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ABSTRACT

Accurate modelling and prediction of speech-sound durations is an
important component in generating more natural synthetic speech.
Deep neural networks (DNNs) offer a powerful modelling paradigm,
and large, found corpora of natural and expressive speech are easy
to acquire for training them. Unfortunately, found datasets are sel-
dom subject to the quality-control that traditional synthesis methods
expect. Common issues likely to affect duration modelling include
transcription errors, reductions, filled pauses, and forced-alignment
inaccuracies. To combat this, we propose to improve modelling and
prediction of speech durations using methods from robust statistics,
which are able to disregard ill-fitting points in the training mater-
ial. We describe a robust fitting criterion based on the density power
divergence (the S-divergence) and a robust generation heuristic us-
ing mixture density networks (MDNs). Perceptual tests indicate that
subjects prefer synthetic speech generated using robust models of
duration over the baselines.

Index Terms— Speech synthesis, duration modelling, robust
statistics

1. INTRODUCTION

Despite steady improvements over many decades of research,
computer-generated synthetic speech is still not convincingly natural
[1]. A particular Achilles heel is the prosody of the artificial speech —
encompassing signal aspects such as fundamental frequency, signal
energy, and speech-sound durations — which makes machine speech
come across as unnatural, inappropriate, and unappealing. This fail-
ure makes synthetic speech unsuitable for many attractive applica-
tions, for example generating expressive and conversational speech
for audiobooks. In this paper, we focus on statistical techniques for
improved duration modelling, as a key step towards the overarching
goal of more natural and appropriate synthetic speech.

The recent rise of deep neural networks (DNN5s) has brought an
increase in performance in both automatic speech recognition (ASR)
and statistical text-to-speech (TTS) technology. DNN techniques,
however, require substantial computational power and large datasets
to realise their full potential.

Fortunately, there has also been a revolution in the availability
of data, and now virtually limitless amounts of speech, in an endless
variety of voices and languages, can be obtained from many different
sources. This cornucopia of speech material comes with an import-
ant caveat: most large, found datasets have not been created with
speech synthesis in mind. As a consequence, they typically offer
little in the way of quality control of audio recordings and text tran-
scripts. The sheer size of these data makes manual correction too
expensive. Since using impure data tends to degrade synthesis per-
formance [2, 3], speech synthesis mostly continues to rely on smal-
ler, carefully purpose-recorded datasets.

Here we consider duration modelling for audiobook data, using
DNNs. To cope with errors and empirical variability that cannot be
modelled with standard set-ups, we introduce estimation procedures
from the field of robust statistics to automatically identify and dis-
regard dubious or unhelpful datapoints. To our knowledge, these
techniques have not been applied to duration modelling before. As
a side benefit, we obtain models that better estimate peak probabilit-
ies in the data, which is appealing since standard output-generation
methods depend on these peaks for synthesis. Our goal is to pro-
duce more natural synthetic-speech rhythm and durations by learn-
ing from large and less artificial speech datasets, whilst being robust
against the inevitable errors and excess variation such data contains.

2. BACKGROUND
2.1. Duration Modelling

Duration modelling has a long history in speech synthesis. In early,
formant-based synthesis systems, duration was predicted by rule [4].
Concatenative synthesis approaches that supplanted these systems
do not necessarily require modelling of duration, since the units
themselves have intrinsic durations, although durations can be pre-
dicted and used in the target cost [5].

The emergence of statistical parametric speech synthesis (SPSS)
[6, 7] based on hidden Markov models (HMMs) again created the
need for an explicit duration model. The widely-used HMM-based
speech synthesis system (HTS) [8] defaults to using hidden semi-
Markov models (HSMMs) with Gaussian duration distributions. Re-
cent DNN-based systems are trained to minimise mean squared pre-
diction error, which similarly is equivalent to maximum-likelihood
estimation under a fixed-variance Gaussian model of duration.

