UPPSALA UNIVERSITET

Radial Basis Functions generated Finite Differences to solve High-Dimensional PDEs in Finance

Slobodan Milovanović supervised by: Lina von Sydow

Uppsala University
Department of Information Technology
Division of Scientific Computing

Option Pricing

- The standard Black-Scholes-Merton model

$$
\begin{align*}
d B(t) & =r B(t) d t \tag{1}\\
d S(t) & =\mu S(t) d t+\sigma S(t) d W(t) \tag{2}
\end{align*}
$$

where B is the bond value, S is the stock value, r is the interest rate, μ is the drift constant, σ is the volatility and W is a Wiener process.

- How to price a contingent claim issued on a stock S, maturing at time T, with a payoff function $g(S(T))$?
- Itō calculus and Feynman-Kac theory

$$
\begin{equation*}
u(S(t), t)=e^{-r(T-t)} \mathbb{E}_{S(t), t}^{Q}[g(S(T))] \tag{3}
\end{equation*}
$$

- Under Q measure the underlying dynamics is the following

$$
\begin{equation*}
d S(t)=r S(t) d t+\sigma S(t) d \tilde{W}(t) \tag{4}
\end{equation*}
$$

Option Pricing

- The Black-Scholes-Merton equation

$$
\left\{\begin{array}{l}
u_{t}+r s u_{s}+\frac{1}{2} s^{2} \sigma^{2} u_{s s}-r u=0 \tag{5}\\
u(s, T)=g(s)
\end{array}\right.
$$

- Analytical solution exists for certain contracts.
- Options

A European call/put option is a financial contract which gives the right to its owner, but not the obligation, to buy/sell a particular financial instrument (i.e. a stock S) at a certain expiration time T for a certain strike price K.

- Payoff function for European call

$$
\begin{equation*}
g(s)=\max (s-K, 0)=(s-K)^{+} \tag{6}
\end{equation*}
$$

- Boundary conditions?

Option Pricing

Figure 1: The solution of the Black-Scholes-Merton equation for a call option with $r=0.05, \sigma=0.3$ and $T=5$.

Option Pricing

- In higher dimensions

$$
\begin{cases}d B(t) & =r B(t) d t \tag{7}\\ d S_{1}(t) & =\mu_{1} S_{1}(t) d t+\sigma_{1} S_{1}(t) d W_{1}(t) \\ d S_{2}(t) & =\mu_{2} S_{2}(t) d t+\sigma_{2} S_{2}(t) d W_{2}(t) \\ \vdots \\ d S_{D}(t) & =\mu_{D} S_{D}(t) d t+\sigma_{D} S_{D}(t) d W_{D}(t)\end{cases}
$$

- The Black-Scholes-Merton equation

$$
\left\{\begin{array}{l}
u_{t}+r \sum_{i}^{D} s_{i} u_{s_{i}}+\frac{1}{2} \sum_{i, j}^{D}\left[\Sigma \cdot \Sigma^{T}\right]_{i, j} s_{i} s_{j} u_{s_{i} s_{j}}-r u=0 \tag{8}\\
u\left(s_{1}, s_{2}, \ldots, s_{D}, T\right)=g\left(s_{1}, s_{2}, \ldots, s_{D}\right)
\end{array}\right.
$$

Test Problem

Figure 2 : The terminal condition.

Test Problem

Figure 3: The computed solution with $T=1, K=1, r=0.05$, $\Sigma=[0.3,0.05 ; 0.05,0.3]$.

Option Pricing

- Solutions
- Lower-dimensional problems are solved either analytically or using finite difference methods (FD).
- Higher-dimensional problems are solved using Monte-Carlo methods (MC).
- Problems
- MC converges slowly.
- FD becomes harder to implement in higher dimensions and suffers from the curse of dimensionality.
- Goals
- Price options using mesh-free methods whose complexity does not increase severely with the dimensionality of the problem.

Radial basis functions methods (RBF)?

Radial Basis Functions Method

- Discretize space using N nodes.
- Approximate solution

$$
\begin{equation*}
u(s, t) \approx \sum_{k=1}^{N} \lambda_{k}(t) \phi\left(\varepsilon\left\|s-s_{k}\right\|\right), k=1,2, \ldots, N \tag{9}
\end{equation*}
$$

where ϕ is a radial basis function and ε is a shape parameter.

- The linear combination constants λ_{k} are found by enforcing the interpolation condition.
- This global approximation leads to a dense linear system of equations which tends to be ill-conditioned when ε is small.

A localized RBF method might be better!

Radial Basis Functions

generated Finite Differences

- Try to exploit the best properties from both FD and RBF with the minimal loss.
- For each point s_{i} in space, define its neighborhood of $M-1$ points.
- Approximate the differential operator at every point

$$
\begin{equation*}
[L u(s)]_{i} \approx \sum_{k=1}^{M} w_{k}^{(i)} u_{k}^{(i)} \tag{10}
\end{equation*}
$$

- Compute the weights and put them in the matrix W

$$
\left[\begin{array}{ccc}
\phi\left(\left\|s_{1}^{(i)}-s_{1}^{(i)}\right\|\right) & \ldots & \phi\left(\left\|s_{1}^{(i)}-s_{M}^{(i)}\right\|\right) \\
\vdots & \ddots & \vdots \\
\phi\left(\left\|s_{M}^{(i)}-s_{1}^{(i)}\right\|\right) & \ldots & \phi\left(\left\|s_{M}^{(i)}-s_{M}^{(i)}\right\|\right)
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{M}
\end{array}\right]=\left[\begin{array}{c}
{\left[L \phi\left(\left\|s-s_{1}^{(i)}\right\|\right)\right]_{s=s_{i}}} \\
\vdots \\
{\left[L \phi\left(\left\|s-s_{M}^{(i)}\right\|\right)\right]_{s=s_{i}}}
\end{array}\right] .
$$

Implementation

- Discretize the Black-Scholes-Merton equation operator in space using RBF-FD

$$
u_{t}=-\left[r \sum_{i}^{D} s_{i} u_{s_{i}}+\frac{1}{2} \sum_{i, j}^{D}\left[\Sigma \cdot \Sigma^{T}\right]_{i, j} s_{i} s_{j} u_{s_{i} s_{j}}-r u\right] \approx W u
$$

- Integrate in time using the standard implicit schemes
- BDF-1,
- BDF-2.
- How to choose a stencil, boundary conditions, an RBF kernel and a shape parameter ε ?

Results

RBF-FD absolute error

Figure 4 : The absolute error computed using 41 point in each dimension and a 5 -point stencil.

Summary

- The method shows to be reliable with an expected error distribution.
- Performance of the method is high due to the very sparse linear system.
- The method promises competitiveness with the standard methods in the field.

Thank you for your attention!

