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Minimum Entropy Rate Simplification of
Stochastic Processes:
Supplemental Material

Gustav Eje Henter, Member, IEEE, and W. Bastiaan Kleijn, Fellow, IEEE

HIS document contains supplemental material for the IEEE Transactions on Pattern Analysis and Machine Intelligence
T article “Minimum Entropy Rate Simplification of Stochastic Processes.” The supplement is divided into three appen-
dices: the first on MERS for Gaussian processes, and the remaining two on, respectively, the theory and the experimental
results of MERS for Markov chains.

A SUPPLEMENTAL DERIVATIONS FOR GAUSSIAN MERS

This section presents detailed derivations of the three solutions to MERS for Gaussian processes presented in Sections 4.1
through 4.3 of the main article, along with arguments for the translation identities in the article Section 4.4.

A.1 Gaussian MERS Solution

We first consider the purely nondeterministic case; the result is easily extended to arbitrary stationary and ergodic Gaussian
processes using the Wold decomposition.

Let X and X be two discrete-time stationary and ergodic purely nondeterministic univariate Gaussian processes, with
spectral power density functions Rx (e™) and Ry (") respectively. These are by necessity positive and defined on
(—m, 7]. The process X is considered given, and we are trying to find a corresponding X which minimizes the differential
entropy rate ho (X) under a differential KL-divergence rate constraint do (X || X) < d and a constraint Rx (") > rmin
on the minimum power at any frequency.

Following [1], the differential entropy rate of X can be calculated as

1 (7 .
heo (X) = - / log (472¢* Ry (¢™)) dw. 1)
T J -7
Furthermore, the relative differential entropy rate is
o1 [ (Rx(e¥) Ry (¢)
doo (X || X) = — —F —1—-log——+% | dw. 2
OC( H ) A7 o (R)? (ezw) og R}? (ezw) w ( )

To minimize the differential entropy rate under our divergence constraint we shall use variational calculus in a
computation similar to that of Burg [2], but with an added constraint on the minimum power. Fix a Lagrange multiplier
A > 0 for the divergence constraint and a set (function) of Lagrange multipliers (47) " 1 (z) > 0 for the power constraint,
and seek the stationary points of the functional

m(Rx 0) = = [ lom(are R () dw s [0 (1}25; 1l ]}ZE;) o

+ /_ ’ %u(w) (rmin — Rx (¢")) dw  (3)
i . R iw R iw .
= % /_,r <10g (471-2@2RX (elw)) + )\R;EZM; —A—Alog R;EZM; + ,u(w) (Tmin — Ry (ezw))) dw. (@)
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The Euler-Lagrange equation is obtained by setting the derivative of the integrand with respect to Rx (') to zero:

0 iw Ry (¢) Rx (™) w\y )
W <10g (47T262RX (6 )) + )\W — A —Alog W + u(w) (Tmin — Rx (e ))) =0 5)
o iw Rx (eiw) _(piw iw _
Ry (e%) ((1 — ) log Rx (") +AW +Aog Ry (") — p(w) Rx (e )) -0 ©)
1—A A

Bx (@) " Ry(ee) H@=0 O

We can now distinguish two cases, the first being when the minimum-power constraint is not active for a particular w.
In this case complementary slackness requires 1 (w) = 0, and one obtains

1-A A
— + — = 8
Ry () = Rg(e™) ®)
iw A-1 iw
Ry (¢) = Ry (), ©)
which is valid as long as

A—1 i
TR)N( (6 ) 2 T'min- (10)
We see that the MERS simplification of X in this case is a simple scaling (contraction) of the spectral density R (¢’) by a
factor % = a~!. Obviously, only values A > 1 are valid in practice; A € (0, 1) gives nonsensical, negative spectral powers.

In the corresponding interval o € (1, co) we recover all MERS solutions between the original X and fully predictable X,
for the case of processes X with no lower bound on the spectral power (rmin = 0).