In HSMM-based systems, the modelled state-duration distribu-
tions are used both to predict the most likely durations for output
generation and to guide (re-)alignment during Baum-Welch estima-
tion [9]. However, for a DNN with frame-level inputs, the dynamic-
programming used to make HSMM computations feasible is difficult
to apply, making re-alignment challenging. Instead it is common-
place to align the data only once at the start of training, using an
HMM tool such as HTK [10]. Because the data is neither re-aligned
nor has its phonemisation revisited, errors in the material cannot be
corrected, even though the DNN training process iteratively creates
improved models of acoustics and duration. Such lingering errors
are especially likely on found speech datasets. To overcome this
shortcoming, and generate durations less affected by transcription or
alignment inaccuracies, we look to the field of robust statistics.

2.2. Robust Statistics

Robust statistics [11, 12] is an umbrella term for statistical methods
whose performance degrades gracefully in situations where reality
does not match the modelling assumptions made. Since speech is a
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highly complex signal, known not to conform to all our assumptions
(cf. [13]), it is compelling to investigate these methods for TTS.

A traditional, maximum-likelihood estimated (MLE) Gaussian
distribution has to cover all the data to keep the likelihood high, even
if some points look highly non-Gaussian. This means that a few bad
datapoints can have a big impact on the model. The central idea
of many robust statistical techniques is to allow the model to give
up on the most ill-fitting datapoints, in order to better explain the
remaining bulk of material, cf. [14]. This notion of pruning away
idiosyncratic observations is not entirely new to synthesis, see, e.g.,
[15, 16], but has traditionally been motivated heuristically, without
invoking ideas from the field of robust statistics.

By downweighting or ignoring outlying points in the data, ro-
bust methods can describe high-density regions (peaks) of the data
distribution better. On the other hand, they may need more examples
to converge on a good description of the training material, and thus
lag behind non-robust methods on more well-behaved data, but this
is less of a concern in big data applications.

2.3. Robust Duration Modelling

As mentioned in Section 2.1, a Gaussian model of duration is stand-
ard. This model is symmetric about the mean, and thus fails to ac-
count for the significant skewness in empirical duration distributions,
with a heavy tail of long-duration realisations. (On the “Emma”
dataset described in Section 4.1, the mean duration is 19.8 frames
per phone, while the median duration is 17 frames, indicating a
distribution skewed to the right.) Additionally, a Gaussian assigns
non-zero probability mass to impossible, negative durations. A ro-
bust methodology should be able to partially compensate for these
model shortcomings, and better estimate the location of the bulk of
the training data, and thus the mode of the distribution.

The forced-aligned training data used to learn duration models
may contain many errors, given that phonetic transcriptions derived
automatically from text cannot perfectly match the acoustics. This
is particularly problematic for spontaneous speech corpora, which
exhibit greater prosodic variation (including duration), frequent re-
ductions, filled pauses, and other phenomena not present in care-
fully recorded read speech [17]. The end result is that some training-
data durations are inaccurate, or even assigned to the wrong phones
[18]. A robust fitting procedure should be able to largely disregard
these incongruences, and yield results similar to regular maximum-
likelihood estimation on a dataset where the worst-fitting (and likely
erroneous) examples have been removed.

3. ENGINEERING ROBUSTNESS

We now describe a DNN-based mathematical framework for dura-
tion prediction, plus two enhancements which make the output stat-
istically robust. To our knowledge, the combination of robust statist-
ics and duration modelling is novel.

3.1. Preliminaries

We treat duration prediction as a stochastic regression problem, in
which contextual linguistic features ! are used to predict a cor-
responding vector x of duration values, using a database D =
{(lp, zp)}p of per-phone linguistic features and matching durations
from a fixed forced alignment on some training data.

For our parametric models, we will assume that durations are
distributed according to a K -component Gaussian mixture distribu-

tion with diagonal covariance matrices,

K

f(@; 0) = wi - far(®m; y, diag(at)), (1)

k=1

where far is the Gaussian pdf and the component masses wj, are
nonnegative and sum to one. The individual phone durations x,
are assumed to be mutually statistically independent given the set of
linguistic features {l,, },, over the training data.

