
Performance impact of using polymorphism

Malin Källén

Division of Scientific Computing
Department of Information Technology

Uppsala University

May 28 2014

Malin Källén (Uppsala University) Polymorphism May 28 2014 1 / 4

Object orientation

Encapsulation

- ”Mind your own business”

Inheritance

- Extension and reuse of more general code

Polymorphism

- Provide several implementations for one interface

Example of polymorphism:

vo id setUp (D i s c r F u n c t i o n f) {
. . .
f . i n i t i a l i s e () ;
. . .

}

Malin Källén (Uppsala University) Polymorphism May 28 2014 2 / 4

Polymorphism and dynamic binding

I t e r a t o r ∗ i t e r a t o r ;
. . .
f o r each e l e m e n t :

. . .
i t e r a t o r−>c u r r e n t V a l u e () ;
. . .
f o r each n e i g h b o r :

. . .
i t e r a t o r−>c u r r e n t N e i g h b o r () ;

. . .

Lots of calls to dynamically
bound methods hamper
compiler optimisations.

Main reason in this case:
Impossibility to inline
dynamically bound methods.

Malin Källén (Uppsala University) Polymorphism May 28 2014 3 / 4

Static polymorphism

Keep the class hierarchy, but provide compile-time information about the
concrete type. (Curiously Recurring Template Pattern, J. Coplien 1995)

Considerably better performance

Much (but not all!) of the flexibility brought by the dynamic binding
is lost

Harder to understand how to use and extend the code

Some other technical limitations

Is it a reasonable compromise?

Malin Källén (Uppsala University) Polymorphism May 28 2014 4 / 4