If Pmin > 0, there is a risk that the right-hand side of Equation (9) falls below 7p,in, in which case the minimum-power
constraint becomes active, so that Rx (ei“) = Tmin. For such w, we obtain (see Equation (7))

1-A A
— — =0 11
rom | Rg (@) p(w) (11)
A 1-A
plw) = wy T (12)
Rf( (6 ) T'min
pw) = gl (13)
R (e™) Tmin
_ 1 —1p_ (iw)) ! -1
12 (LU) = a—1 ((a RX (e )) - (Tmm) ) ’ (14)
which is strictly positive as long as
a 'Rz (€") < rmin. (15)
Putting the two cases together, we obtain the solution
Rx (€™) = max (rmin, o 'Ry (™)) (16)
_ 1 —1p_ (iw)) "L -1
Hw (w) - ﬁ max (07 (a RX (6 )) - (Tnun) ) (17)

for a € (1, 00). It is straightforward to verify that this satisfies the requisite optimality criteria. The minimum differential
entropy rate achievable is limited by the white noise process X i, defined by

Rx,.. (€)= rmin, (18)
which has
hoo (Xmin) = %log (47 €*rmin) - (19)

If, on the other hand, 7, > min, R (ei‘“), we have X ¢ X ()? is not in the feasible set), and the minimum achievable
distortion is nonzero.
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A.2 Weighted Itakura-Saito Divergence MERS

By multiplying the Itakura-Saito criterion by the observed signal spectrum R (e), we obtain a weighted dissimilarity
measure

Y 1 " iw iw iw X (eiw)
d?S(XHX):E/,,r (RX () = Ry (") + Rg (¢') log (ng(@“"))) dw (20)
which emphasizes correctness of spectral peaks more than spectral valleys. This new measure is nonnegative, since it can
be written ()
— 1 ™ . R ~ GZUJ
dis(X || X) = — / Rg (%) [ | 5255 | dw, 21
is(X ] X) i ) X () f (RX (ew) ) ¥ @1

where f (t) =t —1—logt and Ry (e™) are both nonnegative. The measure evaluates to zero when Ry (™) = R (e),
and is strictly positive whenever Ry (¢'*) # R (¢'“) on a set of nonzero measure, assuming Rz (¢*’) > 0 everywhere
(which is required for ergodicity). Expression (20) is superficially similar to the generalized KL-divergence in [3], but with
the signs of the Rx (¢"’) and Ry (e*)-terms reversed. It is not a Bregman divergence or an f-divergence.

To solve the MERS problem using the weighted Itakura-Saito divergence in (20), we introduce a Lagrange multiplier
A > 0 for the new dissimilarity constraint, along with i (w) > 0 for the lower bound Rx (e“") > Tmin as before. This yields
the functional

m (Rx (1) = 1 /7T log (47%e*Rx (™)) dw + /7T 1 (w) (Tmin — Rx (™)) dw

ar J_» .
1 & . . i R= w
+ )\E Kﬂ (RX (67’“’) — R)} (e'LUJ) —+ RX' (6”") IOg (m)) dw. (22)

As usual, the Euler-Lagrange equation is obtained by setting the derivative of the integrand with respect to Rx (¢') to
zero. This produces

0 iw w iw iw R= (eiw) B
ORx (™) (IOgRX () + ARx (") — ARz (e') + ARg (™) log (Rii(e“’))) =0 (23)
1 R< (eiw) B
Fix (o) + O ) A ey =0 @
% + (1 - %M (w)) Rx (ei‘") — Ry (ei‘*’) =0, (25)

since Rx (¢) and \ are both nonnegative.
We once again must consider two distinct cases. The first is that the lower-bound constraint is not active for a particular
w, p(w) =0, and so

; +Rx (e") —Rg (e™) =0 (26)
Ry (%) = Rg (6) — 1, @7)

which is valid whenever
Ry (™) — % > Tmin. (28)

This is a simple subtraction from the power spectral density. For processes with no lower bound on the spectral power (i.e.,
Tmin = 0), we see that Rx (¢’) — Rg (¢’) as A™" — 0 (no simplification), while the entropy rate of X approaches zero
as A~ ! increases towards min,, R (€'“) (complete predictability, under certain continuity assumptions on Ry (e™*)).

