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Abstract

As opposed to classical mechanics, quantum mechanical particles can be truly
identical and lead to new and interesting phenomena. Identical particles can be
of different types, determined by their exchange symmetry, which in turn gives
rise to statistical repulsion. The exchange symmetry is given by a representation
of the exchange group; the fundamental group of the configuration space of
identical particles. In three dimensions the exchange group is the permutation
group and there are only two types of identical particles; bosons and fermions.
While any number of bosons can be at the same place or in the same state,
fermions repel each other. In two dimensions the exchange group is the braid
group and essentially any exchange symmetry is allowed, such particles are called
anyons. Abelian anyons are described by abelian representations of the exchange
group and can be seen as giving a continuous interpolation between bosons and
fermions. Non-abelian anyons are much more complex and their statistical
repulsion is yet largely unexplored. We use the framework of modular tensor
categories to show how the statistical repulsion of non-abelian anyons depends
on the exchange symmetry. The Fibonacci anyon model is studied, for which
explicit results are obtained. We also show how Fibonacci anyons can be used
to implement topological quantum computation, providing topologically stable
quantum information encoded in the state of non-abelian anyons that can be
manipulated via the non-abelian exchange symmetry.

1





Icke-Abelska Anyoner
Statistisk Repulsion och

Topologisk Kvantberäkning

Sammanfattning

Till skillnad mot klassisk mekanik kan kvantmekaniska partiklar vara helt iden-
tiska, vilket ger upphov till nya och intressanta fenomen. Identiska partiklar
kan vara av olika slag, bestämda av deras utväxlingssymmetri, vilket i sin tur
leder till statistisk repulsion. Utväxlingssymmetrin ges av en representation av
utväxlingsgruppen; fundamentalgruppen av konfigurationsrummet för identiska
partiklar. I tre dimensioner ges utväxlingsgruppen av permutationsgruppen och
det finns bara två typer av identiska partiklar; bosoner och fermioner. Medan
bosoner kan vara på samma ställe eller i samma tillstånd, repellerar fermioner
varandra. I två dimensioner ges utväxlingsgruppen av flätgruppen och i princip
alla typer av utväxlingssymmetrier är tillåtna, sådana partiklar kallas anyoner.
Abelska anyoner beskrivs av abelska representationer av utväxlingsgruppen och
ger väsentligen en kontinuerlig interpolation mellan bosoner och fermioner. Icke-
abelska anyoner är mycket mer komplexa och deras statistiska repulsion är ännu
mestadels outforskad. Vi använder modulära tensorkategorier för att visa hur
den statistiska repulsionen för icke-abelska anyoner beror på utväxlingssym-
metrin. Fibonacci anyon-modellen studeras, för vilken explicita resultat erhålls.
Vi visar också hur Fibonacci anyoner kan användas för att implementera topol-
ogisk kvantberäkning, vilket ger topologiskt stabil kvantinformation som kodas
i tillståndet för icke-abelska anyoner som kan manipuleras via den icke-abelska
utväxlingssymmetrin.
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Chapter 1

Introduction

Classically, identical particles can always be distinguished by their position.
This is not the case in quantum mechanics; identical particles are truly indistin-
guishable. This effect is essentially due to non-localization; quantum mechanical
particles do not have exact positions. The concept of identical particles gives
rise to fundamentally new and interesting phenomena.

All particles in nature can be classified into two distinct types of indistin-
guishable particles; bosons (e.g. photons) and fermions (e.g. electrons). This
classification is essentially determined by how a pair of indistinguishable parti-
cles behaves. If nature allows the particles to be in the same quantum state we
say that they are bosons, otherwise we call them fermions. This is known as
particle statistics.

This is not the full story. The classification into exactly two types of indis-
tinguishable particles is true only in three spatial dimensions. Clearly, space
around us is three-dimensional (ignoring any curled up dimension), which is
why we typically only observe bosons and fermions. However, it is possible to
trick nature into being two-dimensional by effectively freezing motion in one of
the three spatial dimensions, an example of this is the fractional quantum Hall
effect [27, 50].

Contrary to what one may expect, removing one spatial degree of freedom
allows for the existence of more types of particles. In two spatial dimensions
essentially any type of indistinguishable particles is allowed, we call such par-
ticles anyons, originally discovered by J. M. Leinaas and J. Myrheim [28] and
the name is due to F. Wilczek [56]. In fact, a continuous interpolation between
bosons and fermions arise, known as abelian anyons. Even more exotic particles
are allowed, known as non-abelian anyons, having higher-dimensional internal
degrees of freedom.

Three dimensions are special in many ways. In particular, this is the only
number of dimensions in which non-trivial knots can exist. Indeed, any attempt
at tying a knot in higher dimensions will fail because the strands can simply be
moved into the extra dimensions to unravel the knot. In fewer dimensions, the
opposite problem arises, the strands cannot be moved across each other to form
a knot. It is exactly this property of three dimensions that gives rise to anyons.
In 2+1-dimensional spacetime the world-lines of particles can form non-trivial
knots or braids, giving rise to particle statistics known as braid statistics.

Particle statistics gives rise to an effective repulsion, known as statistical
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CHAPTER 1. INTRODUCTION 7

repulsion. This is well known in the case of bosons and fermions. Many-body
properties of anyonic statistics is a topic of current research, focusing mainly
on the case of abelian anyons. The statistical repulsion of non-abelian anyons
is yet largely unexplored.

In this thesis we extend some of the results for abelian anyonic statistics to
the case of non-abelian anyons. Furthermore, we show how topological quantum
computation (TQC) can be performed with non-abelian anyons. TQC provides
topologically stable quantum states, in principle solving the issue of decoherence
that exists with ‘ordinary’ quantum computers.

As we build up the theory of anyons, many topics of mathematics are touched
upon. Topology and representation theory is used to characterize braid statis-
tics. The study of statistical repulsion uses tools from analysis and differential
geometry. The abstract model for anyons uses results from category theory and
theories rooted in quantum field theory.



Chapter 2

How anyons arise

Anyons arise as indistinguishable quantum mechanical particles in two dimen-
sions. In order to see how this comes about, we must first develop the theory
of indistinguishable particles.

2.1 Indistinguishable particles: The configura-
tion space Cn

This discussion is in part based on [8, 4].
Consider n indistinguishable quantum mechanical particles. The state of the

particles is determined by a wave function

|ψ⟩ : Cn → h (2.1)

where Cn is the configuration space of the particles, and h = Ck is a local
Hilbert space of k local internal degrees of freedom. Most introductory texts on
quantum mechanics work with h = C. Spin can also be modeled in this way.
The configuration space Cn is the space of possible spatial positions for the n
particles. If the particles are distinguishable, the configuration space is simply
given by

Cn =Mn (2.2)
where M is the spatial d-dimensional manifold in which the particles exist. If
the particles are indistinguishable we have

Cn =
Mn − ∆n

Sn
(2.3)

where

∆n = {(x1, . . . , xn) ∈Mn | xi = xj for some i, j} (2.4)

is the set of configurations where particles occupy the same point in space,
known as a “hard-core” condition.1 To model the fact that the particles are
indistinguishable, we form the quotient of Mn −∆n by the symmetric group Sn

1 The hard-core condition is motivated by the fact that without it we cannot say that
we have exactly n particles, two of them may be in the same position, thus not visible.

8



CHAPTER 2. HOW ANYONS ARISE 9

acting on the coordinates (x1, . . . , xn) ∈Mn where xj is the coordinate for the
j:th particle in M . In this way all permutations of the n particles are considered
to be the same configuration, i.e. (. . . , xj , . . . , xk, . . .) = (. . . , xk, . . . , xj , . . .) in
Cn. Thus, one cannot associate a coordinate xj to a specific particle.

2.1.1 Particle exchange: Loops in Cn
Consider exchange of n indistinguishable particles with configuration space Cn.
That is, take n indistinguishable particles on M with given positions and move
them around until they are back at some permutation of the original positions.
Since the particles are indistinguishable, such an exchange is described by a loop
in the configuration space Cn. More precisely, a loop γ(t) : [0, 1] → Cn, where
t ∈ [0, 1] can be seen as the time parameter, corresponds to world-lines of particle
trajectories in M × [0, 1]. The corresponding world-lines are constructed by
choosing a representative of γ(t) in Mn × [0, 1], e.g. associating the coordinates
xj with the j:th particle, and then projecting the coordinates of each particle
into M × [0, 1].

In this way, each loop in Cn corresponds to a classical motion of the parti-
cles along world-lines starting and ending in the same configuration. The corre-
sponding quantum mechanical dynamics is obtained by quantizing the system
via the path integral formulation [40, 37, 25, 8]. In this way, homotopically
equivalent paths can be seen to give the same contribution.2 Thus, it is re-
ally the fundamental group π1(Cn) of the configuration space that characterize
fundamentally different particle exchanges. For more details on this, see [14, 4].

What is the resulting state after exchange? Most introductory text books
on quantum mechanics give an unsatisfactory discussion of this, not taking the
configuration space Cn into account, thus not unraveling anyons.

Example 2.1.1 (Incomplete view of particle exchange). The incomplete text-
book approach is as follows. Let

|ψ(. . . , xj , . . . , xk, . . .)⟩ (2.5)

be the wave function of n indistinguishable particles. Exchanging particles j
and k gives the state

Pjk|ψ(. . . , xj , . . . , xk, . . .)⟩ = |ψ(. . . , xk, . . . , xj , . . .)⟩. (2.6)

The probability of measuring a system in the state |ψ⟩ is given by |ψ|2, since
the particles are indistinguishable we must then have

|ψ(. . . , xk, . . . , xj , . . .)|2 = |ψ(. . . , xj , . . . , xk, . . .)|2. (2.7)

Thus
|ψ(. . . , xk, . . . , xj , . . .)⟩ = c|ψ(. . . , xj , . . . , xk, . . .)⟩ (2.8)

Furthermore, if the particles are allowed to be at the same position, they might interact,
however, we are not considering particle interactions. In fact, the configuration space is not
necessarily a smooth manifold if the singular points of ∆ are not removed. In many cases, the
points ∆ can be added back later in the analysis. The use of hard-core condition has been
discussed in depth, see [6] for more details.

