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Abstract
Traditional discrete-state HMMs are not well suited for
describing steadily evolving, path-following natural pro-
cesses like motion capture data or speech. HMMs cannot
represent incremental progress between behaviors, and
sequences sampled from the models have unnatural seg-
ment durations, unsmooth transitions, and excessive rapid
variation. We propose to address these problems by per-
mitting the state variable to occupy positions between the
discrete states, and present a concrete left-right model
incorporating this idea. We call this intermediate-state
HMMs. The state evolution remains Markovian. We de-
scribe training using the generalized EM-algorithm and
present associated update formulas. An experiment shows
that the intermediate-state model is capable of gradual
transitions, with more natural durations and less noise in
sampled sequences compared to a conventional HMM.
Index Terms: Markov models, HMMs, speech synthesis

1. Introduction
Hidden Markov models (HMMs) [1] are a central model-
ing tool of modern signal processing, both for discrimina-
tive and generative tasks. In the speech field, HMMs are
ubiquitous, e.g., [2, 3]. An important reason why HMMs
have become popular is that they are relatively fast to use
and train also for large databases, without making overly
simplistic assumptions of short memory or linearity.

However, discrete-state HMMs are more accurate for
some processes than for others, as is seen by sampling
from the models. In particular, several assumptions made
in constructing traditional HMMs are not satisfied by nat-
ural processes such as speech and motion capture data.

Generally, HMMs have problems representing steadily-
evolving processes where the mean, variance, and mode
change gradually over time, so that the process follows a
smooth path through the output space. Three prominent
problem areas are segment durations, which are often un-
natural, transitions, which are not gradual, and variation
between frames, which is very rapid and frequently too
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large. These shortcomings are very noticeable in output
generated by sampling from speech HMMs.

In practice, the above problems are often addressed
by increasing the number of HMM states, adding dy-
namic features (not straightforward to do in a mathemati-
cally consistent manner [4]), and not actually sampling
from models during synthesis, but only generating the
most probable parameters [5]—effectively hiding model
flaws rather than fixing them. Even when results thus ob-
tained are acceptable, better model classes could provide
greater insight into the studied processes, and act as step-
ping stones to further increased performance.

In this paper, we formulate new models that are better
suited for describing steadily-evolving processes, using
only a few parameters more than conventional HMMs.
The main contribution is to introduce the idea of an inter-
mediate state: By allowing the process to be in a position
in between discrete HMM states, gradual transitions and
reasonable duration distributions are made possible. The
state evolution remains Markovian, enabling simple and
efficient training. Since more systematic variation is ex-
plained by these models, the amount of unnatural, rapid
random variation is reduced. Our results confirm these
improvements over traditional HMMs.

The dense or continuous state spaces offered by in-
termediate states have connections to dynamical models.
However, previous dynamical models of speech are of-
ten restricted by being linear [6] or non-probabilistic [7].
Our proposal is also related to hidden semi-Markov mod-
els (HSMMs). These let the time spent in the current
state—a progress indicator similar to intermediate state
positions—influence transition probabilities to get natu-
ral durations. However, HSMMs do not utilize their extra
information to also provide gradual transitions. Because
HSMMs have an unbounded state-space, efficient train-
ing is complicated and only possible in certain cases [8].

The remainder of the text is laid out as follows: sec-
tion 2 describes the general advantages and shortcom-
ings of using HMMs to model speech. Section 3 intro-
duces the idea of intermediate states, and section 4 dis-
cusses how the resulting models can be trained efficiently.
Experiments confirming better modeling of speech dura-
tions and transitions, with less inter-frame random varia-
tion, are presented in section 5, while section 6 concludes.



2. Background
A discrete-state HMM is a Markov chain where the state
variable St ∈ {1, . . . , N} at t is not directly observable.
Instead, one observes a random vector Xt ∈ RK whose
distribution depends on St. In speech, St may be seen
as an index determining the current speech sound, and
Xt represents its spectral properties (e.g., MFCCs) and
their variation. We assume Gaussian output distributions,
a common choice in speech modeling.