In the alternative case, the condition in Equation (28) is violated, in which case the lower bound gives Rx ei“’) = Tmin-
Slotting this into Equation (25) and assuming i, > 0, we obtain

1 1 ,
3T (1 3K (w)) Tmin — Rg () =0 (29)
1 i 1
_Tminxlu/ (OJ) = R)? (6 ) - X — Tmin (30)
A 1 iw
1% (W) = _— Tmin 1 X - Rj& (6 ) , (31)
which is strictly positive whenever
, 1
R)} (elw) — ~ < Tmin- (32)
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Combining the two cases, we arrive at the solution

Rx (ei‘*’) = max (Fmin, Ry (6“’) — )\71) (33)
A ,
) = 2 e (0, i+ A1 — Ry (6) o9

for ryin > 0, valid for all A € (0, 00). (For Tmin, = 0 we have the previous solution derived in Equation (27).) Exactly
like the general solution in Section A.1, there is a nonzero minimum rate ho, (Xin), and the minimum distortion can be
nonzero as well.

A.3 Variance-Constrained Gaussian MERS

Another interesting variation of MERS is obtained by constraining the standard relative entropy rate (regular Itakura-Saito
divergence), but preventing the X-process from simply shrinking away by only considering processes that satisfy the
additional variance constraint

Var(X;) = Var(X,). (35)

For Gaussian processes the variance may be written in terms of the spectral density function as

Var(X;) = 1 / Ry (™) dw, (36)
2m J_,
so the constraint (35) may be expressed
oo [ (Bx ()~ Ry (¢4)) dw=0. (37)

Introducing an additional Lagrange multiplier 1 for the variance leads to a modified functional

_ 1 2 2 iw Rx (eiw) oy Rx (eiw)
e (Rx (1) = e /—n <log (4m*e’Rx (")) + )\7]%); @) A= Alog Ry () dw
1 ™ ) )
+ QME (Rx (¢’) — Rg (€)) dw. (38)
We again derive the Euler-Lagrange equation as
9 o Rx (%) |

[ — 1 _ 1 w N 7 w —
x () (( A)log Rx (e )+ARX () +2uRx (e )) 0 (39)
-2 A +2u=0 (40)

Rx (@)~ Rg(e) b
which gives
iwy _ A—1) Rg ()
Rx (e") = 2R (@) + A (42)
_ 1 Rg(e®) @)

;R)? (eiw) + %.

The new Lagrange multipliers v = % and « here can take on any nonzero real values, though the result only makes

sense if VR (e™) + o > 0 everywhere.
r

1
By considering the behavior of the function f (r) = — for a subset 7 € R = [Ryin, Rmax] C (0, 00) of the positive
vr

c
real line, we see that we that v < 0, ¢ < —Rpax corresponds to positive and increasing concave f (r) with a derivative

1 1
fr(r)=—- ﬁ greater than —— > 0. This implies that spectral peaks are emphasized, similar to reverse water-filling.
vV(r+c v
1
The region v, ¢ > 0, meanwhile, corresponds to a positive but concave f with slope between zero and —. This mapping
v
smooths out spectral peaks and instead maximizes entropy under the constraints.
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A.4 Translation Invariance

The fact that he (1t + X) = heo (X) when p is deterministic is theorem 2.4.1 in [1]. For
doo(p+ X || i+ X) > doo(fi+ X || i+ X), (44)

it suffices to prove that
doo(Ap+ X || X) > doo (X || X), (45)

where Ay = p — fi. Since Ay + X and X have the same spectral density functions (and covariance matrices), the general
theorem 2.4.5 from [1] applies. This establishes

doo(Api+ X || X) = doo(Ap + X || X) + doo(X || X) (46)
> doo (X || X), (47)

which is the desired result. Equality occurs when doo (Ap+ X || X) =0 Ap+ X =X & u= .