2 Provided that no external magnetic field is present. Magnetic fields can be seen as a
geometric phase, due to the curvature of the space. The anyonic phase is instead a consequence
of the topology.
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for some constant c. Finally, double exchange returns the state to the original
position, i.e. P 2

jk = I, thus

|ψ(. . . , xj , . . . , xk, . . .)⟩ = c2|ψ(. . . , xj , . . . , xk, . . .)⟩. (2.9)

Hence, one concludes c = ±1, corresponding to bosons and fermions, respec-
tively. ♢

The flaw in this argument is essentially that double exchange need not return
the system to the original state, i.e. P 2

jk ̸= I, if the configuration space Cn has a
non-trivial geometry. To see this clearly, we must specify the notion of particle
exchange more precisely.

Definition 2.1.1 (Exchange). Consider n indistinguishable particles with con-
figuration space Cn. A path in Cn corresponds to motion of the particles. More-
over, if the path is a loop, the particles are returned to a (possibly trivial)
permutation of the particles. A non-trivial loop γ corresponds to an exchange
of particles, denoted by Pγ . Since homotopically equivalent loops are indistin-
guishable, the exchange operator Pγ is determined only up to homotopy equiv-
alence of γ, we may denote the exchange by P[γ] where [γ] is the equivalence
class of loops homotopically equivalent to γ.

Definition 2.1.2 (Simple exchange). A simple exchange is an exchange where
exactly two particles have been exchanged exactly once. No other particles are
enclosed in the loop of a simple exchange. In the case M = R2, i.e. π1(Cn) = Bn,
the path of the simple exchange is taken in the counter-clockwise direction.

It is now clear that double exchange P 2
γ is trivial if and only if the loop

given by traversing γ twice is continuously deformable to the trivial loop, hence
returning the state to the original state. As we shall now see, the configuration
space need not have this property. This observation in the context of quantum
statistics is originally due to [28] in 1976.

2.1.2 The fundamental group π1(C2)
The configuration space of two indistinguishable particles in Rd is given by

C =
(Rd)2 − ∆

S2
. (2.10)

The space (Rd)2 can be factored as Rd
cm ×Rd

rel where Rd
cm gives the coordinates

of the center of mass for the two particles and Rd
rel gives the relative coordinate

of the two particles. Let x1, x2 ∈ Rd be the (absolute) coordinates of the two
particles, so that x = (x1, x2) ∈ C. We then define

xcm =
1

2
(x1 + x2) ∈ Rd

cm, xrel =
1

2
(x1 − x2) ∈ Rd

rel. (2.11)

Now, ∆ = {(x1, x2) ∈ (Rd)2 | x1 = x2} is precisely the origin of Rd
rel. Fur-

thermore, quotiening with S2 permutations corresponds to quotiening with the
antipodal equivalence relation

x ∼ y ⇐⇒ x = −y or x = y. (2.12)
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Thus we have
C = Rd

cm × (Rd
rel − {0})/∼︸ ︷︷ ︸

Crel

(2.13)

and we see that the center of mass contributes trivially to the topology of the
configuration space.

The topology of the relative configuration space Crel can be understood with
the following observation. The real projective d-space is the d-sphere with an-
tipodal points identified,

RPd = Sd/∼. (2.14)

Furthermore, we have Rd − {0} ∼= R+ × Sd−1. Thus,

Crel = (Rd − {0})/∼
∼= (R+ × Sd−1)/∼
∼= R+ × Sd−1/∼
∼= R+ × RPd−1.

(2.15)

Since the fundamental group has the property that π1(X × Y ) ∼= π1(X) ×
π1(Y ) for path connected spaces X and Y we have

π1(C) = π1(RPd−1) =

{
Z, d = 2,

Z2, d ≥ 3,
(2.16)

as basic result from topology, showing how the case of two spatial dimensions is
special. The fundamental group Z can be seen as a way of counting the number
of loops, the winding number.

In d = 2 dimension the space Crel can be seen as the half plane R2
y≥0 − {0}

with x and −x identified, geometrically viewed as gluing the edges R− and R+

of R2
y≥0 − {0} together. The resulting space can be seen as a punctured cone.

In fact, the curvature of this cone can be interpreted to determine the particle
statistics.

This can be generalized to n particles in d-dimensional euclidean space. The
corresponding configuration space is then

Cn =

(
Rd
)n − ∆n

Sn
(2.17)

and the fundamental group of this configuration space is given by

π1(Cn) =

{
Bn, for d = 2

Sn, for d ≥ 3
(2.18)

where Bn is the braid group on n strands [16, 21].
It is the occurrence of the braid group as the fundamental group for the

configuration space for particles in R2 that essentially motivates the study of
anyons. In Section 2.3, we define and further discuss the braid group. We
disregard other exotic possibilities for the underlying space M . For instance,
the solid torus is a three-dimensional manifold with fundamental group Z ∼= B1.
However, this does not really correspond to free particles.
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Note that in d = 1 dimensions, particle exchange of non-interacting particles
cannot occur, the configuration space (after removing the diagonal ∆ and quo-
tiening with Sn) is simply connected, and therefore π1(Cn) is trivial. In fact, the
concept of indistinguishable particles is not meaningful in d = 1 dimensions, the
particles can always be distinguished by which part of the configuration space
they exist on, since no transitions can occur, given that particles do not inter-
act. However, one can define generalized statistics by allowing interactions, this
gives rise to a rich theory of particle statistics also in one dimension [43, 8].

2.2 Representations of π1(Cn) determine particle
statistics

The effect of an exchange of indistinguishable particles gives rise to different
particle statistics. Fermions can be represented as having an anti-symmetric
wave function, this leads to the fact that fermions cannot occupy the same
state; this is the Pauli exclusion principle, which can be seen as an effective
repulsion. On the other hand, bosons have symmetric wave functions and are
thus allowed to be in the same state. Statistically it is more likely to find
bosons in the same state than if the particles where distinguishable, seen as
an effective attraction. The statistics of bosons and fermions is described by
Bose–Einstein statistics and Fermi–Dirac statistics, respectively. Anyons are
described by braid statistics, as we shall see in detail.

We have seen that particle exchanges, i.e. loops in the configuration space,
are distinguished only up to homotopy equivalence. That is, particle exchange
must obey the structure of the fundamental group of the configuration space.
For instance, if the fundamental group is Sn, then particle exchange must be
such that double exchange is trivial, since P 2 = 1 for any element P of Sn. Thus,
it is clear that double exchange in Rd is trivial for d ≥ 3, since the fundamental
group of the corresponding configuration space is Sn. This motivates the crude
argument in Example 2.1.1 for that only fermions and bosons exist, and clarifies
when the argument is valid; only for d ≥ 3 dimensions.

This idea is captured precisely by requiring that particle exchange is deter-
mined by a representation of the fundamental group of the configuration space.

Definition 2.2.1. A (linear) representation of a group G on a vector space V
is a group homomorphism

ρ : G 7→ GL(V ), (2.19)

where GL(V ) is the general linear group on V , i.e. the group of automorphisms
on V [12]. If ρ(g) commutes with ρ(h) for all g, h ∈ G we say that the rep-
resentation is abelian, and say that particles with such exchange are abelian,
otherwise we call them non-abelian. A representation is said to be unitary if
ρ(g) is unitary, i.e. ρ(g)∗ρ(g) = 1, for all g ∈ G.

We shall only be interested in unitary representations, as motivated by
the following. The dynamics of every quantum system is determined by the
Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩, (2.20)
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for some Hamiltonian H. The solution to this equation is

|ψ(t)⟩ = e−iHt|ψ(0)⟩. (2.21)

Thus, time evolution is given by U = e−iHt. Furthermore, time-evolution U of a
quantum system must be unitary3. The operator U = e−iHt is unitary precisely
when H is Hermitian.4 Particle exchange is a time evolution of the state, thus
it must be unitary. Moreover, since particle exchange maps a configuration
|ψ⟩ ∈ Cn back to itself, there is no observable difference between the original
state |ψ⟩ and the exchanged state Uγ |ψ⟩, for an exchange loop γ. That is,

∥ψ∥2 = ∥Uγψ∥2 =⇒ Uγ unitary. (2.22)

Thus, the result of a particle exchange must be described by a unitary transfor-
mation on the Hilbert space h = Ck of internal degrees of freedom. Therefore,
we are only interested in unitary representations on Ck, that is, a map

ρ : G→ U(k) (2.23)

where U(k) is the group of k × k unitary matrices over C.
To sum up:

Lemma 2.2.1. The particle exchange operator Pγ must correspond to a unitary
representation of π1(Cn), that is

Pγ |ψ⟩ = ρ(Pγ)|ψ⟩ (2.24)

where ρ(Pγ) is a unitary operator on the internal space h.

A representation of the braid group Bn need not have the property that
ρ(Pγ)

2 = 1, a simple example of this is B2
∼= Z as computed in Section 2.1.2.

That is, the wave function need not be invariant under double exchange P 2
γ . This

is due to the non-trivial topology of the configuration space. It is essentially
this observation that motivates the study of anyons.