To turn (1) into a regression model, we let the distribution para-
meters @ = {wg, 1., 0% }i depend on  through a deep feedforward
neural network 6(1; W) with weights W; the resulting construction
is known as a mixture density network (MDN) [19]. The standard
method to estimate the neural network parameters (weights) from
data is to maximise the log-likelihood:

W (D) = argvr‘l/lalen fxp; 6(lp; W)). 2)
P

The minimum mean squared error (MMSE) fitting principle for p,
as used in [20, 21], is recovered from (2) by taking K = 1 (i.e.,
using only a single mixture component) and fixing 03 = s1, where
s is any positive constant. Notably, both Gaussian MLE and MMSE
are optimised by the sample mean, which weighs all data equally,
outlier or not. These estimators are not statistically robust.

3.2. Generation-Time Robustness

To produce more stable durations from potentially faulty data, we
first consider an MDN-based heuristic drawing on previous work in
acoustic modelling. Similar to duration modelling in early HMM-
based synthesis systems, the idea is to improve duration predic-
tion through a mismatch between training and generation principles:
while the traditional likelihood (2) optimised during training fits
multiple components to the data, only a single mixture component
k(p) is selected to generate each phone p at generation time. Data-
points which were attributed to other components during training are
effectively ignored during synthesis: the unused components thus act
as a garbage model.

In this work, we chose to generate durations based on the mode
of the heaviest mixture component (greatest wy) for each phone p.
This follows a procedure used for MDN acoustic models [22], al-
though that work was not motivated in terms of robust statistics.

3.3. Robust Parameter Estimation

Another route is to incorporate robustness at training time, by op-
timising a criterion different than the likelihood. This can provide
a robust model of duration even when only a single mixture com-
ponent is used (K = 1), i.e., without an explicit model of “bad” vs.
“good” observations.

For the present work, we consider minimising the density power
divergence of Basu et al. [23], also known as the beta-divergence
[24]. This leads to the following estimation principle:

Ws(D) = argmin 3 (f(z: 0(1,: W)
__8
1+ 8

where £ is a positive tuning parameter. Unlike the generation-time
heuristic introduced earlier, the density power divergence offers a
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principled approach to robust estimation with theoretical guarantees
on its performance.

It can be shown that the limit 5 — O recovers the maximum
likelihood principle in (2), while larger S-values yield a robust pro-
cedure which still converges on the same estimate if the parametric
model f is correct. It is recommended to use B-values significantly
less than one [23], otherwise the method could discard large amounts
of data, making finite-sample estimation accuracy suffer. In practice,
[ can be used to seamlessly trade off between robustness and statist-
ical efficiency, in order to reject or keep certain fractions of the data,
thus adapting the method to the properties of the application at hand.

4. EXPERIMENTAL SET-UP
4.1. Data

We investigated the benefits of robust duration modelling on au-
diobook data, specifically chapters 1 through 10 of volume three of
the novel “Emma” by Jane Austen, as read by Sherry Crowther on
LibriVox [25]. 1739 total utterances with 92,025 non-silent phones
were partitioned into a large training set (1660) and smaller develop-
ment (39) and test (40) sets. The total duration of the material was
175 min, with an average utterance duration of 6.06 s.

4.2. Feature Extraction

The data was segmented automatically wusing Festvox’s
interslice [26] and subsequently forced-aligned at the
state level using HTK [10]. Festvox’s ehmm [27] was used to
insert pauses and silences into the phone-label sequences based
on the acoustics. This eliminates the most egregious errors where
phone durations are prolonged by acoustic silences and pauses
not predicted from the text, and should be particularly helpful for
non-robust methods.

The extracted phone-label sequences were coupled with text-
derived linguistic features encoding a subset of the questions used
by the decision-tree clustering in the standard HTS synthesiser.
This produced a vector [, of 592 binary input features, to which
9 numerical features were appended (as in [21]), all normalised to
[0.01, 0.99]. In the duration experiments, the binary input features
were only used to predict six-dimensional vectors of phone durations
x,,, comprising five substate durations and the total phone duration
(their sum). For acoustic features, the STRAIGHT vocoder [28] was
used to extract 60 mel-cepstrum coefficients, 25 band aperiodicities,
logarithmic fundamental frequency (log Fo) and their corresponding
delta and delta-delta features at a 5 ms frame step.

For both the duration and acoustic data, a per-component mean
and variance normalisation was applied prior to model training, with
the transformation reversed as part of synthesis.