B SUPPLEMENTAL DERIVATIONS FOR MARKOV CHAIN MERS

This section presents an alternative representation of the MERS problem for Markov chains, and subsequently shows how
the optimal solution presented in Section 5.1 of the main article can be derived from this representation.

B.1 Bigram Matrix MERS Formulation

The MERS problem for first-order Markov chains is to find a stationary, ergodic Markov chain X that minimizes the
entropy rate H, (X) under a divergence constraint Do (X || X) < D. Here, X is another, given stationary and ergodic
Markov chain over the same state space as X. We may represent X and X by their transition matrices A and A with
elements a;; = P (X;41 = j | X; = 1), and similarly for A. We also have the stationary distribution vector 7 with elements
m; = P (X¢ =14) > 0, as described in the article.

With our notation, the entropy rate and relative entropy rate of a first order Markov chain X can be expressed as

Hoo (X = — Z Fiaij 10g aij (48)

(X || X) Z i log (49)

However, these formulas are cumbersome in practice since they involve 7, which is a normalized version of the leading
eigenvector of AT and thus a complicated function of the matrix elements a;;. A better option is to represent the Markov
chain X by its bigram probability matrix B, having elements b;; = P (X; =i A X;11 = j). B is related to the transition
matrix through the formula B = diag (7) A, a matrix version of the well-known relationship P (X; =i A X441 = j) =
P (X, =1) P(X;41 = j| X, = i). Standard requirements for probability distributions give B > 0 and 17B1 = 1. The fact
that the process is stationary, so that m; = P (X; =14) = P (X;41 = i), also contributes a constraint B1 = BT1 on the
marginal distributions. It is easy to see that there is a one-to-one correspondence between A and B in our case.

Using the bigram probability matrix representation, the MERS problem for first-order Markov chains can be written as

Bg}}g&k Z bi; log Z bu (50)
subject to
Zb»»logL<D (51)
R by
1"B1 =1 (52)
B1-B"1=0 (53)
B> 0. (54)

This formulation is preferable for practical purposes since it does not include any implicit functions of the variables b;;.
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B.2 Markov Chain MERS Solution

General nonconvex optimization problems like the above can be demanding to solve. However, it is here possible to solve
the problem analytically, using a technique derived from the Blahut-Arimoto algorithm [4], [5] in rate-distortion theory.
The first step is to fix a Lagrange multiplier A > 0 for the dissimilarity constraint (51), and minimize the combined objective
function

HA(B)=(\-1) wa log — /\Zb” log@;; — AD (55)

z b

under the remaining constraints. By considering A fixed, we define a particular trade-off between simplicity and divergence,
corresponding to a point on the rate-distortion curve. Like for the Gaussian case, we shall see that all relevant solutions

correspond to A > 1, where we can define the factor o = ﬁ € (1, 0o) as before. In this region we may divide by A — 1,
and instead maximize
= Z bij log bij — Z bij log Z bijl — Z bij 10g 'dij —abD. (56)
ij ij J’ ij

Next, we use the same trick as for the Blahut-Arimoto algorithm, transforming the problem to a minimization over two
sets of variables, where each set is straightforward to optimize if the other is fixed. We do this by noting that

max Z bi; log q; subject to 17g = 1 (57)
q>0

is solved by g¢* (B) = B1 for nonnegative B. (Superscripted stars here signify optimal solutions, and are not related
to the underlying process X* defined within the main article text.) This lets us replace the difficult term b;; log >, b;jr,
containing a sum within a logarithm, and instead define an augmented objective function

@) =) bijloghy; — Y bijloggi —a) _ bi;logay. (58)

ij ij ij

Maximizing f, (B, q) subject to constraints (52) through (54), as well as ¢ > 0 and 17q = 1, yields a B that is also optimal
for the original problem.

