining the prior
density (B.1) with (3) in (5), yielding

pU lt|Xlt
(u | xlt) ∝

∏
s∈S

∏
r∈R

u
xsr,lt
sr uasr,t−1sr . (B.5)

This posterior distribution is obviously again a product of
Dirichlet density functions. Including the normalization fac-
tors, it can be written as

pU lt|Xlt
(u | xlt) =

∏
s∈S

C(αs,lt)
∏
r∈R

u
αsr,lt−1
sr , (B.6)

where the new posterior parameter vectors αs,lt have elements

αsr,lt = asr,t + xsr,lt. (B.7)

Thus, the prior parameters asr,t play a similar role to the
pseudocounts sometimes used in conventional estimates of
probabilities.9

Finally, the marginal posterior distribution of response
probabilities U = (U1, . . . ,UT ) for the complete group of
listeners in the T test conditions is obtained by averaging
across individual listeners. The result is a mixture density

pU |X(u1, . . . ,uT | x) =
1

L

L∑
l=1

T∏
t=1

pU lt|Xlt
(ut | xlt).

(B.8)
The only remaining problem is how to choose the prior
parameters asr,t.

9For example, in [12, Eq. (6)] a pseudocount of 0.5 was added to each
observed response count.

3) Informative Prior: If data from earlier experiments are
known for the same or an arguably similar group of listeners,
those results may be used to set the prior parameters.

4) Hierarchical Prior: In the absence of prior information,
the present proposed approach is to adapt the set of parameters
asr,t to maximize the total marginal likelihood (B.10) of the
observed data for all listeners.10 This hierarchical approach
was used in all the simulations in the present study.

As a consequence, the posterior distribution for any in-
dividual listener becomes somewhat influenced by data for
all the other listeners in the group. This approach tends to
interpret the most extreme individual confusion-count results
as an effect of the variability in the test method for X lt rather
than as a true extreme individual deviation of U lt from the
common group characteristics.

To ensure that all asr,t > 0, with minimal influence of
prior assumptions, all these parameter values are assumed to
be drawn from a nearly uniform hyper-prior distribution com-
posed of independent and identical gamma density functions

γ(asr,t) ∝ ac−1sr,t e
−dasr,t (B.9)

with fixed shape parameter c and inverse scale d. These hyper-
parameters are chosen as c ≈ 1.05 and d ≈ 0.105, such that
the distribution mode is (c − 1)/d = 0.5 and the mean is
c/d = 10. Thus, before any data have been observed, the
most likely parameter value is asr,t = 0.5,11 and the values
can vary from near zero to much greater than ten.

Given any set of prior parameters at = (a1,t, . . . ,a|S|,t) for
the tth test condition, the marginal likelihood is the probability
of all observed data xt = (x1t, . . . ,xLt) in this test condition,
when all other model variables have been integrated out:

pXt
(xt | at) =

L∏
l=1

∫
pXlt|U lt

(xlt | u)pU lt
(u | at) du =

=

L∏
l=1

∏
s∈S

c(xs,lt)
C(as,t)

C(as,t + xs,lt)
. (B.10)

Here, the Dirichlet normalization factors C(·) are defined in
(B.3), and c(xs,lt) is the multinomial factor defined in (2).

The parameters in at are adapted numerically to maximize
the objective function

L(at) = log pXt
(xt | at) +

∑
s∈S

∑
r∈R

log γ(asr,t). (B.11)

5) Fixed Non-informative Prior: One might consider as-
signing a fixed prior designed to exert minimal influence
on the results. Setting asr,t = 0 is not possible, because
then the posterior response probability distribution becomes
improper (not normalizable) in case exactly 0 or Ns counts
are observed in some cell, which frequently happens by chance

10This hierarchical approach can be seen as a “data-dependent” method to
choose the prior distribution. However, as the hyper-prior distribution (B.9) is
data-independent, the complete hierarchical model is still rigorously Bayesian.
This method is well established in machine learning, e.g., [32]. By analogy
with conventional maximum likelihood estimation, it is usually called “Type-II
Maximum Likelihood,” when the hyper-prior distribution is exactly uniform.

11The value 0.5 is the non-informative Jeffreys prior [38] for the Dirichlet
distribution, equivalent to the pseudocount 0.5 that is often used.
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alone. Assigning asr,t = 1 may seem reasonable12 as this
makes the prior distribution of Usr,lt uniform. However, when
Ns is small, any predetermined asr,t > 0 can have an
undesirably strong effect on the result. Therefore, the more
flexible hierarchical model is preferred for the present purpose.

