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Abstract

Automatic structure discovery is desirable in many Markov model applica-
tions where a good topology (states and transitions) is not known a priori. CSSR
is an established pattern discovery algorithm for stationary and ergodic stochas-
tic symbol sequences that learns a predictively optimal Markov representation
consisting of so-called causal states. By means of a novel algebraic criterion, we
prove that the causal states of a simple process disturbed by random errors fre-
quently are too complex to be learned fully, making CSSR diverge. In fact, the
causal state representation of many hidden Markov models, representing simple
but noise-disturbed data, has infinite cardinality. We also report that these
problems can be solved by endowing CSSR with the ability to make approxi-
mations. The resulting algorithm, robust causal states (RCS), is able to recover
the underlying causal structure from data corrupted by random substitutions,
as is demonstrated both theoretically and in an experiment. The algorithm has
potential applications in areas such as error correction and learning stochastic
grammars.

Keywords: computational mechanics, causal states, CSSR, hidden Markov
model, HMM, learnability

1. Introduction

The world is full of noisy data, for which we want to create models, rec-
ognize patterns, and make predictions. Many traditional modelling approaches
introduce an unobservable state which governs process dynamics, but because
the state is hidden, it is difficult to propose a proper state-space. An alterna-
tive is to model the data with states defined directly by the observations. This
paper counsiders causal-state splitting reconstruction (CSSR), a technique for
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learning such observable-state representations—functions ¢ (-) from observation
sequences to Markov states—from empirical data, automatically inferring states
and their structure. We show that CSSR is very sensitive to disturbances in the
observations, such as random substitutions. However, we also show that with a
slight change to the algorithm, more robust output is obtained, which matches
the observation-to-state mapping ¢ of the underlying, undisturbed process.

Hidden Markov models (HMMs) constitute a simple class of traditional
hidden-state models, widely used for pattern recognition and prediction in prac-
tical applications. Example uses include recognition tasks in speech and video,
e.g., (Woodland et al., 1995; Starner and Pentland, 1995), and bioinformatics
(Eddy, 1998). Typically, the expectation-maximization algorithm is used for pa-
rameter estimation, whereafter the forward algorithm or the Viterbi algorithm
can be utilized for prediction or classification of new data (Rabiner, 1989).

Standard HMM-training techniques do not address the problem of selecting
a suitable state-space topology, i.e., the number of states and the permitted
transitions between them. While a natural state concept may sometimes be
known in advance, many situations exist where it is difficult to suggest a good
state structure a priori. Numerous proposals for learning this structure from
data exist, but there is no de-facto standard.

Some recent efforts have concentrated on directly modeling the observed
data, letting the observations themselves define the states, e.g., (Gavalda et al.,
2006; Holmes and Isbell, Jr., 2006). This facilitates discovering structure auto-
matically. One such technique is CSSR (Shalizi and Shalizi, 2004; Shalizi et al.,
2002). CSSR converges on a specific Markov process representation known as
the causal states, which constitutes the unique minimal optimal predictor of
the process. Shalizi and Shalizi (2004) show the procedure can produce more
accurate and parsimonious models than selecting the number of states through
cross-validation over EM-trained HMMs. The algorithm has been used in NLP
tasks such as chunking and named entity recognition (Padro and Padro, 2007),
for anomaly detection (Ray, 2004), and for assessing the complexity and dy-
namics of various natural systems, e.g., neuronal spike-times (Klinkner et al.,
2006) and the stock market (Park et al., 2007).

In this paper, we first show that causal states, though conceptually elegant,
can be impossible to learn with CSSR even for simple processes, especially if
noise or other disturbances are present. In particular, we present an algebraic
criterion useful for showing that many HMMs are non-learnable since they have
an infinite number of causal states, and provide a version of the criterion that
can be checked algorithmically. The criterion establishes that the causal states
of a simple two-state Markov process become impossible to learn with CSSR
when random substitutions are introduced into the observations. (The disturbed
observations can be represented by an HMM which satisfies the non-learnability
criterion.)

Second, this paper demonstrates how the noise-sensitivity problem can be
solved by allowing CSSR to make approximations. The result is the robust
causal states (RCS) algorithm, which can recover the finite underlying causal
structure also in the presence of defects such as random deletions, insertions,



and substitutions, and demonstrates substantially improved performance over
CSSR in learning the same two-state Markov process from noisy data.

The RCS algorithm shares certain characteristics with a technique called
CCSA (Schmiedekamp et al., 2006), but models returned by CCSA are typically
not first-order Markovian and cannot represent causal states. We anticipate
models obtained through RCS can be used for detecting and correcting errors
similar to the corrupted text example in Ron et al. (1996), particularly given
the use of CSSR-derived models for anomaly detection (Ray, 2004).

The remainder of the paper is organized as follows: Section 2 introduces
causal states and CSSR. Section 3 provides new results on processes CSSR
cannot learn. Section 4 consequently describes how problems with non-learnable
noisy processes can be solved. Section 5 then presents a practical example of
learning a noisy process, while Section 6 discusses related work and Section 7
concludes.