We already know how to optimize f, (B, q) for a given, constant B. If we instead fix ¢ and introduce real Lagrange

multipliers (logv — 1) (for the sum constraint (52)) and log v (for the stationarity constraints (53)), with v and all y;
positive, we can find the optimal B* (q) from the stationary points of the function

fauv B q Zblj logbm me IquifaZbij logaij
ij ij
+ (IOgV - ].) Zb” — (logZ/ — ].) + ZIOgMZ Z (b” — bﬂ) . (59)
i ) J

The stationary points satisfy Vg fo ., (B*, q) = 0, giving

0
a7 Ja,u,r B*; =0 60
8bijf s ( q) (60)
b
log =% + 1 — alog@;; + logv — 1 +log p1; — log 1 = 0 (61)
b

“ (@) vt =1 62)

qi g

Tp; o

br (q) = ~ M g,(@i)°. 63
1] (q) I//I,j,q(aj) ( )

This solution naturally satisfies nonnegativity, with v being a simple normalization. The vector p is more difficult to
compute, and will be derived later. For now, we simply assume & known.
The formulas for ¢* (B) and B* (q) can, given an initial guess B(”), be used for alternating updates of ¢ and B
guaranteed to decrease f, ., unless a fixed point or a cycle is reached. At a fixed point of these iterations we have
= >_; ;. Slotting this into (63) yields

by 1 L Hj
al; = = (@) (64)
! Z]’ b:j L

This can be written on matrix form as

1 L~
A" = (diagp) A" (diag ) (65)

where A(a) denotes Hadamard power o of A, the matrix resulting from taking all entries of A to the power q, i.e., (A(Q)

(aij)®.

)ij =
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To solve for p and v we use the fact that the optimal transition matrix A must satisfy the standard relation A1 = 1 in
order to properly define a Markov chain X. Hence

% (diag u)fl A(a) (diagp)1=1 (66)
~ (o)

A Tp=vp, (67)

so u is a right eigenvector of A(Q) associated with the eigenvalue v. In addition, we have the requirement that v and p;
are all positive, from before; this guarantees that all required inverses exist.

Since the original Markov chain X is er%odic, A and hence A(a) are irreducible. As the matrix elements are nonnegative,
aperiodicity of A also establishes that A(a is aperiodic. The Perron-Frobenius theorem then ensures that there is a unique

eigenvector of ;1(&) with only real, positive elements, and that it is associated with the greatest eigenvalue, which is also
real. This establishes that the unique optimal solution to the original MERS problem is the Markov chain X with transition
matrix

1 1 ~(«
A= (diagp)” A" (diag ) (69)

where v is the leading eigenvalue of the Hadamard power A(a) and p is the corresponding right eigenvector with only
positive entries. We see that exponent values o € (1, o) recover all solutions between the original X and complete
predictability.

As an aside, Equation (68) shows that A(a) and A have the same eigenvalues and eigenvectors, except for a scaling by
v and diag p.

C SUPPLEMENTAL MATERIAL FOR MARKOV CHAIN EXPERIMENTS

This section presents, in Table 1 on page 8, excerpts from Swedish text data, along with sampled output from word-level
Markov models based on this material. Errors, shown in red with wavy underline, are seen to decrease in frequency in the
output of models simplified with MERS. Table 2 in Section 6.4 of the main article was derived by word-for-word translation
of these Swedish text examples. Please consult the main article for more information.
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ett bad [paus] titta mamman [paus] ta en sko [paus] pappan nuApej,iggggl olov [paus] Lﬁiﬂil,hallé olov

det dr pappan [paus] titta olov [paus] ta ett bad [paus] [paus] det &r pappan [paus] titta 86h skon
[paus] var dr olov nu [paus] ta ett bad [paus] var [paus] [paus] det dr 88h olov [paus] [paus] halla
dr olov nu [paus] det &r en bil [paus] ta en sko olov [paus] titta gg@ boken [paus] [paus] var ar
[paus] ta en bil [paus] det dr en bil [paus] titta olov nu 8dh ta en bok [paus] QQQ,QQQ/hallé olov
bilen [paus] titta skon [paus] det dr en bok [paus] [paus] det é&r oloyvdet ar ggglen bil [paus] halla
ta ett bad [paus] var &dr badet nu [paus] titta bilen olov [paus] §oh var dr olov nu [paus] ooh var ar
[paus] titta olov [paus] var dr bilen nu [paus] olov nu [paus] halld olov [paus] [paus] ta ett bad
titta skon [paus] ta en bil [paus] hej olov [paus] [paus] titta boken boken hej olov [paus] 08h titta
hej olov [paus] var dr olov mamman [paus] det &r en bil [paus] Qghlta en bil