2.1. Advantages and Disadvantages of HMMs
HMMs have numerous appealing properties: They are
probabilistic, so they treat uncertainty in a systematic man-
ner. They are generative, so they can be applied for both
classification and synthesis. They strike an attractive bal-
ance between expressiveness and efficiency: Simpler mod-
els make strong assumptions (e.g., linearity) that limit
their accuracy. More complicated models cannot attain
their full potential, as they cannot be trained on large
databases due to superlinear computational demands.

Despite their advantages, conventional HMMs are not
appropriate in all contexts. By design, HMMs describe
features that switch instantaneously and memorylessly be-
tween distinct regimes of white noise behavior. This is
not a good fit for steadily-evolving real-world processes,
e.g., speech or motion capture data. By sampling from
simple left-right HMMs trained on such gradually chang-
ing data, it is obvious that the random samples are not like
the training examples at all. Three major aspects differ:

1. Durations are incorrectly modeled;
2. Gradual transitions are not well described;
3. The output has a large amount of uncorrelated ran-

dom variation.
These differences tend to be most problematic in synthe-
sis applications. For recognition tasks, models are typi-
cally both trained and tested on similar signals, and only
the description accuracy inside that data space matters.

2.2. HMM shortcomings explained
In an HMM, the total time spent in a certain hidden state
n before moving on to the next state is the state or epoch
durationDn. Since the Markov chain is memoryless,Dn

follows a geometric distribution. The most probable du-
ration is then invariably a single frame (the shortest possi-
ble), and duration means and variances are tied together.

Speech features tend to evolve steadily from one
sound to the next, so very short and very long segment
durations are uncommon. The wide range of durations
produced by HMMs sounds unnatural in comparison.
Moreover, the HMM state evolves in discrete steps. Out-
put statistics (e.g., mode) remain constant between state
switches, making HMM output stepwise and unsmooth.

Any variation the model cannot explain, such as grad-
ual transitions, is attributed to independent Gaussian noise
in the HMM features. Unexplained systematic variation

produces correlations among the residuals (estimated de-
viations from the mean) of the fitted HMM. Samples from
HMMs preserve the general deviation magnitude but have
independent deviations between frames, leading to rapid
variation in the output, compared to the training data.

3. Intermediate states
HMMs generally fail to recognize that a process can be
in between two values or behaviors. The main idea in
this paper is to consider the effects of permitting the state
variable of the process to be in-between two integer HMM
states. This allows gradual changes in output distribu-
tion. Incremental state-space motion is also made pos-
sible, enabling more natural durations. Finally, as grad-
ual transitions can follow a smooth mean-value contour
better, more variation can be explained, reducing output
variances and mitigating also the third major HMM issue.

A defining advantage of the proposal is that the state
evolution remains Markovian. This permits efficient train-
ing and sampling based on established HMM algorithms.

3.1. Intermediate state preliminaries
A natural intermediate-state generalization is to replace
the discrete state St ∈ {1, . . . , N} by a real variable
It ∈ [1, N ]. We think of It as a point on the I-axis repre-
senting progress through the sound. Such a model, with a
continuous-valued hidden-state variable sampled in time,
constitutes a nonlinear dynamical system.

Another option is to let It take values on a finite, dis-
crete space Î ⊂ [1, N ] with significantly more than N
points. This paper uses such a construction, though with
an eye towards continuous state spaces in future work.

In either case, parameters shall remain associated with
integer state-space positions n (like in regular HMMs),
acting as templates for local process behavior. Therefore
the greater-cardinality state space does not require addi-
tional parameters to be introduced.

In a discrete HMM, St follows a Markovian random
walk on {1, . . . , N}, where the next-step distribution may
depend on the current state. We similarly let the interme-
diate state It perform a random walk on Î , but with frac-
tional steps ∆It+1=It+1−It to allow incremental prog-
ress. We initialize with I0=1, terminate when It+1≥N ,
and require ∆It≥0 to get a left-to-right process.

For this paper, we opt for a uniformly discretized state
space It ∈ Î = {1, 1 + δ, 1 + 2δ, . . . , N} and a simple
next-step distribution ∆It+1 ∈ {δ, 2δ, 4δ}. The longest
and shortest possible durations then differ by a factor four.
We set the resolution δ such that the number of medium-
length steps (∆It = 2δ) from It = 1 to N approximately
equals the mean training sequence length, so that, on av-
erage, there are two fractional states per frame.