2. Background

2.1. Causal-state systems

Let X; for ¢t € Z be a bi-infinite, conditionally stationary, ergodic stochastic
process, each X; being a discrete random variable over a symbol alphabet A of
finite size k = |A|. A specific outcome z! __ of the random sequence up until and
including some time t is termed a history. Similarly, a future is a hypothetical
outcome z§9; of the process from ¢ + 1 onward.

Past observations give information about the future. Our beliefs about the
future are specified by the joint distribution P (X7, = 289, | Xt =2’ ) of
possible futures {xt"j_l} Two histories u and v are considered equivalent for
prediction if they induce the same beliefs, that is, IP’( =1 Xt = ) =
P (Xtoj1 =f| X = v) V. This partitions the set of all histories into well-
defined equivalence classes, each with a distinct distribution of futures. The
classes are dubbed causal states;' together, they form a causal-state system. We
may introduce the deterministic function e (-) that maps histories to equivalence
classes, and say that the causal state at ¢ is s; = £ (2’ ).

The history zt __ at ¢ and the outcome of the next observation X;,1 together
form a new history xtf;} This history also belongs in a causal state, thus es-
tablishing a transition. We write s;y1 = T (8¢, x¢+1) where T is a transition
function. For causal states, T is deterministic; the states are then said to be
recursively calculable. In automata theory, the states form a deterministic ma-
chine. (In the nondeterministic alternative, the state at ¢ and the observation
x441 do not unambiguously determine the state at ¢ + 1.)

The causal state constitutes a sufficient statistic for prediction: the index

of the current state provides all information past observations X' __ contain

IShalizi and Shalizi (2004) indicate that “causal states,” despite the name, do not have any
obvious connection to traditional causality. However, this remains the standard term.



about the future, ie., I (X2¥y;¢e(X1y)) = I (X513 XLo). As e(-) can be
computed from any other sufficient statistic, the causal states are further the
minimal sufficient statistic, the unique minimum-entropy representation capable
of optimally predicting X9, from X’ .2

Unfortunately, being minimal does not imply being small; as shown in Sec-
tion 3, causal-state representations frequently have infinite cardinality, particu-
larly when observations are subject to disturbances. This prompted our inves-
tigation of robust and approximate causal states as given by RCS later on.

Since {S;} = {e (X" )} is a Markov process (Shalizi and Crutchfield, 2001),
the causal-state framework can describe any conditionally stationary, stochastic
discrete process as a Markov process. However, a causal-state system is not an
HMM, but a so-called a probabilistic deterministic finite automaton (PDFA),
assuming the number of states is finite. An (infinite-duration) PDFA is a five-
tuple

(Aa Q7 q0, A7 6)7 (1)

where A is a finite alphabet, @ is a finite set of states, qo is an initial probability
function @ — [0, 1], A is a next-symbol probability function @ x A — [0, 1],
and ¢ is a transition function @ x A — . The constraints

> q(g) =1 2)

qeQ
Y Alg,0)=1Yq€Q (3)

oA

must be satisfied. For stationarity, we require that gy corresponds to the sta-
tionary distribution of the random walk over @) defined by A and ¢.

PDFA and HMMs differ in that transitions in HMMs are random functions
of the state, conditionally independent of the emissions, whereas in PDFA s,
can always be identified from s; and the observation ;1.

For a finite causal-states set, the associated PDFA is the minimal PDFA
(meaning it has the lowest entropy H (S:)) generating the process X;. Con-
versely, not all stationary PDFA represent causal-state systems. The four-state
PDFA in Figure 1, for example, trivially has only two causal states, and its state
index is not a minimal sufficient statistic for prediction.

A more formal and comprehensive treatment of causal states is provided in
Shalizi and Crutchfield (2001).

2.2. CSSR

Causal-state splitting reconstruction (CSSR) is an algorithm for identifying
causal states in practical applications, where process statistics must be estimated

2The minimal generative HMMs of Lohr and Ay (2009) employ nondeterministic functions
£ (+) to map histories to state spaces smaller than the causal states, while retaining the cor-
rect conditional future distributions E¢P (X9, | £ (b)) =P (X, | XL = h). However, the
corresponding hidden-state process {f (X’ioo)} is necessarily non-Markovian.



Figure 1: Four-state PDFA over A = {0, 1}.

from a finite number of observations. Specifically, applying CSSR to data re-
turns a PDFA approximating the causal states. This approximation converges
in probability on the true causal states as the number of samples N — oo, if
the process satisfies three conditions (Shalizi et al., 2002):

1. The process is conditionally stationary, so that P (Xfil: fl X’ioo:h) =
P ( Sie=rf1 Xt_tg:h) for all 7 € Z, possible histories h, and futures f.

2. The process has a finite number of causal states.

3. Every state can be uniquely identified from observation strings of length
A. Specifically, we require that for every causal state s, there exists at least
one corresponding string u not longer than A such that e (hu) = sVh;?
thus all histories ending in u belong in s.

Since there are no stipulations on the precise number of states or their transition
structure, CSSR can perform unsupervised structure discovery.