Remark 2.2.1. Let Pγ be a simple exchange and assume π1(Cn) = Sn, we then
have that bosons and fermions correspond to the representations ρ(Pγ) = 1 and
ρ(Pγ) = −1, respectively. In light of this, the question arises: What about other
representations of Sn? As it turns out, the bosonic and fermionic representa-
tions are the only one-dimensional representations of Sn. However, there exists
higher-dimensional representations of Sn. Particles obeying such exchange are
sometimes called plektons and their statistics is known as parastatistics. How-
ever, it has been shown that parastatistics can always be reduced to bosons or
fermions by introducing additional internal degrees of freedom, in the framework
of relativistic quantum field theory [16, 11]. Furthermore, the spin-statistics the-
orem relates particles statistics to intrinsic spin: Bosons have integer spin and
fermions have half-integer spin. This is discussed in connection to anyons in
[17]. △

3 Essentially motivated by preserving normalization of quantum probabilities, |⟨ψ|ψ⟩|2 =
|⟨Uψ|Uψ⟩|2 = |⟨ψ|U∗U |ψ⟩|2 ⇐⇒ U∗U = I ⇐⇒ U unitary.

4 Furthermore, the Hamiltonian H must be self-adjoint because it is an observable, see
Section 2.4.
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Thus, if the underlying space is Rd with d ≥ 3, there are fundamentally
only two types of particle statistics. However, if the underlying space is R2,
the fundamental group π1(Cn) is the braid group Bn which has much richer
representations than Sn, as we shall see in detail throughout this thesis. Fur-
thermore, statistics arising from higher-dimensional representations of the braid
group cannot be reduced to one-dimensional representations, unlike the case of
Sn [16].

Remark 2.2.2. The proper way to deal with functions defined on configuration
spaces with non-trivial geometry is by using fiber bundles [37]. The state of a
quantum system is described by a wave function ψ defined as a section of the
vector bundle with fiber h over the configuration space C, where h = Ck is the
Hilbert space of k local internal degrees of freedom. In this setting, loops in the
configuration space that return all particles to the original coordinates need not
be homotopically trivial. △

2.3 The braid group
The braid group Bn is the group with generators σ1, . . . , σn−1 and relations

σjσk = σkσj , if |j − k| ≥ 2, (2.25a)
σjσj+1σj = σj+1σjσj+1. (2.25b)

It is an infinite group, e.g. B2 = {σm
1 : m ∈ Z}. The symmetric group Sn is

defined as the braid group with the additional relation σ2
j = 1 for all j; it is a

finite group.
The braid group can be understood as representing (homotopically equiva-

lent) braids on n strands, the generator σj braids the j:th and j + 1:th strand
clockwise, cf. Fig. 2.1. The braid group relations can thus be visualized as in
Figs. 2.2 and 2.3.

1

· · ·

j − 1 j j + 1 j + 2

· · ·

n

Figure 2.1: Strand representation of the braid group generator σj , with time
going upwards.

We now define the braid representing exchange of two strands around p fixed
strands, which will play a key role when studying statistical repulsion of anyons
in Chapter 3 and Chapter 5.

Definition 2.3.1. The exchange braid Σp is the braid

Σp = σ1σ2 · · ·σpσp+1σp · · ·σ2σ1, (2.26)

on p+2 strands, cf. Fig. 2.4. This braid keeps the middle p strands fixed while
the outer strands 1 and p + 2 are exchanged around the middle strands. The
corresponding representation is referred to as the exchange operator Up = ρ(Σp).
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j − 1 j j + 1 j + 2 j + 3 j + 4

=

j − 1 j j + 1 j + 2 j + 3 j + 4

Figure 2.2: Strand representation of σjσj+2 = σj+2σj , illustrating the braid
group relation σiσj = σjσi for |i− j| ≥ 2 in the case |i− j| = 2.

j j + 1 j + 2

=

j j + 1 j + 2

Figure 2.3: Strand representation of the braid group relation σjσj+1σj =
σj+1σjσj+1.

1 2 3 4

Figure 2.4: Strand representation of the exchange braid Σ2 = σ1σ2σ3σ2σ1, note
how the middle strands, 2 and 3, are kept in place, while the outer strands 1
and 4 are exchanged.

The following observation shall later be useful.

Lemma 2.3.1. All generators of the braid group are conjugate.
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Proof. First, σi is conjugate to σi+1 for all i, as seen by

(σiσi+1)σi(σiσi+1)
−1 = (σiσi+1σi)σ

−1
i+1σ

−1
i

[Eq. (2.25b)] = (σi+1σiσi+1)σ
−1
i+1σ

−1
i

= σi+1σiσ
−1
i

= σi+1.

(2.27)

Finally, conjugation is transitive, thus all braid generators are conjugate.

As we have seen, the representation of the fundamental group of the config-
uration space determines the statistics. In d = 2 dimensions the fundamental
group is the braid group. The fact that Bn is an infinite group makes the repre-
sentation theory for Bn much more involved than for finite groups. For a general
discussion of the representation theory of braid groups, see [54]. In particular,
it can be shown that non-abelian representations necessarily grow in dimen-
sion with the number of particles. Furthermore, it is not always clear whether a
given representation corresponds to physically realizable particles. In this thesis
we shall therefore use a general framework of abstract anyon models rooted in
quantum field theory to characterize possible non-abelian representations and
study the exchange of such anyons, which we introduce in Chapter 4.

A representation ρ : Bn → Ck of Bn is determined by ρ(σj) for j = 1, . . . , n−
1. If all generator representations commute we say that the representation is
abelian. If k = 1 the representation is trivially abelian, since U(1) = {eiθ :
θ ∈ [0, 2π)} is an abelian group. In this case the possible representations are
completely characterized by just one parameter θ.

Lemma 2.3.2. A unitary representation ρ : Bn → C is uniquely determined by

ρ(σj) = eiθ, (2.28)

for all j, with θ ∈ [0, 2π).

Proof. Since U(1) is an abelian group the second braid group relation Eq. (2.25b)
gives ρ(σj) = ρ(σj+1) for all j. The first braid group relation Eq. (2.25a) is triv-
ially satisfied.

Remark 2.3.1. Since the symmetric group Sn is the braid group Bn with the
additional relation σ2

j = 1 we see that one-dimensional representations of Sn are
such that ρ(σj) = 1 for all j or ρ(σj) = −1 for all j, corresponding to bosons
and fermions, respectively. △

All representations ρ : B2 → Ck of B2 are trivially abelian regardless of the
dimension k, since there is just one generator σ1. Higher-dimensional represen-
tations of Bn are generally non-abelian, but not necessarily.

Example 2.3.1 (Higher-dimensional abelian representations). Consider n anyons
and assume their statistics is determined by an abelian representation ρ : Bn →
Ck with k ≥ 2. Since all ρ(σj) commute they can be simultaneously diagonal-
ized. That is, the representation is reducible and can be written as a direct
sum of one-dimensional abelian representations, each acting on a separate one-
dimensional sector of the Hilbert space Ck. No mixing occurs between these sec-
tors. This situation essentially corresponds to having k different non-interacting
one-dimensional abelian anyons, each belonging to one of the sectors. ♢
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In this example we saw how non-interacting sectors of the Hilbert space
correspond to distinct particle types. This concept gives rise to different particle
types also in the non-abelian case. The following section discusses this in detail.

2.4 Superselection and particle types
Before discussing selection and superselection, we must introduce the concept
of observables. The set of available observables essentially represent the infor-
mation that is available for a quantum system.

2.4.1 Observables
Everything that can be measured in quantum mechanics is represented by self-
adjoint (Hermitian) operators, called observables, acting on the Hilbert space
H in which the quantum states are defined. A measurement of an observable
A on a state |ψ⟩ gives one of the eigenvalues λa of A (the eigenvalues may have
multiplicity) and the resulting state A|ψ⟩ after measurement is the projection of
|ψ⟩ onto the eigenspace corresponding to the measured eigenvalue λa. Here we
assume for simplicity that the Hilbert space H is finite-dimensional. Essentially
the same discussion applies in the general case. Since A is Hermitian, the set of
eigenvectors {|a⟩}a can be chosen as an orthonormal basis for the Hilbert space
that A acts on. Thus, we have a resolution of the identity

I =
∑
a

|a⟩⟨a|. (2.29)

Thus, we can write A in its eigenbasis

A =
∑
a

λa|a⟩⟨a|, (2.30)

this is essentially the spectral theorem, see for example [45] for the general
version. If |ψ⟩ is the quantum state being measured, then we have

⟨ψ|A|ψ⟩ =
∑
a

⟨ψ|λa|a⟩⟨a|ψ⟩ =
∑
a

λa⟨ψ|a⟩⟨a|ψ⟩ =
∑
a

λa|⟨ψ|a⟩|2. (2.31)

That is, ⟨ψ|A|ψ⟩ is the expectation value of the measurement of the observable
A for the state |ψ⟩. In particular, the probability of measuring λa is |⟨ψ|a⟩|2.

The two quantum states |ψ⟩ and eiφ|ψ⟩ represent the same physical state.
The phase φ of the second state is not physical, it cannot be measured since

⟨eiφψ|A|eiφψ⟩ = e−iφeiφ⟨ψ|A|ψ⟩ = ⟨ψ|A|ψ⟩. (2.32)

Such a phase is called a global phase.
A relative phase is a phase “between” two states, which can be measured,

provided that appropriate observables are available. To illustrate this, consider
an orthonormal basis {|0⟩, |1⟩} and the general state

|ψ⟩ = aeiα|0⟩+ beiβ |1⟩. (2.33)
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For a general (Hermitian) observable A, the expectation value of a measurement
is

⟨ψ|A|ψ⟩ = a2⟨0|A|0⟩+ b2⟨1|A|1⟩+ abei(β−α)⟨0|A|1⟩+ abei(α−β)⟨1|A|0⟩

= a2⟨0|A|0⟩+ b2⟨1|A|1⟩+ abei(β−α)⟨0|A|1⟩+ abei(β−α)⟨0|A|1⟩

= a2⟨0|A|0⟩+ b2⟨1|A|1⟩+ 2abRe
(
ei(β−α)⟨0|A|1⟩

)
= a2⟨0|A|0⟩+ b2⟨1|A|1⟩+ 2abRe ⟨0|A|1⟩) cos(β − α)

(2.34)

The relative phase is β−α and the above shows that it affects measurements for
observables with off-diagonal elements, this can be understood as interference.
Note that the exact phases α and β can be seen as global phases of |0⟩ and |1⟩,
respectively, explaining why neither can be directly measured.