3.2. Intermediate state parameters
The parameters tied to an HMM state n act as templates
for the local process properties when St = n. For an



intermediate state It, properties of the process are in-
between these templates as well. To define intermediate
parameters we use anN -vectorw (i) ≥ 0 of weight func-
tions such that the influence of template n when It = i is
weighted by wn (i). We require

∑N
n=1 wn (i) = 1∀i .

In this work we only consider fixed weight functions
satisfying wn (i = n) = 1 and wn (i = n+ r) = 0 for
|r| ≥ 1. At most twow-components may then be nonzero
for any i. For the experiments, we further restrict our-
selves to triangular w-functions; smoother behavior than
piecewise linear is possible by using smoother w.

Each template is associated with a mean vector µn
and a covariance matrix Σn = diag (σn)

2. (We assume
independent components.) For positions i between tem-
plates we letw (i) define intermediate output parameters
µ (i) =

∑N
n=1 wn (i)µn and σ (i) =

∑N
n=1 wn (i)σn.

This linear interpolation ensures that the output mode,
mean, and variance all vary continuously in w between
the extremes defined by the templates.

For dynamics we parameterize the ∆It+1-distribution
using P (∆It+1 = δ) = p− and P (∆It+1 = 4δ) = p+.
This yields two dynamics parameters per template, one
more than in regular left-right HMMs. Intermediate pa-
rameters are found by interpolating p− and p+ usingw (i).
These dynamics parameters govern the state variable It
evolution speed, indirectly determining phone durations.

4. Training intermediate-state HMMs
Probabilistic sequence models are first trained on exam-
ple data to estimate parameters. Thereafter one may sam-
ple from the model for generative tasks, or for discrimi-
native tasks compute the log-probability of some data, or
its most likely (Viterbi) corresponding state sequence.

In the case of continuous state spaces, it is straight-
forward to sample data from intermediate-state models,
but training and other tasks necessitate approximations.
EM-based ML-parameter estimation is possible in theory,
but the hidden-state distribution inferred from the training
data {x} in the E-step is a general continuous distribution
with no simple numerical representation.

One solution is to discretize the I-axis, and then train
the model as a discrete HMM with parameters tied to the
N templates. This offers guaranteed ascent, and thus con-
vergence, with linear complexity in the amount of data
and adjustable approximation accuracy. The idea can also
be used to estimate log-probabilities and Viterbi sequences.

As our concrete model earlier has a discrete state space,
it can be trained as a tied HMM without approximation.

4.1. Updating template output parameters

Generalized EM update formulas are derived by optimiz-
ingQ

(
θ′, θ

)
= E

(
lnP

(
{x, I} | θ′

)
| x, θ

)
. For hidden-

state models, Q separates into a part for the output pa-
rameters and one for the dynamics. With independent
components, the output part further breaks down into one

function for each dimension. These have the form

Qk(µ′k,σ
′
k)=const.−

∑M
m=1

∑Tm
t=1

∑G
g=1 γ

(m)
gt ln(σ′kw(Îg))

− 1
2

∑M
m=1

∑Tm
t=1

∑G
g=1 γ

(m)
gt

(
x
(m)
kt
−µ′kw(Îg)

σ′
k
w(Îg)

)2

, (1)

where γ(m)
gt = P (It = Îg | x(m)) are computed by the

E-step, the row vectors µ′k and σ′k represent hypothetical
new parameters in dimension k, and g is an index into Î .

It is not feasible to optimize Qk analytically, but it is
possible to find the optimal mean parameters under fixed
standard deviations by solving the N × N linear system
U (k)µ

(new)
k = b(k) defined through

(U(k))
no

=
∑G
g=1

wngwog

σ2
kg

γg (2)

(b(k))
n
=
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σ2
kg

∑M
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∑Tm
t=1 γ

(m)
gt x

(m)
kt . (3)

Here wng = wn(Îg) is weight n at Îg , σ2
kg = σ2

k(Îg) is

the local variance, and γg =
∑M
m=1

∑Tm
t=1 γ

(m)
gt .

Standard deviations are difficult to solve for even if
means are fixed. One can use Newton’s method to find
an update step σ(δ)

k throughH(k)σ
(δ)
k = −∇(k), where

(H(k))
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)
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)
are the Hessian and the gradient in σ′k evaluated at the
current parameter estimates. Gradient descent can be used
whereH(k) is indefinite or σ(δ)

k does not increase Qk.