To get statistically reliable results from finite-length data, CSSR constructs
states only from short suffizes of the history string. A suffix is an [-symbol
string representing the most recent observations xi:ll at time ¢ — 1. The maxi-
mum suffix length considered by CSSR is L, a user-set parameter. A core CSSR
output is an approximation € of the partitioning function e, restricted to par-
tition history-string suffixes of length L or less. Despite the length limitation,
CSSR can learn certain PDFA equivalent to certain processes with unbounded
memory (Shalizi et al., 2002), such as the even process of Weiss (1973).

For convergence we require L > A, otherwise € cannot identify all causal
states from the suffixes considered in the procedure. Setting L too large will
result in a shortage of data and unreliable results, leading to an upper bound
L < L(N) dependent on N, the amount of data available (Shalizi and Shalizi,
2004).

We now present the idea behind CSSR and outline algorithm operation. An
in-depth description is available in Shalizi et al. (2002), while Shalizi and Shalizi
(2004) provide pseudocode.

Central to CSSR is the observation that a statistic 7 satisfying

I (X515 m(XLo)) =1 (Xiq1; XLo), meaning it can predict a single time step

3Strictly speaking, this need not hold for all h; a set of measure zero may be exempted.



optimally, which also is recursively calculable (has a deterministic transition
function), must be a sufficient statistic for the entire future. To obtain a mini-
mal sufficient statistic, CSSR first creates a minimal set of states for predicting
the next symbol, and then modifies these to also have deterministic transitions.
Starting from a single state containing the empty suffix, work proceeds in two
stages:

1. Homogenization

This step considers all suffixes of length L or less, starting from the short-
est ones. Suffixes are collected into preliminary working states based on
what distribution they imply for the next symbol. As next-symbol distri-
butions have to be estimated from the data and include random variation,
distributions are compared through a statistical hypothesis test such as
the x2 test or Kolmogorov-Smirnov, at a user-specified significance level
. Suffixes whose next-symbol distributions differ significantly from all
working states form new states of their of own. The precausal states ob-
tained at the end of homogenization can predict a single step into the
future optimally.

We show in Section 4 that this part of the procedure is not appropriate
for corrupted data, and present a more robust homogenization criterion.

2. Determinization

This step makes states recursively calculable while retaining sufficiency.
This is done by splitting states that have nondeterministic transitions, i.e.,
states s where, for some o € A, £(uo) does not take on the same value
for all parent suffixes u € s. Splitting creates one state for each possible
value of € (uo) for u previously in s. Splits may cause other states to
become nondeterministic, so the states need to be checked again, but the
procedure must eventually terminate.

For estimating the next-step distributions in stage 1, we here consider a sim-
ple maximum-likelihood scheme, taking P (X; = o | X;~]' = u) as the frequency
with which the string u has been followed by a ¢ in the data, and subsequently
forming P (Xt =0 | Xtt:ll € s) as a weighted mean over the suffixes in s.

Some states found by the procedure may be so-called transient states: states
visited only finitely often with positive probability. These cannot be causal
states and are therefore removed before and after determinization. In practice,
the particular scheme chosen for identifying transitions between states built
from suffixes of restricted length—the closure discussed in Klinkner and Shalizi
(2005)—is of importance to remove transient states and perform determinization
such that results agree with the example in Shalizi et al. (2002).

Shalizi et al. (2002) show that the worst-case computational complexity and
data requirements of CSSR increase exponentially in L, but that complexity
is polynomial in the alphabet size k for L fixed. By only parsing the data
once and storing requisite suffix statistics in a context tree or similar structure,
complexity becomes linear in the data size N.



3. Limitations of CSSR

As stated, the causal-state representations of simple (i.e., finite state-space)
processes are not always simple. A particular problem is observation noise.
This section demonstrates that the causal-state representation of finite state-
space HMMs may be infinite, meaning they cannot be learned by CSSR, and
presents a sufficient criterion for this to occur. With the criterion, for instance
using the associated pseudocode, one can verify that even small PDFA may
become non-learnable if observations are corrupted by noise, as such data can
equivalently be described by a non-learnable HMM.

Being unable to learn simple processes like noisy PDFA limits the usefulness
of CSSR, but we introduce a method to overcome the noise problem in Section 4.

These results are not necessarily surprising. While the causal-states frame-
work can represent any conditionally stationary process, CSSR can only learn
processes with a finite number of causal states, which must be representable by
PDFA. It is known that many processes generated by finite state-machines such
as HMMs cannot be cast as a PDFA of any size (Dupont et al., 2005), and thus
require an infinite causal-state representation. However, our criterion lets us
identify specific finite-state HMMs that CSSR fails to learn; see Section 5 for
an example involving PDFA output corrupted by random substitutions.

8.1. Practical consequences

In applications to real-world data, the number of states identified by CSSR
is typically seen to diverge rapidly with increasing L, as longer memory provides
an ever-growing set of suffixes that the algorithm can differentiate, suggestive of
an infinite number of causal states. This is evident in Padré and Padro (2005),
one of few publications that consider CSSR output stability over L. They also
found that the large representations produced by CSSR at high L performed
worse than models from small L, when used in a named entity recognition task.
Methods to curb the divergent growth of CSSR output are therefore of interest.