(a) Sample from error-free corpus. hallé

(b) Sentences disturbed by random speech errors.

en bok [paus] halld olov [paus] var &r oloyv[paus] badet [paus] hej’QQQ olov [paus] ta en bok [paus]
var &r bilen nu [paus] halld olov [paus] det &r en ta en sko nggﬁgvtitta boken gﬁﬁﬁgik [paus] det ar
bok [paus] det dr olov [paus] titta pappan [paus] pappan nu [paus] [paus] var &r skon nu [paus] det &r
titta badet [paus] det &r en bok [paus] var &r skon olov [paus] det &r en sko [paus] hej olov [paus] &6h
nu [paus] ta en bil [paus] hej olov [paus] ta en sko ta en sko [paus] var dr boken nu [paus] det &r en

[paus] det dr en bok [paus] var dr badet nu [paus] bil [paus] ooh ta ett bad ett bad [paus] titta bilen
titta bilen [paus] titta bilen [paus] det &r olov [paus] Qggltitta bilen [paus]mplov [paus] titta skon
[paus] det &r en bok [paus] ta en bil [paus] titta [paus] titta pappan var dr 06h ett en bil [paus]
mamman [paus] hej olov [paus] ta en bil [paus] titta titta olovadet adr ett bad [paus] var &r égven bil
mamman [paus] titta skon [paus] titta [paus] [paus]

(c) Sample from .X* fit to error-free data. (d) Sample from X fitto corrupted data.

hej olov [paus] halld olov [paus] QQQlta en bil dr ett bad [paus] titta mamman [paus] det &r en bil

[paus] det dr olov nu [paus] ta en bok [paus] det
dr pappan nu [paus] ta en en bok [paus] ta en bil
[paus] det &r en sko [paus] var &r 08h en bil [paus]

hej olov [paus] det dr en bil [paus] ta ett en sko
[paus] det &r en bil [paus] ta en bil [paus] ta ett

bad [paus] det dr en bok [paus] QQQ{hej olov [paus]
var dr olov nu [paus] det &r ett bad [paus] 33h ta
en bokmyar dr skon nu [paus] det

(e) Sample from MERS X (R) at optimum denoising.

[paus] det dr [paus] pappan nu [paus] det &r olov
nu [paus] hej olov [paus] halld olov [paus] var &ar
badet nu [paus] det &r mamman nu [paus] ta en sko
[paus] LE§E§lvta en bok [paus] hej olov [paus] det
dr mamman [paus] ©&h det dr ett bad [paus] ta ett

bad [paus] hej olov [paus] QQQ,ta en bil [paus]
halld olov [paus] titta pappan [paus] ta en bok
[paus] titta boken [paus] titta badet [paus] det &ar

mamman nu [paus] [paus] hej olov [paus] titta boken

(f) Sample from thresholded X’ (R) at optimum denoising.

var ar badet nu [paus] var dr skon nu [paus] var dr boken nu [paus] det &dr en bil [paus] det &r en bil
[paus] var ar badet nu [paus] var &r skon nu [paus] det &r en sko [paus] det dr en sko [paus] det dr en
bok [paus] var dr bilen nu [paus] var &dr badet nu [paus] det &r en bok [paus] det &r ett bad [paus] var &r
boken nu [paus] var dr badet nu [paus] det &dr ett bad [paus] det dr ett bad [paus] det dr ett bad [paus]
det dr en bok [paus]
(9) Sample from MERS X (R) at low rate (o = 46, R ~ 0.41).
Table 1
Excerpts from the clean and disturbed data, along with random samples from the fitted models X* and X, the optimally denoised models from
MERS and thresholding, and from low entropy-rate MERS (100 symbols each).