2.4.2 Selection
Let |ψ⟩ be a state of indistinguishable particles, then Pγ |ψ⟩ cannot be distin-
guished from |ψ⟩ for any exchange Pγ . Thus, for any observable A we must
have

⟨ψ|A|ψ⟩ = ⟨ψ|P ∗
γAPγ |ψ⟩ for all Pγ , (2.35)

otherwise the observable A could in principle be used to distinguish the particles.
Thus, we have the following result.

Lemma 2.4.1. If the fundamental group of the configuration space of indis-
tinguishable particles is Sn, all observable of this system must be exchange
invariant,

A = P ∗
γAPγ for all Pγ . (2.36)

This is known as selection rules, for observables of a system of indistinguish-
able particles, effectively giving constraints on what transitions are possible.

Consider particles obeying statistics given by a unitary representation ρ :
π1(Cn) → h such that Pγ 7→ Uγ . Consider A to be an observable on the local
Hilbert space h, then we must furthermore have

⟨ψ|A|ψ⟩ = ⟨ψ|U∗
γAUγ |ψ⟩ for all exchange loops γ, (2.37)

otherwise the particles would in principle be distinguishable.

2.4.3 Superselection
The obtained selection rules essentially state that the Hilbert space H of a
quantum system can be decomposed as H =

⊕
j Hj where each component Hj

is an invariant subspace for all exchange operators Pγ . Since any observable A
and Pγ commute, also A leaves these subspaces invariant.

Thus, with |ψj⟩ ∈ Hj and |ψk⟩ ∈ Hk and j ̸= k, we have

⟨ψj |A|ψk⟩ = 0 = ⟨ψk|A|ψj⟩. (2.38)

This is known as superselection, originally introduced by Wick, Wightman
and Wigner [55]. The components Hj of H are known as superselection sec-
tors, or superselection charge sectors, since these sectors can be interpreted as
different particles types with different ‘charge’.
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An immediate consequence is that there can be no interference between
states with different exchange symmetries, since the off-diagonal elements ⟨ψj |A|ψk⟩
of an observable A represent the interference between |ψj⟩ and |ψk⟩. To see this
clearly, consider the (not normalized) state

|Ψ⟩ = |ψ1⟩+ eiθ|ψk⟩. (2.39)

For any observable A we then have

⟨Ψ|A|Ψ⟩ = ⟨ψj |A|ψj⟩+ ⟨ψk|A|ψk⟩+ eiθ⟨ψj |A|ψk⟩︸ ︷︷ ︸
=0

+e−iθ ⟨ψk|A|ψj⟩︸ ︷︷ ︸
=0

= ⟨ψj |A|ψj⟩+ ⟨ψk|A|ψk⟩
(2.40)

independent of eiθ.
To sum up, states that are superpositions of states from different supers-

election sectors exhibit no interference, as opposed to superposition states in
general. Furthermore, having indistinguishable particles entails that the space
of allowed states is a subspace of the full space of distinguishable particle states.
The observables that are allowed are those that leave this subspace invariant,
they map states of indistinguishable particles to states of indistinguishable par-
ticles. Furthermore, superselection implies that all observables leave superse-
lection sectors invariant. Thus, each superselection sector can be understood as
a distinct particle type, which cannot be transformed to another particle type.
Further discussion of superselection can be found in [3, 44, 22].

2.5 Interference of anyonic particle exchange
We shall now see how, in principle, the anyonic exchange operator U of two
anyons of the same type can be measured. The principle can be illustrated as
the quantum circuit in Fig. 2.5. Consider a state |ψ⟩ of two indistinguishable
anyons with clockwise exchange given by |ψ⟩ 7→ U |ψ⟩. Note that the loop
describing clockwise exchange is unique up to homotopy.

Let HA be the Hilbert space of the two anyons and let |0⟩ and |1⟩ be two
orthonormal states, spanning the Hilbert space HB , in Fig. 2.5 they represent
horizontal and vertical propagation, respectively. Thus, the total Hilbert space
is H = HA ⊗HB .

The Hadamard transform defined as

H :
|0⟩ 7→ 1√

2

(
|0⟩+ |1⟩

)
|1⟩ 7→ 1√

2

(
|0⟩ − |1⟩

) (2.41)

is a unitary transform that forms a superposition of states. Apply the Hadamard
transform to the initial state

|Ψinitial⟩ = |ψ⟩ ⊗ |0⟩ I⊗H7−−−→ 1√
2

(
|ψ⟩ ⊗ |0⟩+ |ψ⟩ ⊗ |1⟩

)
. (2.42)

Next, apply the unitary operator

Ũ :
|ψ⟩ ⊗ |0⟩ 7→ |ψ⟩ ⊗ |0⟩
|ψ⟩ ⊗ |1⟩ 7→ (U |ψ⟩)⊗ |1⟩

(2.43)
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Figure 2.5: Schematic of a quantum circuit measuring the exchange operator U
via interference.

that exchanges the particles if they are in the |1⟩ state. Note that in Fig. 2.5
we needed the I ⊗ σx operator where

σx :
|0⟩ 7→ |1⟩
|1⟩ 7→ |0⟩

(2.44)

to recombine the states after the split, this is only for the schematic, mathemat-
ically it can be ignored since σx simply flips the |0⟩ and |1⟩ states. The state is
thus mapped to

1√
2

(
|ψ⟩ ⊗ |0⟩+ (U |ψ⟩)⊗ |1⟩

)
. (2.45)

Finally, perform a Hadamard transform again, mapping the state to

|Ψfinal⟩ =
1

2

((
(I + U)|ψ⟩

)
⊗ |0⟩+

(
(I − U)|ψ⟩

)
⊗ |1⟩

)
. (2.46)

To sum up we have performed the sequence of three operations (I⊗H)Ũ(I⊗H).
Note that if U = I this sequence of operations does nothing, since H2 = I.

The exchange phase U can now be measured by performing a measurement
in the HB space. In the abelian case U = eiθ and the probability of measuring
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the final state to be in the state |0⟩ is∣∣∣∣1 + U

2

∣∣∣∣2 =

∣∣∣∣1 + eiθ

2

∣∣∣∣2
=

1

4

(
1 + eiθ

) (
1 + eiθ

)∗
=

1

4

(
1 + eiθe−iθ + eiθ + e−iθ

)
=

1

4
(2 + 2 cos(θ))

=
1

2
(1 + cos(θ)) .

(2.47)

The anyonic phase θ can thus be measured, and in this setup θ can be under-
stood as a shift of the probability of measuring the final state in |0⟩ or |1⟩. In
particular, bosons (θ = 0) always end up in |0⟩ and fermions (θ = π) always
end up in |1⟩.

Similarly, if U is non-abelian, the measurement in the state |0⟩ ∈ HB can be
represented by the observable 1⊗ |0⟩⟨0| on the total Hilbert space H. Thus, we
obtain the probability of measuring |Ψfinal⟩ to be in the state |0⟩ as⟨

Ψfinal
∣∣(1 ⊗ |0⟩⟨0|

)∣∣Ψfinal
⟩
=

1

4

∥∥(I + U)ψ
∥∥2. (2.48)

We recover the result for abelian anyons by letting U = eiθ,
1

4

∥∥(I + U)ψ
∥∥2 =

1

4

∥∥(1 + eiθ)ψ
∥∥2

=
1

4

∣∣1 + eiθ
∣∣2∥∥ψ∥∥2

=
1

2
(1 + cos θ),

(2.49)

where |ψ⟩ is taken to be normalized.
The dependence of the measurement probability on the exchange operator U

can be rather involved. Assuming that we have control of the state |ψ⟩, with an
appropriate set of choices for |ψ⟩ the elements of U can be deduced by repeating
the interference measurement.

If we work in the eigenbasis of U we have U = diag(eiθ1 , . . . , eiθk) and write
|ψ⟩ =

∑k−1
j=0 cj |j⟩, then

1

4

∥∥(I + U)ψ
∥∥2 =

1

4

∑
j

∣∣(1 + eiθj )cj
∣∣2

=
1

2

∑
j

|cj |2
(
1 + cos(θj)

)
.

(2.50)

Example 2.5.1. Let HA be two-dimensional. We can then write

|ψ⟩ = c0|0⟩+ c1|1⟩ (2.51)

and
U =

(
u00 u01
u10 u11

)
=

(
a b

−eiθb∗ eiθa∗

)
(2.52)
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Thus we have
1

4

∥∥(I + U)ψ
∥∥2 =

1

4

(∣∣(u00 + 1)c0 + u01c1
∣∣2 + ∣∣u10c0 + (u11 + 1)c1

∣∣2)
=

1

4

(∣∣(a+ 1)c0 + bc1
∣∣2 + ∣∣− eiθb∗c0 + (eiθa∗ + 1)c1

∣∣2) .
(2.53)

Determining U amounts to determining four real parameters, arg(a), arg(b), |a|
and θ. For example, the choice |ψ⟩ = |0⟩ gives

1

4

∥∥(I + U)ψ
∥∥2 =

1

4

(
|a+ 1|2 + | − eiθb|2

)
=

1

4

(
|a|2 + 1 + 2Re(a) + |b|2

)
=

1

2
(1 + cos(arg(a))) ,

(2.54)

allowing measurements of arg(a). Similarly, the other parameters of U can be
determined by appropriately choosing the state |ψ⟩. ♢

This procedure can be straight-forward extended to let the state |ψ⟩ repre-
sent more than two anyons, and thus allow the operator Ũ to introduce a more
complex braid. In this way, truly non-abelian properties of a larger system of
anyons can in principle be probed.