Notably, a common application of CSSR is to assess the statistical com-
plexity of natural processes by computing the entropy of the causal states,
C, = H(e(Xy)) = C, = H(E(Xy)), €(-) being estimated from data using
CSSR (Crutchfield and Shalizi, 1999; Park et al., 2007). Our results suggest
that the causal-state space often is infinite. There is then no guarantee that
C}, is finite. Hence, one may wish to interpret empirically estimated C), with
caution, particularly if convergence of the estimate has not been investigated.
Nerukh (2008) noticed diverging estimates C), with increasing dataset size for
a model of molecular dynamics.

8.2. An HMM non-learnability criterion

We now restrict ourselves to the causal states of HMMs. While some HMMs
have a finite and learnable causal-state representation, including the process
in Section 5 as long as noise is absent, we here present a sufficient criterion for
when a general finite-state HMM H 4 g cannot be represented by a finite number
of causal states.



Let A € R™ ™ be the transition matrix of a stationary, ergodic Markov
chain S*_ with n < oo states {1,2,...,n}, and let rank A = r. Let further
X! _ be a random sequence of symbols from a finite alphabet A of cardinality
k, say A = {1,2,...,k}. The distribution of X; depends only on the Markov
chain state S; at ¢, and can be represented by a matrix B € R"** with bij =
P(X; =j| St =1). Together, A and B define a finite-size HMM H 4p.
Knowing only previous observations, the hidden state S; can frequently not
be determined with certainty. The distribution of future HMM observations,
given previous observations, is then completely determined by what we can

know about the state, specifically the probabilities of the hidden states:
P (X% =[] XL =h)

=3 P(X¥,=f| Si=i)P(Si=i | X' ,=h). (4)

i=1

As the hidden-state probability distribution (p,);, = P (S; =i | X! = h) for-
mally constitutes a deterministic function of the data h, it forms a sufficient
statistic from which the causal state may be computed. We represent these n
probabilities using an n-vector p,. However, we need not assume that p, is nor-
malized; we just require that p, # 0 has entries proportional to P (St =i| Xt = h),
uniquely determining the hidden-state distribution.

Differences ép = p, — p, in hidden-state probabilities at ¢ that are in the
null space of AT will not affect the state distribution at time t+ 1 (since p), 1=
ATp; = AT (6p + P¢) = P;;1), and do not influence future behavior. Hence an
r-dimensional vector v, a linear function of p,, suffices to identify the causal
state in the row space of AT.

To define vy, let G, € C**" and Gy € C"*™~" be bases for the row and null
spaces of AT, and let H, € C™*" and Hy, € C""*" denote the correspond-
ing matrices that transform distribution vectors to their row and null space
coordinates, so that [Hf HﬂT = [GT GO} ~! We can then write p, = G,v,.

Our non-learnability criterion considers how wv; evolves as additional obser-
vations become available. For hidden-state distribution vectors p,, the belief
state, upon observing a symbol o, is updated following the forward algorithm

(Rabiner, 1989);
P (Si+1=j | X5 = ho)
ocbie Y ayP(Sp=i| X' =h). (5)
=1

For v; we can formulate a similar update v;y; = C,v¢, defining the forward
matrices C, € C"™*" by
C, = H,diag (b,,) ATG, (6)

for all o in A, b., being the oth column of B.



The forward matrices describe how our beliefs about future HMM behavior,
represented by v:41, are updated from previous beliefs v; upon observing the
symbol . The use of linear operators to represent the influence of observations
on future behavior is similar to the observable operator models of Jaeger (2000).

With these definitions we can state our first main result:

Theorem 1. Let r = rank A. The causal-state representation of Hap must
have infinite cardinality if rank(BTATG,«) = r and a nonempty As,p C A
exists that satisfies:

1. by >0 for all 0 € Agyp-

2. The forward matrices are nonsingular for all o € Agu,. They can then be
etgendecomposed as C, = QUAgle,

3. For any nonzero v € C" there exists a 0 € Agy, Such that g = Q;lv has
more than one nonzero element, and the eigenvalues (A ),; corresponding
to these nonzero elements q; of q do not all have the same absolute value.

The theorem is useful to show that CSSR has trouble learning many pro-
cesses, including simple PDFA disturbed by random substitutions as exemplified
in Section 5. The proof is sketched below; for technical details please consult
appendix A.

Proof. We assume that the number of causal states, M, is finite, and derive a
contradiction. Because G,.v; for v; € C"\ 0 spans the row space of AT, knowing
v, suffices to determine the next-symbol distribution at ¢ 41 (through p,,, =
A" G,v;). Moreover, because rank(B” A"G,) = r, any change in direction
for v, alters the next-symbol probability distribution, so the correspondence
between distinct expectations for future HMM behavior and different v;-vector
directions is one to one. Not all these expectations need to be causal states,
however.