4.3. Models

We built a number of different robust and non-robust DNN-based
predictors of duration. As non-robust baselines, we used a traditional
MMSE-optimised DNN, labelled “MSE”, and a single-component,
maximum-likelihood Gaussian MDN, labelled “MLE1”.

Against these standard approaches, we contrast the two robust
methods from Sections 3.2 and 3.3. Specifically, we trained a three-
component MDN using maximum likelihood, where only the heav-
iest component was used for synthesis. This system was labelled
“MLE3”. For the robustly trained models using the power diver-
gence in equation (3), we tried 8 = 0.358 and 0.663. These (-
values were selected based on the asymptotic variance formula in

[23, Sec. 4.2.d], such that approximately 75 or 50% of the original
datapoints would be retained in the case of Gaussian-distributed ob-
servations. The associated systems were labelled “B75” and “B50”,
respectively. These settings should provide robustness against the
most extreme examples without sacrificing too much statistical ef-
ficiency. While we used a simple rule of thumb to set 3 via the
expected fraction of data discarded, the best performance is likely
attained by tuning 3 to each application, e.g., via a grid search.

We also included a topline system using reference durations
from forced alignment on the test-set recordings (labelled “FRC”),
and a bottom line (labelled “BOT”’) simply predicting durations to be
equal to the corresponding mean monophone duration in the training
data. No reasonable duration prediction system should be worse than
this bottom line. It is, however, conceivable that the forced-aligned
durations contain problems as detailed in Section 2.3, so it might
be possible to generate subjectively better-than-reference durations
through robust modelling.

4.4. DNN Training and Synthesis

All DNN-based duration predictors used a feedforward DNN with
six layers of 256 nodes each. The hidden nodes used tanh activation
functions, while the output layers were configured as in [22]. Each
variance-output component was floored at 10% of its global variance
value to prevent degenerate solutions during optimisation. System
MSE only used mean-parameter output nodes.

The full network was initialised using small random weights,
with no pre-training. Network weights were subsequently optimised
using stochastic gradient descent on minibatches of size 64. Each
duration prediction system was trained with a fixed learning rate,
manually tuned to yield close-to-optimal results on the development
set in 100 epochs or less. Early stopping was used to avoid overfit-
ting, by aborting training once the objective function on the devel-
opment set had failed to improve for five epochs. For the methods
based on the density power divergence, the best results were obtained
by starting from a reasonable but less robust configuration, and then
refining this using the robust criterion, similar to established prac-
tice [29]. In particular, BSO was initialised from B75, which was
initialised from MLEL.

A single acoustic-model DNN was trained, similar in structure
to the duration prediction DNNs but with 1024 hidden nodes in each
layer. Meta-parameters such as learning rate, batch size, regularisa-
tion criteria, etc. were as in [21]. All DNN training procedures were
implemented in Python using Theano [30].

At synthesis time, ehmm phone sequences derived from the test
data were used as input to each duration prediction model. This
corresponds to using an oracle pausing strategy, but with no other
acoustics-derived information being provided to the predictors. For
each phone, the peak of the Gaussian, p(lp; ‘/}[7), was used as
the predicted duration. In the case of the multi-component system
MLE3, the peak of the heaviest component was used. Since the
Gaussian mean may not be an integer, substate boundaries in the
predicted duration sequence were quantised to the nearest frame.

Once durations had been predicted, a sequence of frame-level
linguistic features was generated using the predicted phone substate
durations,' and used as input to the acoustic-model DNN, the same
for all systems, to generate post-filtered MLPG [31] parameter tra-
jectories as in [21]. Waveforms were then synthesised using the
STRAIGHT vocoder [28] and normalised following ITU P.56 [32].

!'The overall phone duration was predicted but not used, instead acting
as a secondary, multi-task learning objective. This configuration produced
slightly better objective scores than predicting state durations alone.



Model BOT MSE MLE1 MLE3 B75 B50
Correlation 0.55 080 0.79 0.79 0.81 0.80
RMSE (100%) | 9.17 6.70  6.69 6.86 6.46 6.56
RMSE (90%) 5.87 4.02 3.95 3.83 345 3.50

Table 1. Pearson correlation and RMSE (frames per phone) between
predicted and forced-aligned durations. RMSE is reported for all
data (100%) and for the 90% of the test data with the smallest pre-
diction residual.
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Fig. 1. Relative RMSE (frames per phone) models on progressively
larger and less well explained test-data subsets. (BOT is at 1.0.)

