

Solution framework for Adaptive Finite Element methods

Maya Neytcheva, Christian Karlsson Department of Information technology, Uppsala, Sweden

Beräkningsmatematikcirkus, May 28, 2014

AFEM framework

AFEM framework

Mesh refinement

Mesh refinement

In blue - old points, in red - new points The devision in new'-'old' imposes a two-by-two block structure on the finite element stiffness matrix.

By construction, $A^{(\ell)}$ has a two-by-two block structure

$$A^{(\ell)} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \frac{\text{red}}{\text{blue}}$$

It can be preconditioned by a block-factorized form by approximating some of the matrix blocks.

$$B^{(\ell)} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & S^{(\ell)} \end{bmatrix} \begin{bmatrix} I_1 & A_{11}^{-1}A_{12} \\ 0 & I_2 \end{bmatrix}$$

where $S^{(\ell)}$ is some approximation of the exact Schur complement $S^{(\ell)}_A$ of $A^{(\ell)}$, $S^{(\ell)}_A = A_{22} - A_{21}A^{-1}_{11}A_{12}$.

What to do with $S_A^{(\ell)}$?

For regular refinements $\frac{5}{1}$ $\frac{4}{6}$ and Hierarchical basis functions (HBF) it is well known that $A^{(k-1)}$ is a good approximation of $S^{(k)}$. Thus, the preconditioner is

$$B^{(\ell)} = egin{bmatrix} A_{11} & 0 \ A_{21} & A^{(\ell-1)} \end{bmatrix} egin{bmatrix} I_1 & A_{11}^{-1}A_{12} \ 0 & I_2 \end{bmatrix}$$

In practice:

$$B^{(\ell)} = \begin{bmatrix} A_{11} & 0 \\ A_{21} & B^{(\ell-1)} \end{bmatrix} \begin{bmatrix} I_1 & A_{11}^{-1}A_{12} \\ 0 & I_2 \end{bmatrix}$$

Take-with-you message:

• In the AFEM framework for a reasonable broad class of problems (*anisotropic, convection-diffusion-advection, parabolic problems, discontinuous coefficients*) the matrix at the previous refinement level is a good approximation of the Schur complement.

- No construction costs!
- Recursively applicable.
- Mesh-independent estimates can be shown.

Problem 1		Problem 2		Problem 3	
(nonsymmetric)		(anisotropy)		('Moon'-like domain)	
Problem size	lter.	Problem size	Iter.	Problem size	Iter.
545	15	537	15	1035	1
2112	18	2037	19	3952	9
8278	20	7504	23	15239	12
32030	23	26770	26	54998	14
118720	25	96779	29	176234	16
403811	28	275989	31	546851	17
		486307	32		

Work to do:

- Estimate the spectral equivalence constant for AFEM
- Test more problems