Take any v € C” \ 0 and assume it represents beliefs that correspond to a
causal state. Choose an o € Ay, according to 3, which hinges on 2. Upon
observing a string of M’ > M contiguous o-symbols—which has nonzero proba-
bility by 1—associated causal-state directions are generated by repeatedly mul-
tiplying v; by Cy; vy = (Co)™vs for m € {0, 1, ..., M'}. If we consider the
ratios between the absolute values of the nonzero q,, ,,-vector elements from 3
that arise, these are either strictly increasing or decreasing with m. Hence none
of the generated vyi,-vectors (causal-state directions) are collinear. Since this
is true for any v € C", there exist at least M’ + 1 > M distinct causal states,
contradicting the original assumption of a finite causal-state machine with only
M states. O

3.8. Checking non-learnability

Item 3 in the criterion may appear complex, but is for instance satisfied
if the C,-matrices do not share any eigenvectors and the eigenvalues of each
matrix have distinct absolute values. This slightly stronger requirement is easier



Algorithm 1 Automatic check if H4p is non-learnable.

function canBeProvedUnlearnable (A, B, A )

if |Asub|<2
return false # Two symbols or more are mnecessary

eigendecompose A’ to obtain {\}', and {g;}I",
let r<—|{i}?:1:/\i¢0| # Count the nonzero eigenvalues
let Gre[gi]?:h)\#o # Concatenate nonsingular eigenvectors
let H, + (G:G,) ' G # Moore—Penrose pseudoinverse
if rank(B"ATG,) <r
return false # Rank requirement not satisfied

let V<« 0
for each o€ Ay,
if mlnzbm:()
return false # Point 1 not satisfied

let C, < H,diag(b,) ATG,
eigendecompose C, to obtain {/\EU)]{:l and {V(”’i)};l
if 0 {\r,

return false # Point 2 not satisfied

let A% « 0
for each i€ {1,2,...,r}

# C, must have distinct absolute eigenvalues
if A7) ear

return false # Point 8 not surely satisfied
let A7« AU A7)

# Cy,—matrices should not share any eigenvectors
let 1/("*")%Hu("’i)H_lu("’i) # Normalize eigenvector
if (v@)eV)v (-v@deV)

return false # Point 8 not surely satisfied
let V<« Vupl@d

end for
end for

return true # Entire criterion satisfied

10



to verify in practice, and can be used to check the non-learnability criterion
algorithmically. Pseudocode for such a procedure is provided in Algorithm 1.

When applying Algorithm 1, care must be taken to account for numerical
precision, so that all comparisons are numerically robust. By storing eigen-
values and eigenvectors in hash tables, the computational complexity of set
membership checks can be made independent of set cardinality, speeding up the
procedure.

The only user choice in the algorithm is to select Agyp, for non-binary alpha-
bets. One possibility is to take Ag, = A, but additional (or even all) subsets
may be investigated; finding any Ag,p, C A for which the theorem applies suffices
to establish non-learnability.

4. Robust causal states

For disturbed PDFA data, the causal-states representation can frequently be
infinite, as shown. CSSR then runs afoul of criterion 2, Section 2.2, and does not
learn a stable representation. We here introduce a method capable of learning
the underlying causal structure from observations corrupted by random errors
like deletions, insertions, and substitutions at a limited rate.

The key improvement is to endow the homogenization step with a maximum
resolution, so that fragments of the underlying causal states, which appear in
applications to disturbed data, can be brought back together.

In standard CSSR, the test that clusters suffixes according to next-step be-
havior is intentionally very sensitive to distribution differences, and can, with
enough data, eventually separate any possible set of precausal states for a given
L, no matter how closely spaced their next-symbol distributions are.

Disturbances in the data may affect both the observed suffix frequencies and
the associated empirical next-step symbol distributions. The latter effect typi-
cally causes suffixes previously in the same precausal state to separate. CSSR
then puts these suffixes in different states, producing complex, fractured out-
put after determinization. However, if disturbances are small, suffixes from the
same underlying precausal state remain tightly clustered in next-step distribu-
tion space. A homogenization that does not resolve the intra-cluster differences
can then recover the underlying topology.

4.1. Robust homogenization

We now describe a modified learning algorithm with resolution as described
above, which provably learns the underlying causal-state topology.
In this section, we let p and g be vectors on the unit (k — 1)-simplex

A-t=(pelo, 1]F: 1Tp =1}, (7)

representing probability distributions over A. The vector element (p), gives the
probability of the ith symbol o; € A.