5. RESULTS
5.1. Objective Comparison

To evaluate the different duration models, we conducted an objective
evaluation using the root-mean-square error (RMSE) in frames per
phone (excluding silences and pauses), as well as the closely related
Pearson correlation coefficient, for each different system in relation
to the reference durations (FRC) from forced-alignment. The results
are reported in the first two rows of Table 1.

The advantages of robust methods become clearer if we look at
subsets of the data. Since robust methods are designed to ignore
extreme examples to describe the remainder of the data better, an
interesting measure to consider is the RMSE on the X % of the test
data with the smallest prediction residual. This is plotted in Figure
1, relative to the error of the monophone bottom line, with absolute
numbers for X = 90% provided in the final row of Table 1. It is seen
that the robust methods (solid lines), especially the ones based on
the S-divergence, consistently outperform the non-robust baselines
(dashed lines) for subset sizes less than 100%. This suggests that
the robust methods were able to learn better models of the typical
durations in the data.

5.2. Subjective Comparison

A perceptual experiment was conducted to evaluate all systems side-
by-side using a hybrid between a MUSHRA (Multiple Stimuli with
Hidden Reference and Anchor) [33] and a preference test. Listeners
ranked several parallel, unlabelled stimuli from the same text but dif-
ferent systems in terms of preference. The scale ranged from 0 (least
preferred) to 100 (most preferred). No reference was given as there
is no one correct prosodic (durational) realisation of a sentence, but
rather numerous correct productions. Nevertheless, subjects were
told to give at least one stimulus in every set a rating of 100.

21 test-set sentences between 2 and 8 seconds long were used in
the evaluation. Each listener rated 18 sets of 8 stimuli each, corres-
ponding to the 6 methods in Table 1 plus FRC and vocoded natural
speech (VOC). One sentence was used for a GUI tutorial and the
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Fig. 2. Aggregated ranks in listening test. Red lines are medians,
orange squares denote means; box edges are at 25 and 75% quantiles.

remaining two for a training phase. Sentences were assigned to sub-
jects randomly, presented in random order, but balanced such that all
21 sentences were rated by 18 different listeners each. 21 normal-
hearing native English speakers (University of Edinburgh students,
remunerated for their time) participated in the test, conducted in
sound-insulated booths over high-end Beyerdynamic headphones.

For analysis, each set of eight parallel listener scores was con-
verted to ranks from 1 (lowest) to 8 (highest), with tied ranks set
to the mean of the tied position. A box plot of these rank scores
aggregated across all prompts and listeners is shown in Figure 2.

The box plot indicates that robust methods perform better than
non-robust ones, though a substantial gap remains to the vocoded
natural speech. Mann-Whitney U significance tests with Holm-
Bonferroni correction [34] applied to keep the familywise error rate
below 5% showed most system pairs to be significantly different, ex-
cept the sets {FRC, MSE, MLE1}, {FRC, MLE3}, and {B75, B50}.

It is clear that robustly predicted durations, particularly those
based on the (-divergence, were preferred over their non-robust
counterparts. Interestingly, durations generated using the non-robust
baselines were not significantly worse than oracle durations based
on forced-alignment. Durations based on long-term linguistic and
prosodic context (as in the audiobook speech) thus appear to provide
little gain when synthesising and evaluating isolated sentences.

It should be noted that speech from robust models is faster than
that of other systems: because of the skewness of the empirical data,
rejecting extremely long durations noticeably reduces the average
duration of certain speech sounds, making robust methods produce
more phones per second. As speech rate affects perception [35], this
might contribute to the robust methods scoring better than FRC.

6. CONCLUSION

We have described a new application of robust statistical methods
to duration prediction in speech synthesis. In an application to au-
diobook data, the robust techniques were found to predict the vast
majority of empirical durations better than non-robust baselines. A
subjective evaluation found synthetic speech based on robust dura-
tions to be preferred over speech with non-robust durations, as well
as over speech synthesised with oracle durations from held-out data.
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