Other methods of anyonic interferometry are discussed in [4]. Note that as
one anyon is taken around one or several other anyons, the introduced phase
can only be measured after one full loop has been traversed and the phase
can be compared to another anyon. Thus, it is not physical to say that the
phase continuously (or in any other way) changes during the exchange. That is,
how the phase is affected before the particles meet is non-physical, we are free
to choose this as long as the choice respects the result of a complete winding
of particles; this illustrates the gauge invariance of the anyonic phase during
braiding.

2.6 Anyon models and physical realizability
This thesis focuses primarily on the mathematical aspects of anyons, however, in
this section we give a short account of possible physical realizations for anyons.
This topic is further discussed in for instance [38, 19, 48, 49].

Abelian anyons have been claimed to have been detected in the fractional
quantum hall (FQH) effect [7, 57]. These results are not unambiguous and total
consensus does not exist in the scientific community. Furthermore, it has only
been conjectured that non-abelian anyons can be realized in FQH liquids at the
filling fractions ν = 5/2, where anyons known as the Ising anyons are thought
to exist and experimental results exist which partially support the existence of
non-abelian anyons in the ν = 12/5 Read-Rezayi state [53, 2].

There are different attempts to identify whether particles obey anyonic
statistics. Interferometry methods have been developed, as in [4]. Another
approach is to study the wave function density, as outlined in [33, 57]. An un-
ambiguous argument for abelian anyons in the context of FQH is given in [33].
The benefit of using interferometry is that it is a direct way to identify braid
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statistics, while the wave function density is an indirect effect of the statistics.
However, anyonic interferometry is in practice difficult to achieve; it can be
argued that wave function density is easier to measure.

In the literature one generally encounters two types of anyons.

1. Anyons with quantum dynamics, giving rise to anyonic particle statistics,
i.e. braid statistics. Such particles must necessarily be allowed to move
freely in space, such as in a gas. This is the type of anyons that one has
in mind when discussing statistical repulsion.

2. Anyons with fixed or controlled coordinates. In the strict sense this can
be any quantum system that is governed by a representation of the braid
group. This is the type of anyons that one has in mind when discussing
the use of anyons for topological quantum computation. The anyons need
to be fixed so that controlled braiding can be performed. In principle this
can be achieved by forcing the position of dynamical anyons by placing
each anyon in a deep potential that can be externally controlled.



Chapter 3

Statistical repulsion

In this chapter we give a lower bound for the kinetic energy of free anyons. This
gives rise to what is known as statistical repulsion, an essentially geometric effect
of the exchange operator that causes an effective repulsion of indistinguishable
particles. This has consequences for the density of the wave function, and might
thus be measured. This chapter is in part based on [32, 29, 35]. See also [26]
for the case of what is known as extended abelian anyons.

A quantum system is generally determined by a Hamiltonian Ĥ = T̂ +
V̂ where T̂ = p̂ · p̂ = −∇2 is the kinetic energy operator, p̂ = −i∇ is the
momentum operator, and V̂ is the potential energy operator. We shall consider
free particles, i.e. V̂ = 0.

3.1 Fermionic statistical repulsion
Recall that the exchange operator is the braid group representation of a simple
exchange of particles. In the case of bosons and fermions in d ≥ 3 dimensions
the exchange operator is simply the identity and −1, respectively. That is,

ψ(x2, x1) = ±ψ(x1, x2). (3.1)

For fermions, this leads to the well-known Pauli exclusion principle. Simply
stated, if x1 = x2 it immediately follows that ψ(x1, x1) = 0, the particles cannot
occupy the same position. More generally, the anti-symmetry of the fermionic
wave function causes the kinetic energy to increase as the particles tend closer
to each other. This is an effective repulsion due to the particle statistics. We
shall now see this in more detail.

Consider n indistinguishable particles on Rd. Let x1, . . . , xn be the coordi-
nates of the particles, i.e. xj ∈ Rd. This collection of particles is described by
an n-particle wave function ψ(x1, . . . , xn) ∈ L2(Rdn), i.e. a square integrable
complex-valued function on Rdn. The kinetic energy T of this system is defined
as

T := ⟨ψ|T̂ |ψ⟩ =
n∑

j=1

∫
Rdn

|∇jψ|2dx. (3.2)

In the present discussion we shall assume that ψ is normalized and in the domain
of the operator. A detailed discussion for abelian anyons can be found in [26]
and [30], see also [10].

24
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Let the particles be fermions, i.e. ψ ∈ L2
asym(Rdn). This is the subspace of

functions ψ in L2(Rdn) such that ψ(. . . , xj , . . . , xk, . . .) = −ψ(. . . , xk, . . . , xj , . . .)
for j ̸= k. In this case, we have the following theorem [18, 32].
Theorem 3.1.1 (Many-body Hardy inequality for fermions). In the described
setting with ψ being an n-particle fermionic wave function, the following lower
bound for the kinetic energy holds∫

Rdn

n∑
j=1

|∇jψ|2dx ≥ d2

n

∫
Rdn

∑
1≤j<k≤n

|ψ|2

|xj − xk|2
dx+

1

n

∫
Rdn

∣∣∣∣∣∣
n∑

j=1

∇jψ

∣∣∣∣∣∣
2

dx.

(3.3)
The first integral shows that fermionic particles have an inverse-squared pair-

wise effective repulsion. The second integral on the right-hand side essentially
gives the contribution of the motion of the center of mass.

We give an outline of the proof.

Proof. First, one can show
n∑

j=1

|∇jψ|2 =
1

n

∑
1≤j<k≤n

|(∇j −∇k)ψ|2 +
1

n

∣∣∣∣∣∣
n∑

j=1

∇jψ

∣∣∣∣∣∣ , (3.4)

by expanding the expression, known as the many-body parallelogram identity.
The last term sum to the center of mass motion and is not of interest. We focus
on the first sum on the right-hand side.

Introduce relative coordinates for each pair (j, k) of particles,

xrel
jk := (xj − xk)/2, xcm

jk := (xj + xk)/2,

∇xrel
jk

:= ∇j −∇k, ∇xcm
jk

:= ∇j +∇k.
(3.5)

It shall be useful to split the coordinates as x = (xj , xk;x
′) where x′ ∈ Rd(n−2)

and j < k fixed. Next, define the relative wave function

u(xrel
jk , x

cm
jk ) := ψ(x1, . . . , xj = xcm

jk + xrel
jk , . . . , xk = xcm

jk − xrel
jk , . . . , xn). (3.6)

We then have u(−xrel
jk , x

cm
jk ) = −u(xrel

jk , x
cm
jk ) for fermions, by the anti-symmetry

of ψ.
With this change of variables we have∫

Rdn

|(∇j −∇k)ψ|2 dx =

∫
Rd(n−2)

∫
Rd×Rd

|(∇j −∇k)ψ|2 dxjdxkdx′

=

∫
Rd(n−2)

∫
Rd×Rd

∣∣∣∇xrel
jk
u
∣∣∣2 2dxrel

jkdx
cm
jk dx

′.

(3.7)

Finally, one shows, for anti-symmetric (fermionic) wave functions,∫
Rd

∣∣∣∇xrel
jk
u
∣∣∣2 dxrel

jk ≥ d2

4

∫
Rd

|u|2

|xrel
jk |2

dxrel
jk (3.8)

from which the result follows.

In the outline of the proof we skipped the details of the last step. To obtain
a similar inequality for anyons, it is exactly this step that shall be important,
and we now look into this in more detail in the case d = 2.
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3.2 Anyonic statistical repulsion
In the proof outline of Theorem 3.1.1, the assumption that ψ is anti-symmetric
is used only in the last step where the expression∫

Rd

∣∣∣∇xrel
jk
u(x)

∣∣∣2 dxrel
jk (3.9)

is considered. We now extend this to the more general case with
u(−xrel

jk , x
cm
jk ) = Uγu(x

rel
jk , x

cm
jk ) (3.10)

for general anyons with simple exchange represented by Uγ . This implicitly
assumes d = 2 so that Uγ determines braid statistics. Generally, Uγ may denote
simple exchange around a number of inner anyons, i.e. γ denotes a loop in
configuration space, enclosing a number of fixed anyons. We shall return to the
details of this later.

In polar coordinates xrel
jk = (r, φ) we have∫

R2

∣∣∣∇xrel
jk
u
∣∣∣2 dxrel

jk =

∫ ∞

r=0

∫ 2π

φ=0

(
|∂ru|2 +

|∂φu|2

r2

)
rdφdr. (3.11)

It is the angular derivative term that gives the contribution of the exchange
statistics. Thus, we only consider this integral∫ 2π

0

|∂φu|2 dφ. (3.12)

Since we consider r fixed, we define u(φ) := u(r, φ). In this way, the loop
γ = γr is determined by r and the number of encircled fixed anyons varies with
r. Loops with different number of encircled fixed anyons are not homotopically
equivalent and thus the exchange operator Uγr depends on r. The boundary
condition Eq. (3.10) may thus be written as u(π) = Uγru(0). Furthermore,∫ 2π

0

|∂φu|2 dφ =

∫ π

0

|∂φu(φ)|2 dφ+

∫ π

0

|∂φu(π + φ)|2 dφ

=

∫ π

0

|∂φu(φ)|2 dφ+

∫ π

0

|∂φUγru(φ)|
2
dφ

= 2

∫ π

0

|∂φu|2 dφ

(3.13)

since unitary operators are norm preserving.
Define the operator
D = −i∂φ, DomD = {u : u, ∂φu ∈ L2([0, π]), u(π) = Uγru(0)}. (3.14)

The expectation value of D2 with domD2 = {u : u,Du ∈ domD},

⟨u|D2|u⟩ = −
∫ π

0

u∂2φu dφ

= −u∂φu
∣∣∣π
0
+

∫ π

0

∂φu∂φu dφ

=

∫ π

0

∂φu∂φu dφ

=

∫ π

0

|∂φu|2dφ

(3.15)
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is precisely the integral we are considering. In the above calculation, the bound-
ary term vanishes since Uγr is unitary,

u∂φu
∣∣∣π
0
= u(π)∂φu(π)− u(0)∂φu(0)

= U∗
γr
u(0)Uγr∂φu(0)− u(0)∂φu(0)

= (U∗
γr
Uγr − I)u(0)∂φu(0)

= 0.