In practice, conclusions must be based on distributions estimated from data.
Let p, and P, be vectors on AF~! representing estimates of the next-symbol

11



probability distributions p, and p,, with n, and n, being the sample sizes
upon which the estimates are based. We consider comparing the estimated
distributions through a statistical test at significance level a,, where the criterion
for rejecting the null hypothesis Hy: p, = p; can be written

d(f)av Na, ﬁb? nb) > Fsig (Oé) (8)

for some functions d and Fie, Fiiz being nondecreasing in .
To limit the maximum resolution of the test we introduce a parameter nyax
and modify the criterion into

d (ﬁaa min (na7 nmax) 7ﬁb7 min (nln nmax)) > Fsig (Oé) ) (9)

consequently defining a dissimilarity measure d,,, between distributions as

dm (ﬁaa ﬁb) =d (ﬁaa Nmax ﬁbv nmax) . (10)
We require that

1. d,y, is continuous and a metric on A*~1 x A*~1 convex in each argument,
and

2. Fg is monotonic and continuous on « € [0, 1] with a range that includes
the range of d,,.

When these criteria are satisfied, we refer to homogenization using (9) as robust
homogenization.*

While the distribution estimates in test (9) are based on all available sam-
ples and converge on their expected values as data becomes plentiful, the “safety
margin” of the test will not shrink below a certain point. Together with deter-
minization and transient removal as in ordinary CSSR, this forms the robust
causal states algorithm (RCS). For nypax > (L + 1) N, RCS coincides with ordi-
nary CSSR.

The two-sample Kolmogorov-Smirnov test satisfies the criteria for robust
homogenization, but the x? statistic does not, as it does not obey the triangle
inequality and thus cannot be a metric. (Nevertheless, it has still shown itself
capable of structure recovery from noisy data in preliminary experiments.)

4.2. Recovering causal structure

We now define a corrupted process and show that RCS can recover the
underlying causal states.

4 Alternatively, one might consider testing a revised null hypothesis Ho: ||p, — prp < €max
on the distance between distributions. Although this could potentially be more data-efficient,
robust homogenization as proposed is straightforward to implement as it makes use of standard
tests.

12



Let X; be a stationary, ergodic CSSR-learnable process, meaning it satisfies
the criteria in Section 2.2. Fix an L > A and let Zg( be the set of nonzero-
probability strings (suffixes) of length L or shorter generated by X, and sim-
ilarly for E§(+1. We define the distinguishability dyi, of X; under d,, as the
minimum next-step distribution dissimilarity between precausal states,

dmin = min dm (pu> pq)) (11)
u,veLL:p,#p,
Here p, denotes the next-symbol probability vector of history suffix u, and
similarly for v. This definition is similar to the PDFA distinguishability in Ron
et al. (1998); Clark and Thollard (2004); Gavalda et al. (2006), except that these
consider multi-step distributions (distributions over finite strings), and restrict
themselves to the £,,-norm as distance measure, whereas we allow an arbitrary
metric.
We say that the process Y; is a distinguishable corruption of X; given L if

1. it is stationary and ergodic,

2. it generates the same nonzero-probability strings of length L+ 1 or shorter
as Xy, namely Eﬁ“, and

3. there is a bound d on the effect of the disturbances in Y; such that

dm (ﬁuﬂ pu) S d< dmin (12)

N

holds for all u € %, where p,, denotes the next-symbol probability vector
for Y; given history suffix u.

As a practically important special case, random symbol substitutions, deletions,
and insertions create distinguishable corruptions, provided E?rl remains un-
changed and the proportion of disturbed symbols is not too large. The concept
of distinguishable corruptions thus covers a broad range of natural degradations.
We also note that with greater distinguishability, more noise can be tolerated
in (12).

Given the above definitions, the following theorem provides sufficient but
not necessary conditions for RCS to recover the causal structure of X; using
data from Y;. A proof is outlined in Appendix B.

Theorem 2. Consider RCS with a given hypothesis test and Ny ax, thus defining
dm. Let X; be a stationary, ergodic CSSR-learnable process. Choose an L > A,
and let Yy be a distinguishable corruption of X;. Then there exists a nonempty
interval I, such that RCS with significance parameter o € Lsg, applied to data
from Y:, converges in probability on the causal-states suffix clustering of X;.

In other words, the causal structure of X; can be recovered by applying
robust homogenization to data from Y;, if disturbances are small compared to
the causal-state separation, stabilizing the output structure in a situation where
the causal-state representation can be highly sensitive to noise. The proof is
provided below, except for technical details described in Appendix B.
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Proof. Following the law of large numbers, all strings in =% will, with probabil-
ity one, appear ny.x times or more in the Y;-data already after some finite but
stochastic time, by condition 2. Homogenization applied after this time consid-
ers the same set of strings as homogenization of X; and is based on d,,-distances
from (10) only.

Consider a test during homogenization, where u € ¥% is compared against
the collection of suffixes (working state) V' C Ef(. Assuming no previous test
has made an error, all suffixes in V' belong to the same precausal state of X;.
Let p, denote the empirical next-symbol probability distribution given history
suffix u, estimated from the noisy data—as opposed to the actual next-symbol
distribution p,—and similarly for V. Since d,, is a metric, we use the triangle
inequality to find

+ dm (an av) + dm (aVa zI\V) (13)

if u belongs in the same precausal state of X; as V', and

dm (ﬁuv aV) > dm (pu’ qV) - dm (i\)uv I)u) - dm (i)ua pu)
—dm (v, @y) —dm (Qv, Gv) , (14)

otherwise. Invoking convexity, distinguishability (11), and the disturbance
bound (12) yields

Ao Bys Qy) < 2d+ dy, By, Pu) + dun (@y+ Q) s (15)

if u belongs to V', and

dm (ﬁuv av) Z dmin - 2(7
= dm (Pu> Pu) — dm (Qv, Q) (16)

otherwise. We see that there exists a nonempty I, such that o € I, =
Fyg (a) € (267, Armin — QCA[). Ignoring terms due to estimation from finite data,
these o group together suffixes belonging to the same unperturbed precausal
state, but not those from different states.