4.2. Updating state evolution parameters

The Q-function for the state evolution parameters is

Qξ(p′−,p
′
+)=

∑G
g=1(ξg,g+1 ln(p′−w(Îg))+ξg,g+4 ln(p′+w(Îg)))

+
∑G
g=1 ξg,g+2 ln(1−p′−w(Îg)−p′+w(Îg)), (4)

where ξgh=
∑M
m=1

∑Tm
t=0 P (It = Îg, It+1 = Îh | x(m))

from the E-step, and the p′s are row vectors. Again, New-
ton’s method (local quadratic approximation) is used to
update the parameters. For p′− the relevant quantities are

(H−)
no

=−
∑G
g=1 wngwog

(
ξg,g+1

(p−w(Îg))2
+

ξg,g+2

(1−p′−w(Îg)−p′+w(Îg))2

)
(∇−)

n
=
∑G
g=1 wng

(
ξg,g+1

p−w(Îg)
−

ξg,g+2

1−p′−w(Îg)−p′+w(Îg)

)
;

the expressions for updating p+ for fixed p− are similar.

5. Experiments
We now present experimental results showing that the
proposed models address the issues listed in section 2.1.

5.1. Setup

The experiments used eight examples of the utterance
“titta bilen” (Swedish for “look, the car”) from speaker
Olov in the CAREGIVER corpus [9]. Utterances were
processed by the STRAIGHT system [10], and the result-
ing filter and aperiodicity spectra converted to 40 MFCCs
each. With log pitch this yielded a K = 81-element fea-
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Figure 1: State duration distributions of the intermediate-
state model (red) and the discrete HMM (blue). The mean
is solid while 0.1 and 0.9 quantiles are dashed.

ture vector, which was sampled at 200 frames per second.
Synthesis was performed by reversing the mappings.

We trained two models on the data: one intermediate-
state model as above with N = 26 templates1 and step
length δ = 1

12 , and a standard discrete finite-duration
left-right HMM (not HSMM) with Gaussian outputs. The
HMM was created with N + 1 states, to ensure it bene-
fited from the advantage of having more parameters.

5.2. Results
To evaluate the models as stochastic descriptions of speech,
we sampled 1000 state-space trajectories from each. Fig-
ure 1 graphs the resulting state durations. HMMs are
known to achieve reasonable mean durations, but exhibit
wide duration variation. The time spent near each state in
the intermediate-state model has a similar mean profile,
but spans a more natural range.

We also computed the average energy (variance) of
the Gaussian random deviations from the mean along tra-
jectories. The intermediate-state model had a lower aver-
age noise variance in the pitch feature contour, 0.16 com-
pared to 0.18, meaning that more training data variation
was explained. However, the residual energy is substan-
tial also for intermediate-state HMMs. This is likely due
to systematic variation, for instance pitch contours with
different offsets, manifesting itself as correlated residu-
als. This energy cannot be eliminated even by following
the mean contour perfectly.

Figure 2 shows short-time spectrogram representa-
tions of sequences sampled from each model, below a
training example. It is evident that intermediate-state mod-
els reproduce gradual transitions in intensity and formants
better than conventional HMMs, and with durations no-
ticeably more similar to the reference utterance.

6. Conclusions and future work
We have described a number of shortcomings of conven-
tional discrete-state HMMs for modeling path-following

1This yields about six frames per state/template and training exam-
ple, and around two states per phone, plus some extra states for silences.
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Figure 2: Sample spectra of reference (top), intermediate-
state model (middle), and discrete HMM (bottom).

processes such as motion capture data or speech. We
proposed to solve the problems by allowing intermedi-
ate states in the HMM, and described a concrete mathe-
matical model embodying the idea. An experiment con-
firmed that, versus conventional HMMs, the new method
produced more natural durations, was capable of gradual
transitions between behaviors, and exhibited reduced un-
natural between-frame random variation.

A number of aspects of our approach suggest them-
selves as worthy targets for future research. As our pro-
posal cannot replicate the correlated residuals common in
real-world processes, we are investigating improvements
that directly address this issue. We are also considering
alternative parameter estimation procedures.
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