(3.16)

Similarly, one shows that D is self-adjoint. Thus, also D2 is self-adjoint, so the
Rayleigh quotient of D2 can be used to obtain a lower bound by the min-max
theorem, ∫ π

0

|∂φu|2dφ = ⟨u|D2|u⟩ ≥ infσ(D2) =: λ20,γr
, (3.17)

where we assume that u is normalized in L2[0, π].
By the spectral theorem we have

σ(D2) = {λ2 : λ ∈ σ(D)} (3.18)

The spectrum of D is straight forward to compute.

Lemma 3.2.1. The spectrum of D is given by

σ(D) = {λ : eiλπ is an eigenvalue of Uγr} (3.19)

Proof. The eigenequation for D gives

Du = λu ⇐⇒ −iu′ = λu ⇐⇒ u(φ) = Ceiλφ (3.20)

for a non-zero constant vector C ∈ Ck. Moreover, the boundary condition
Eq. (3.14) implies

u(π) = Uγru(0) =⇒ Ceiλπ = UγrC, (3.21)

i.e. eiλπ is an eigenvalue of Uγr , with eigenvector C.

Thus, we have a lower bound for the angular term, carrying the contribution
of the anyonic statistics leading to statistical repulsion.

Theorem 3.2.2. Anyons with exchange operator Uγr satisfy the inequality∫ π

0

|∂φu|2dφ ≥ inf {λ2 : eiλπ is an eigenvalue of Uγr} = λ20,γr
. (3.22)

Remark 3.2.1. Each eigenvalue of Uγr is on the form eiαπ with 0 ≤ α < 2
since Uγr is unitary. By the theorem, each eigenvalue gives rise to a family of
possible energy levels

{(α+ 2q)2 : q ∈ Z} (3.23)

for the angular Hamiltonian H = D2, with corresponding eigenfunctions

uq(φ) = C1e
i(α+2q)φ. (3.24)

△
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Remark 3.2.2. Instead of introducing anyonic exchange as the condition u(π) =
Uγru(0) one can use the framework of fiber bundles to model anyons by changing
the kinetic energy operator from

Anyon gauge: T̂ =
n∑

j=1

−∇2
j (3.25)

to

Magnetic gauge: T̂A =
n∑

j=1

(−i∇j +Aj)
2
, (3.26)

where A is a connection one-form on the bundle of which the wave function is
a section. In this way the wave function may be chosen periodic u(π) = u(0),
i.e. the anyonic exchange is then completely captured by Aj and ψ is bosonic
[37]. △

3.3 Separating the state space
In the above discussion, the exchange operator Uγr is defined to be a simple
exchange of the pair (xj , xk), possibly around p other anyons. We started by
considering the expression∫

R2(n−2)

∫
R2×R2

∣∣∣∇xrel
jk
u
∣∣∣2 2dxrel

jkdx
cm
jk dx

′. (3.27)

The inner integral concerns anyons j and k with the remaining n−2 considered
fixed. The inner integral is rewritten as∫

R2

∣∣∣∇xrel
jk
u
∣∣∣2 dxrel

jk =

∫ ∞

r=0

∫ 2π

φ=0

(
|∂ru|2 +

|∂φu|2

r2

)
rdφdr

≥
∫ ∞

r=0

∫ 2π

φ=0

(
|∂ru|2 + λ20,γr

|u|2

r2

)
rdφdr

(3.28)

and we assume u satisfies the anyonic boundary condition u(π) = Uγr
u(0). The

exchange operator Uγr may depend on r since the number of encircled anyons
in the loop γr may affect the exchange operator Uγr . To make this precise
we separate the state space into open annuli (regions between two concentric
circles) centered at xcm

jk , such that none of the fixed n − 2 anyons are at the
interior of an annulus, cf. Fig. 3.1. This gives a separation of R2 into regions
with increasing number p of the n − 2 fixed anyons. Let r1 ≤ r2 ≤ . . . ≤ rn−2

be the radial coordinate of the n− 2 fixed anyons. The innermost annulus is an
open disk (degenerate annulus) with radius r1, the second innermost annulus is
the region between circles of radius r1 and r2, etc. Note that the circles with
radii r1, r2, . . . , rn−2 are not contained in any annuli, since the anyons cannot
pass through each other, and we are considering angular motion. If the radii
of two fixed anyons coincide, then there is no annulus separating them. The
removal of these circles removes more points than ∆, however this is no issue
since the circles of radius rj have measure zero.
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In this way, exchange of particles j and k depend on r, i.e. Uγr = Uγr (r).
Since the dependence on r is exclusively due to the p number of encircled fixed
anyons, we introduce the notation

Up := Uγr (r), rp−1 < r < rp, (3.29)

with r0 = 0 and rn−1 = ∞. This is precisely the exchange braid introduced in
Definition 2.3.1. The exchange corresponding to Up is visualized in Fig. 3.2.

x

y

p = 0

p = 1

p = 2

p = 3

•

•

•

r1 r2 r3

Figure 3.1: Illustration of annuli separating R2 into regions with increasing
number p of contained anyons. A blob • denotes a fixed anyon. In each annulus,
exchange of the two free anyons, i.e. as φ increases from 0 to π, a given number
p of fixed anyons will be encircled.

Figure 3.2: Exchange of a pair of anyons around p fixed anyons. Figure taken
from [29].

3.3.1 Abelian anyons
Abelian anyons have an exchange operator on the form U0 = eiαπ for 0 ≤ α <
2π. Moreover, by Lemma 2.3.2 every simple exchange is determined by the same
representation. Thus,

Up = ρ(σ1)ρ(σ2) · · · ρ(σp)ρ(σp+1)ρ(σp) · · · ρ(σ2)ρ(σ1) = ei(2p+1)απ. (3.30)
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In this case, the spectrum for D2 is given by

σ(D2) = {((2p+ 1)α+ 2q)
2
: q ∈ Z} (3.31)

and thus Theorem 3.2.2 yields the following result for n→ ∞.

Theorem 3.3.1. Abelian anyons with exchange operator U0 = eiαπ satisfy the
lower bound ∫ π

0

|∂φu|2dφ ≥ λ20,γr
=

=

{
1
ν2 , if α = µ

ν with µ ∈ Z, ν ∈ N+ relatively prime and µ odd,
0, otherwise

(3.32)

The last equality in the theorem is essentially a number-theoretic result,
proved in proposition 5 in [29].

From this we have an immediate corollary for bosons (α = 0) and fermions
(α = 1).

Corollary 3.3.2. With α = 0, the exchange operator is

Up = ei(1+2p)απ = 1 (3.33)

for all p, i.e. bosons do not “see” each other, and they have no statistical
repulsion; infσ(D2) = 0.

With α = 1, the exchange operator is

Up = ei(2p+1)απ = −1 (3.34)

for all p, i.e. fermions do not “see” the encircled p fermions. However, the
particles in the exchange pair do “see” each other, in the sense that their wave
function changes sign after they have been exchanged, as expected. This gives a
non-zero statistical repulsion, infσ(D2) = λ20,γr

= 1 for all γr.

The effects of the statistical repulsion may have consequences for the wave
function density, e.g. the wave function may be forced to vanish on ∆; as
particles get close to each other. As we have discussed, the density may be
measured. Thus, understanding the effects of the statistical repulsion may help
in the experimental search for anyons. It may also affect the free energy and
the stability of anyonic many-body systems, see [29, 31, 30].

3.3.2 Non-abelian anyons
The exchange operator Up of non-abelian anyons cannot be characterized in a
straight forward way as for abelian anyons, essentially due to ρ(σj) and ρ(σj+1)
not commuting. Because of this, determining the spectrum σ(Up) and thus the
lower bound ∫ π

0

|∂φu|2dφ ≥ λ20,γr
= inf {λ2 : eiλπ ∈ σ(Up)}, (3.35)

becomes problematic. In light of this, we must better understand how the
non-abelian exchange operator Up arises. To do this, we introduce the general
framework of abstract anyon models in the following chapter. First we make
the following general observation.
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Remark 3.3.1. The abelian part of U ∈ U(k), i.e. the U(1) part in the factor-
ization U(k) = U(1)× SU(k), is given by eiθ such that

U = eiθU0 (3.36)

where detU0 = 1. Note the relation

detU = det(eiθU0) = eikθ. (3.37)

Varying the abelian phase θ can be seen as shifting the eigenvalues of U uni-
formly along the complex unit circle. In particular, with U0 diagonalized as
U0 = diag(eiθ1 , . . . , eiθk), changing the abelian phase according to eiθ 7→ e−iθj

gives U a zero eigenvalue. Thus, implying zero statistical repulsion. How-
ever, the abelian part can generally not be decoupled and controlled indepen-
dently. △



Chapter 4

Abstract anyon models

In this chapter we shall present the framework of abstract anyon models, leading
up to the succeeding chapter that characterizes braiding of anyons described by
abstract anyon models.