Lastly, the maximum deviation between the disturbed distributions (tildes)
and the empirical estimates thereof (hats) with probability one becomes arbi-
trarily small as N — oo, by the law of large numbers and the continuity of d,,.
Therefore robust homogenization, and subsequent determinization, will in the
limit return the same state-to-suffix mapping as X; when a € Ig. O

Since by assumption the same set of strings is considered by CSSR and RCS,
the upper bound on computational complexity from Section 2.2 applies equally
to both algorithms. For noisy data, RCS may be the faster method, as it creates
fewer precausal states, leading to fewer comparisons during homogenization, and
fewer states to check during determinization.
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Figure 2: The flip process. Transitions are drawn as arrows labeled by emitted symbols and
transition probabilities.

In practical applications the generating process is typically unknown, and
one may not know if there exists a simple, CSSR-learnable underlying causal-
state representation that well describes the data. Lacking other information
for choosing nyax, one may explore the material at different parameter values
looking for parsimonious models, similar to the suggestions for deciding L and
a given by Klinkner and Shalizi (2005).

For some tests—including Kolmogorov-Smirnov—the function d in the cri-
terion can be factored as

d(ﬁau Ng, ﬁbv nb) = dm (ﬁaa ﬁb) d’n (nav nb) . (17)

Given enough data, only L and the critical distance deit =
Fag (@) /dp, (Nmax, Mmax) then determine the result of applying RCS. This
reduces the parameter-space dimensionality since o and npa.x need not be
considered independently. Equation (17) also indicates that an alternative
route to robust state clustering, not investigated further here, is not to limit n,
or ny, but instead choose a for each test such that small differences are never
resolved.

5. A practical example

We now present a simple experiment showing how RCS can reliably return
the underlying causal structure of a noise-disturbed process. CSSR, in contrast,
fails to do so, consistent with the fact that the noisy data Y; satisfies the non-
learnability criterion in Theorem 1.

5.1. The flip process

Like the original CSSR paper (Shalizi and Shalizi, 2004) we consider learning
a two-state toy process, specifically the “flip process” in Figure 2. This will be
our underlying data source X;. The process has two symbols, {1, 2}, and two
causal states. The current state is revealed by the latest symbol, wherefore the
states are labeled {S7, S2}.

We shall explore the effect of introducing random symbol substitutions in
the data. Specifically, each observation, independently of all others, will with
probability € € [0, 1] be replaced by a (uniformly) random character from the
alphabet. The resulting noisy flip process, in Figure 3, can equivalently be rep-
resented by an HMM. As discussed in Dupont et al. (2005), transforming finite
automata to HMMs generally requires one state per transition, since automata
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L|1—¢2 1]|¢2 1]¢2

2| ¢2 2|1—¢2 2|1—¢2
1|1—¢2
2| ¢/2

Figure 3: Nondeterministic automaton representing the noisy flip process. Transition proba-
bilities are specified inside arcs, with conditional emission probabilities given outside.

associate symbol emissions with transitions, whereas HMMs associate emissions
with states. This leads to a four-state HMM representation of the noisy flip
process, defined by the matrices

L—py py 0 0 L—c2 <2
0 0 pr 1—py ¢/2 1—¢/2
A= ,B=
L=ps pr 0 0 [T 1-c o
0 0 pr 1—py /2 1—¢/2

This HMM provides the observed Y; in the experiments.

Trivially, the noisy flip process has a single causal state for py = 1/2 0or e = 1,
and two for € = 0. For other parameter values Theorem 1 applies and the number
of causal states must be infinite, meaning that the causal-state description of
the observations Y; is sensitive to small data impurities. This non-learnability
of Y; can be verified numerically using Algorithm 1. Alternatively, a general,
algebraic proof, following the same steps as the numerical procedure, is provided
in Appendix C. The algebraic calculations are relatively simple since all relevant
characteristic polynomials here have degree two.

5.2. Recovering the flip process

We applied RCS and CSSR to flip-process data with p; = 1/3 and substi-
tution probability e = 0.2. Like Shalizi and Shalizi (2004), the experiments
used the Kolmogorov-Smirnov test with the significance o fixed at 1072, npax
was correspondingly set to 1095, placing the boundary of the critical region
near %dmin, half the d,,-distance between the precausal states. Several different
dataset sizes between N = 10% and 10® were investigated, with 200 trials per-
formed for each N. In each trial, CSSR and RCS were applied to a new string
of N symbols generated by the flip automaton with substitution noise.