APPENDIX C
RESPONSE DIFFERENCES IN MULTIPLE CELLS

The Bayesian procedure estimates a joint posterior proba-
bility distribution for the pair (U ,V ) of response probability
matrices for two test conditions, given the observed confusion
counts (x,y) in those test conditions. For a single stimulus-
response pair (s, r), the probability that the response rate is
higher in the second condition can be calculated as

qsr = P [Vsr > Usr + ε |X = x,Y = y] , (C.1)

where ε may be set to a small positive number to avoid
including tiny differences. If the resulting q-value is close to
0.5, the observed difference was likely just a result of random
variability.

Since a comparison of two matrices involves multiple tests,
it is necessary to calculate the probability for multiple differ-
ences jointly. Let C be the set of all elementary candidate
hypotheses to be tested, including Vsr > Usr + ε and
Usr > Vsr+ε, for all s, r. We want to find an ordered sequence
of hypothesis combinations, including one, two, etc., of the
elementary events in C, that are jointly highly likely. First,
find the single most likely event

h∗ = argmax
h∈C

P [h |X = x,Y = y] . (C.2)

Store this event as H1 = h∗, remove it from the set of can-
didates, C = C\h∗, and record the corresponding probability
q1 = P [H1 |X = x,Y = y]. Then, to find a highly likely13

set of joint hypotheses with n = 2, 3, . . . combined events,
continue recursively as

h∗ = argmax
h∈C

P [Hn−1 ∩ h |X = x,Y = y] (C.3)

Hn = Hn−1 ∩ h∗; C = C\h∗ (C.4)
qn = P [Hn |X = x,Y = y] (C.5)

as long as the joint probability qn is above some predetermined
threshold. Since one additional hypothesis is included at each
step, the joint probabilities will form a decreasing sequence
q1 ≥ q2 ≥ . . . ≥ qn.

As the probability qn is calculated jointly for the set Hn of
combined hypotheses, these results can be used without any
further corrections for multiple hypothesis testing.

APPENDIX D
FREQUENTIST DETECTION OF CELL DIFFERENCES

In order to perform a conventional frequentist significance
test of differences between cells in two observed confusion-
count matrices, we must first formulate a null hypothesis

12A pseudocount of 1 was motivated in a different way in [14, Sec. 2.5].
13This algorithm is not guaranteed to find the globally most likely set of

n > 1 hypotheses, but a highly likely set is sufficient for practical purposes.

modeling the case when there are no differences. Given
this null hypothesis, the test should estimate the conditional
probability for a random result to be as extreme as, or more
extreme than, the observed result. The following approximate
method was used for comparison with the Bayesian approach
in Appendix C:

Given a pair of observed confusion-count matrices (x1,x2),
the null hypothesis assumes that the response-probability ma-
trix equals the averaged estimate u with elements

usr =
x1,sr + x2,sr + 1/ |R|

2Ns + 1
, (D.1)

where, as before, |R| is the number of response alternatives,
and Ns is the number of test stimuli for the ith phoneme. The
pseudocount term 1/ |R| prevents estimated probabilities from
being exactly 0 or 1.

Using u, we sample N = 1000 random confusion-count
matrix pairs (y1(n),y2(n)), n = 1, . . . , N , with Ns test
stimuli per phoneme in each matrix. For each matrix pair,
a standardized difference zsr(n) is calculated for each cell by
scaling with the standard deviation of the difference, as

zsr(n) =
y1,sr(n)− y2,sr(n)√

2Niusr(1− usr)
, (D.2)

such that the standardized values have zero mean and unit
variance for all matrix cells, under the null hypothesis.

Using the complete set of random data, an empirical cumu-
lative distribution for the difference is estimated as

F (d) =
1

N |S| |R|

N∑
n=1

∑
s∈S

∑
r∈R

I [zsr(n) ≤ d] , (D.3)

where I [·] is the indicator function which equals one if the
argument is true. Since the distribution function F (d) is
tabulated with high resolution, it approximates the cumulative
probability for the event that the standardized difference is
zsr ≤ d for any cell in the matrix pair.

Finally, corresponding standardized differences ẑsr are cal-
culated from the observed matrix pair (x1,x2), just as in
(D.2). All cells where F (ẑsr) < α/2 or F (ẑsr) > 1 − α/2
are considered as jointly significantly different at the α level.
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