Anyon models can be modeled by unitary braided tensor categories, see
[22, 36, 42, 13, 52]. However, setting up this framework in full generality is
redundant for our purposes and we take a more straight forward approach,
which is also most common in the literature. The benefit of the categorical
approach is that consistency of braiding and fusion is most naturally shown
this way. We shall see the ties between the straight forward approach and the
categorical model when discussing the consistency conditions in Section 4.6.

This chapter is in part based on [44, 22, 4]. We shall be using the notation
that is standard in the literature, and when possible make use of and extend
the fusion diagram notation, which greatly clarifies braiding of fusion states.

Starting with Section 5.2 we show how a given abstract anyon model gives
rise to representations of the braid group.

4.1 Preliminaries
An abstract anyon model consists of a set of labels representing different types
of anyons. These labels are known as anyonic charge, topological charge or
superselection labels. Anyons can be combined, or fused, to give an anyon of
some charge, possibly in different ways. This is modeled by a fusion algebra

a× b =
∑
c

N c
abc (4.1)

representing the possible outcomes from fusion of anyons of type a and b. The
fusion multiplicities N c

ab are non-negative integers denoting the number of dis-
tinct ways a and b can fuse to c. In each anyon model there is the trivial
label 1, representing the vacuum, with the property N b

a1 = N b
1a = δab, i.e. 1

fuses trivially with every other charge. Furthermore, to each charge a there is
a corresponding conjugate charge ā representing the antiparticle of a, with the
property N1

ab = δbā, i.e. a fuses to the vacuum only with its antiparticle.
The N c

ab distinguishable ways in which a and b can fuse to c can be regarded
as an orthonormal basis of a Hilbert space V c

ab. This is the state space, or fusion

32
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space, of anyons of type c resulting from fusion of a and b. The states of V c
ab

are called fusion states and we denote the basis for V c
ab by

{|ab; c, µ⟩, µ = 1, 2, . . . , N c
ab} (4.2)

where |ab; c, µ⟩ represents the µ:th way in which a and b can fuse to c. This is
the notation used by [44].

The splitting space V ab
c is the dual space of the fusion space V c

ab; it is the
state space of particles with anyonic charge a and b that can be split from an
anyon of charge c.

More generally, the fusion space of anyons of type c resulting from fusion of
anyons of type a1, . . . , an is denoted by V c

a1a2···an
. This space has a canonical

decomposition

V c
a1a2···an

∼=
⊕

b1,b2,...,bn−2

V b1
a1a2

⊗ V b2
b1a3

⊗ V b3
b2a4

. . .⊗ V c
bn−2an

(4.3)

with an associated canonical orthonormal basis with elements being the fusion
states

|a1a2; b1, µ1⟩ ⊗ |b1a3; b2, µ2⟩ ⊗ · · · ⊗ |bn−3an−1; bn−2, µn−2⟩ ⊗ |bn−2an; c, µn−1⟩
(4.4)

for all possible bj and µj . For convenience we may write b0 = a1 and b−1 = 1.
Many anyon models of interest have the property that N c

ab ≤ 1 for all particle
types a, b and c. When this is the case, such as for the Fibonacci anyons that we
shall consider in Chapter 6, the multiplicity label µ can be ignored. This makes
the model easier to handle, and we introduce the fusion diagram notation.

4.2 Fusion diagrams
In the previous section we defined

|ab; c, µ⟩ (4.5)

to represent the µ:th way in with a and b fuse to c. It shall be very convenient
to use a diagrammatic notation for fusion states when considering braiding of
anyons, as we shall see in the following sections. Thus, we introduce the notation

b

µ
a c

:= |ab; c;µ⟩ (4.6)

Note that the diagram should be read left/top to right/bottom, i.e. a fuses
with b resulting in c. For simplicity we suppress the multiplicity label µ in the
notation and write

b

a c
:=

b

µ
a c

:= |ab; c;µ⟩. (4.7)

This is convenient, since most models we shall consider are such that the fusion
multiplicities are trivial, N c

ab ≤ 1. That is, if fusion of a and b to c is possible,
this happens in exactly one way. Then, the multiplicity label µ in |ab; c, µ⟩ can
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be ignored, because the only possibility is µ = 1, if µ = 0 the state is not valid.
This is not a major simplification in the notation, it shall always be straight
forward to add back the multiplicity labels if needed.

The diagram notation is primarily useful when considering fusion of several
anyons and extends naturally;

b c

a e d
(4.8)

denotes fusion of a, b, c to d such that a fuses with b resulting in the intermediate
charge e, finally e fuses with c to give the resulting charge d.

The canonical basis for the fusion space V c
a1a2···an

with canonical decompo-
sition

V c
a1···an

∼=
⊕

b1,b2,...,bn−2

V b1
a1a2

⊗ V b2
b1a3

⊗ V b3
b2a4

. . .⊗ V c
bn−2an

(4.9)

can thus be written in terms of fusion diagrams, assuming trivial fusion multi-
plicities, as a1

a2 a3 an−1 an

b1 b2
· · ·

bn−3 bn−2 c

∣∣∣∣ for all possible intermediate
charges b1, b2, . . . , bn−2

 . (4.10)

It is thus clear that for given anyons a1, . . . , an the fusion states are really
determined by the intermediate charges bj .

The real advantage of writing fusion states with fusion diagrams is that
braiding is much easier to represent. This will be extremely useful now as we
proceed in developing the abstract model for anyons, and characterize braiding.

Consider an arbitrary fusion state |ψ⟩ =
∑

k ck|k⟩ where |k⟩ denotes the k:th
basis fusion states and ck ∈ C. Let A be a linear operator on the fusion space.
The basis fusion states are transformed according to

A|k⟩ =
∑
j

Ajk|j⟩ (4.11)

The action of a linear operator A acting on |ψ⟩ is then given by

A|ψ⟩ =
∑
k

ckA|k⟩ =
∑
k

ck
∑
j

Ajk|j⟩ =
∑
j

∑
k

ckAjk|j⟩. (4.12)

Alternatively, written in Dirac notation, using the resolution of identity I =∑
j |j⟩⟨j|, we have

A|ψ⟩ =
∑
j,k

|j⟩ ⟨j|A|k⟩︸ ︷︷ ︸
Ajk

⟨k|ψ⟩︸ ︷︷ ︸
ck

(4.13)

In what follows, we shall define some important linear operators on fusion
spaces. We shall define the operators in terms of their action on the standard
fusion states, as in Eq. (4.11).

4.3 The F operator: Associativity of fusion
The result of fusing multiple anyons is required to be independent of which
anyons are fused first. This is motivated by the physics as the conservation of
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the anyonic charge. Mathematically, this translates to requiring that fusion is
associative,

(a× b)× c = a× (b× c). (4.14)
This gives rise to a natural isomorphism between the two decompositions of the
fusion space

V d
abc

∼=
⊕
f

V f
ab ⊗ V d

fc
∼=
⊕
e

V e
bc ⊗ V d

ea. (4.15)

In terms of fusion diagrams that is

⊕
f

b c

a f d

∼=
⊕
e

b c

a d

e . (4.16)

The first decomposition should be understood as first fusing a with b in all
possible ways giving an intermediate charge f , followed by fusing c with f to
give the final charge d. The second decomposition should be understood as first
fusing b with c in all possible ways giving an intermediate charge e, followed by
fusing a with e to give the final charge d.

The first of these two decompositions is referred to as the standard decompo-
sition and the second is the fusion decomposition. We denote this isomorphism
by

F :
⊕
f

V f
ab ⊗ V d

fc →
⊕
e

V e
bc ⊗ V d

ae (4.17)

and it can be represented by the F matrix.

Definition 4.3.1. The F matrix F c
abc is given by

F :
b c

a e d
7→

b c

a d

e =
∑
f

(
F d
abc

)
fe

b c

a f d
. (4.18)

That is, the F -matrix is the change of basis matrix from the standard basis
to the fused basis in the fusion space V d

abc.

Remark 4.3.1 (Implicit range for the index of summation). In Eq. (4.18) the
summation index f implicitly ranges over all possible labels in the given anyon
model, with the obvious restriction that the corresponding fusion state in the
summand is valid. That is, the summation index f must be such that

a× b = f

f × c = d.
(4.19)

Similarly, the label e is restricted so that

b× c = e

a× e = d.
(4.20)

In what follows we shall let the summation index be implicit in all sums with
fusion states as summands. △

The following lemma will be useful when computing the F -matrix.
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Lemma 4.3.1. Consider the fusion space V d
abc, when one of the particle types

is trivial, i.e. a, b, c or d equals 1, then dimV d
abc = 1, furthermore if a, b or c

equals 1, then the corresponding F -matrix F d
abc is trivial. Explicitly that is

F d
1bc =

(
F d
1bc

)
bd

= 1,

F d
a1c =

(
F d
a1c

)
ac

= 1,

F d
ab1 =

(
F d
ab1

)
db

= 1.

(4.21)

Proof. With a = 1 we have, by definition of the F -matrix,

b c

1 d

e =
∑
f

(
F d
1bc

)
fe

b c

1 f d
. (4.22)

From the fusion diagram on the right hand side we read out 1× b = f from the
first fusion, this is valid only for f = b. Similarly, on the left hand side the final
fusion reads 1×e = d, implying e = d. Since the indices e and f are forced, this
implicitly shows that the corresponding fusion spaces is one-dimensional. The
other results follow analogously,

1 c

a d

e =
∑
f

(
F d
a1c

)
fe

1 c

a f d
=⇒ e = c, f = a,

b 1

a d

e =
∑
f

(
F d
ab1

)
fe

b 1

a f d
=⇒ e = b, f = d.