The results in Figure 4 show that, once N reached 10%, RCS with the given
parameters in all trials returned a set of states and symbol-labeled nonzero-
probability transitions isomorphic (in a graph-theoretic sense) to the causal
states of X;. The RCS-estimated suffix partitioning £ is then equivalent to the
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Figure 4: Underlying structure reliably recovered by RCS at large N. Results for RCS are
drawn with solid lines; original CSSR is dash-dotted.

underlying €. CSSR output, in contrast, never matched the underlying causal-
state partitioning ¢ for sample sizes exceeding 10°, typically giving larger models
instead. RCS is thus robust to the added corruptions, whereas the original CSSR,
algorithm is not.

The graphs illustrate that the error probability is greater and convergence
slower for large L. This is because each increase in L includes longer and more
uncommon suffixes for consideration, which require more data to converge to
their expected next-step distributions. For memory lengths below 7, 10* samples
sufficed for RCS to return the underlying structure in virtually every trial. The
observed convergence is assured by Theorem 2.

6. Related approaches

RCS and CSSR exist within a greater context of learning schemes with states
defined directly over the observations, e.g., Ron et al. (1996); Gavalda et al.
(2006); Holmes and Isbell, Jr. (2006). Among these, the algorithm of Ron
et al. (1996) for learning approximate variable-length Markov models (VLMMs,
a kind of Markov chain) has polynomial complexity given a maximal memory
length L and a desired accuracy, but also has lower expressive power than causal
states. For instance, the even process of Weiss (1973) has finite and learnable
causal states, but cannot be represented fully by any finite Markov chain or
finite VLMM.

The methods of Ron et al. (1998); Clark and Thollard (2004); Gavalda et al.
(2006) are similar to RCS in that they learn PDFA and include a notion of
distinguishability as the minimum distance (in ¢;-norm) between probability
distributions induced by states in a PDFA. A lower bound g > 0 on this distin-
guishability is a key ingredient in making PDFA PAC-learnable, but the publi-
cations also require additional constraints, for example a finite upper bound L’
on the expected output length from any state. Their results thus only apply to
finite-duration automata, and not to infinite-duration, stationary and ergodic
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processes as considered here. Still, it seems these algorithms could in principle
be made noise tolerant similar to RCS: when the effects of the noise are small
compared to the distinguishability, they will not alter the decisions to separate
or group together different strings in the algorithms. We are not aware of any
work in this direction, however.

Holmes and Isbell, Jr. (2006) introduce the so-called looping prediction suffix
tree representation for certain POMDPs, along with an algorithm for learning
such representations from histories. The results are compelling, but the models
are not probabilistic; transitions and observations are assumed deterministic,
given a state and an action, and actions are not associated with any probability
distribution.

The CSSR algorithm itself has also received several extensions and modifica-
tions. Among these, the clustered causal state algorithm (CCSA) of Schmiedekamp
et al. (2006) is relevant in the current context. In CCSA, CSSR homogeniza-
tion is replaced by an agglomerative clustering of suffixes according to empirical
next-step distribution similarity. This is similar to changing « for every test
so that the critical distance remains constant. Importantly, CCSA removes the
determinization stage, so nondeterministic output automata are possible. Since
such automata never can be causal states, one may rather think of CCSA as a
clustered precausal-state algorithm.

RCS homogenization and CCSA clustering both group together suffixes that
need not have identical next-step distributions. Unlike the tests used in RCS and
CSSR, CCSA clustering does not account for the number of samples on which
the distribution estimates are based. Neither is there any bias to place long
suffixes with poor statistics together with their parent suffix (the shorter suffix
that results if the oldest symbol is deleted) by first comparing suffixes against
the precausal state of the parent. The suffix-to-precausal-state assignment of
CCSA will therefore be more erratic than in CSSR or RCS.

CCSA may be able to recover the precausal states of an underlying process
under moderate disturbances, although this possibility has not been addressed in
publications. However, recovering the underlying causal states generally requires
determinization, which is not part of CCSA. CCSA output is therefore typically
nondeterministic, and then cannot be the causal structure of any process. Such
clustered states are not optimal predictors for multiple time steps, and a random
walk over CCSA states need not generate statistics that are anything like X,
even if noise is absent.

7. Conclusions

We conclude that the causal state description of stochastic processes has
several appealing properties, including predictive optimality, but is sensitive to
disturbances such as random substitutions. Even the slightest data impurities
can cause CSSR, the canonical causal-state learning algorithm, to diverge and
return a large and overfitted representation.

However, we additionally conclude that problems can be overcome, and the
compact underlying causal structure can be reliably recovered also under mod-
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erate corruptions of the data, by modifying the algorithm to ignore small differ-
ences in history-string suffix behavior. Our conclusions are supported by both
theory and experiment. We call the modified CSSR algorithm robust causal
states, RCS. To our knowledge, no prior method has the same general ability of
recovering causal structure from disturbed data.

We anticipate RCS models can be adapted for tasks such as error correction
or learning stochastic grammars. Apart from exploring applications, an inter-
esting future topic would be to consider additional mechanisms for controlling
output complexity.
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