(4.23)

The result can also be realized by noting that three anyons of type a, b and c,
where one of them is the trivial type 1, is uniquely determined by their total
charge. Indeed, these three anyons are really just two, since the trivial particle 1
fuses trivially, it can be added or removed in the representation without changing
anything. Thus, the corresponding F matrix must be trivial in this case. In
particular, if c = 1, then

F d
a1c :

b 1

a d
7→

b 1

a d

(4.24)

but
b 1

a d
=

b

a d
=

b 1

a d

(4.25)

because the vacuum fuses trivially. Finally, the F -operator does a priori act
non-trivially in these one-dimensional fusion spaces. However, one imposes the
physical axiom that fusion and splitting with the vacuum is trivial. This can
also be dealt with as a gauge choice in defining the standard basis states [4].

4.4 The R operator: Commutativity of fusion
The result of fusing a with b must be the same as fusing b with a. That is,
fusion is commutative,

a× b = b× a. (4.26)
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This gives rise to a natural isomorphism.

Definition 4.4.1. The R operator Rab is an isomorphism

Rab : V
c
ba → V c

ab (4.27)

such that

Rab :

a b

µ

c

7→

a b

ν
c

=
∑
ν

(Rc
ab)νµ

a b

ν

c

. (4.28)

Disregarding the fusion multiplicities we see that the R operator is diagonal,

Rab :
a b

c 7→
a b

c
= Rc

ab

a b

c . (4.29)

That is, there is no mixing of the c label. Note that mixing of a and b cannot
occur since these are the charges to be braided and fused.

4.5 The B operator: Braiding of standard fusion
states

We shall now consider braiding on the standard fusion states. This can be
realized by applying the F -matrix to put the state in a basis where the R
matrix can be applied immediately, followed by reverting back to the standard
basis via F−1. That is, using the F and R-matrix we obtain the relation

b c

a e d

=
∑
f

((
F−1

)d
acb

)
fe

b c

a d

f

=
∑
f

((
F−1

)d
acb

)
fe
Rf

bc

b c

a d

f

=
∑
g

∑
f

((
F−1

)d
acb

)
fe
Rf

bc

(
F d
abc

)
gf

b c

a g d
.

(4.30)

Recall the implicit summation index convention described in Remark 4.3.1.
From this we define the B-matrix.

Definition 4.5.1. The B matrix Bd
abc is given by(

Bd
abc

)
eg

=
∑
f

((
F−1

)d
acb

)
fe
Rf

bc

(
F d
abc

)
gf
. (4.31)

Symbolically we write this as

B = F−1RF. (4.32)
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To sum up, the B-matrix braids the standard fusion states according to

b c

a e d

=
∑
g

(
Bd

abc

)
ge

b c

a g d
. (4.33)

As a consequence of the definition of the B-matrix and Lemma 4.3.1 we have
the following lemma, which will be useful when computing the B-matrix.

Lemma 4.5.1. Consider the fusion space V d
abc, when one of the particle types

is trivial, i.e. a, b, c or d equals 1, then dimV d
abc = 1 and the corresponding

B-matrix Bd
abc is one-dimensional,

Bd
1bc =

(
Bd

1bc

)
bc

= Rd
bc,

Bd
a1c =

(
Bd

a1c

)
ad

= Rc
1c = 1,

Bd
ab1 =

(
Bd

ab1

)
da

= Rb
b1 = 1.

(4.34)

4.6 The pentagon and hexagon equations
When considering an anyon model, it is ultimately the B operator (braid op-
erator) that describes how braiding affects the anyons. The B operator gives
the phase change introduced when braiding anyons. In the next chapter we
shall explicitly see how the B operator is used to characterize the braid group
representation for anyon models. It is the braid group representation that is the
relevant property both for the study the dynamics of anyons, but also for de-
veloping methods for quantum computation with anyons, known as topological
quantum computation.

We have seen that the B-matrix is computed from the F and R-matrices.
These matrices are in turn determined by what is known as the pentagon equa-
tion (

F 5
12c

)
da

(
F 5
a34

)
cb

=
∑
e

(
F d
234

)
ce

(
F 5
1e4

)
db

(
F b
123

)
ea

(4.35)

and hexagon equation

Rc
13

(
F 4
213

)
ca
Ra

12 =
∑
b

(
F 4
231

)
cb
R4

1b

(
F 4
123

)
ba
. (4.36)

In these equations, all indices are taken as arbitrary particle labels [44].
These equations should be understood as coherence conditions for fusion and

braiding. The diagrammatic version of these equations, found as commutative
diagrams in Figs. 4.1 to 4.4 make the point clear, and shows that these equations
are commutativity constraints for fusion and braiding. Indeed, the pentagon
equation is the formal constraint for associativity of fusion,

(a× b)× c = a× (b× c). (4.37)

As previously hinted, anyon models can be described by braided tensor cate-
gories. In this setting, the pentagon and hexagon equations are precisely Mac
Lane’s coherence theorem [34], showing that no further conditions are required
for consistent fusion and braiding. Further details can be found in [22, 44].
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Solving the pentagon and hexagon equations is in general highly non-trivial.
The equations are multivariate polynomial equations and require elaborate tech-
niques to be solved. First one must fix the gauge freedom that comes from the
choice of basis for the fusion space, next an appropriate Gröbner basis can be
used to solve the system. See [4] for more details on this approach.
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Figure 4.1: The pentagon equation in terms of fusion diagrams. Figure taken
from [22]. Note that the F -matrix have super- and sub-scripts reversed.

Figure 4.2: The pentagon equation in terms of fusion spaces. Figure taken from
[22]. Note that the fusion spaces and the F -matrix have super- and sub-scripts
reversed.
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Figure 4.3: The hexagon equation in terms of fusion diagrams. Figure taken
from [22].

Figure 4.4: The hexagon equation in terms of fusion spaces. Figure taken from
[22]. Note that the fusion spaces, F -matrix and R-matrix have super- and sub-
scripts reversed.



Chapter 5

Anyonic braid group
representations

In this chapter we show how a given anyon model gives rise to representations
of the braid group. In particular, a general characterization of the exchange
operator Up is derived. We begin by defining charge sectors of fusion spaces.

5.1 Charge sectors
Consider any abstract anyon model with a non-trivial particle label t. When
considering braiding of two intermediate t anyons in V 1

tn , it suffices to work with
the basis of V 1

tn restricted to the intermediate charge labels a, b and c in

· · ·
t t t t t t

· · a b c · ·
· · · (5.1)

The reason for this is that only these labels are part of the B matrix describing
braiding of the two t anyons. Note that we cannot make any assumptions for the
charge c, it is not forced to be 1 since we are considering intermediate anyons
in the fusion space, only the total charge of the fusion space is specified, in this
case 1. The different possible values for c is referred to as different right charge
sector. Similarly, also the charge a is unknown, because we are not considering
the leftmost particle in the basis, there are really more anyons to the left, that
fuse to different resulting charges a. This results in different left charge sectors.

If we fix the both the left and right charge sectors to be trivial, we are really
considering braiding of

t t

1 b 1
(5.2)

in V 1
t2 . This is a different fusion space, with much smaller dimension than V 1

tn .
There is just one free intermediate charge label here, compared to three free
charge labels when not fixing the charge sectors.

Note that having trivial total charge, as in V 1
tn , represents the fact that we

have exactly n anyons of type t. If the total charge would be t, there would
really be n+ 1 anyons of type t available.

41
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Since we seek to characterize general braiding in V 1
tn , including intermediate

anyons where both the left and right charge sector are unfixed, we introduce
the following definition for convenience.

Definition 5.1.1. The fusion space Ṽtn has basis elements on the form

t t

b1 b2 b3
· · ·

t t

bn−1 bn bn+1

(5.3)

where the charge labels b1, b2, . . . , bn+1 range over all values allowed by the
fusion rules. The space Ṽtn should be thought of as the space V 1

tn but including
all possible left and right charge sectors. That is, the space of n anyons of type
t with unfixed charge sectors.

The following new notation shall be convenient when working with such
fusion spaces.

Definition 5.1.2. The basis fusion states of the fusion space Ṽtn are denoted

|b1b2 · · · bnbn+1⟩ :=
t t

b1 b2 b3
· · ·

t t

bn−1 bn bn+1

, (5.4)

where the n anyons of type t are implicit in this notation.

Remark 5.1.1. We now have three slightly different notations for fusion spaces,
to sum up:

V 1
tn := span

{
t t

1 t b1
· · ·

t t

bn−3 bn−2 1
: for all possible bj

}

Vtn := span
{

t t

1 t b1
· · ·

t t

bn−3 bn−2 bn−1

: for all possible bj

}

Ṽtn := span
{

t t

b1 b2 b3
· · ·

t t

bn−1 bn bn+1

: for all possible bj

} (5.5)

Note how the only thing that differs are the left and right charge sectors. △

We shall now see how braid group representations arise in the fusion space
Ṽtn for given non-trivial anyonic charge t. We let the left and right charge sectors
be unspecified, meaning that the n anyons we consider may really be part of a
larger ensemble of anyons. If we in total had exactly n anyons, it would suffice
to consider the fusion space V 1

tn , i.e. with left and right charge sectors fixed to
1, but we proceed without this restriction. Note that we could instead consider
the more general fusion space Ṽa1···an , however one is most often interested in
braiding of anyons of the same type. This is also exactly what we need for the
purposes outlined in Chapter 3. The fusion space Ṽa1···an is in principle treated
analogously to Ṽtn , but the dependence on the different charge labels a1, . . . , an
make the computations more involved.
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5.2 Braid group representations in the fusion
space Ṽtn

Each anyon model gives rise to representations of the braid group, the repre-
sentations depend on the number of considered anyons and the possible charge
sectors. In this and the following sections we give a detailed account of how
braid group representations arise in the framework of abstract anyon models.
An account of the general theory of braid group representations, not necessarily
arising from abstract anyon models, can be found in [54].

Single out a non-trivial anyonic charge and consider the fusion space Ṽtn
with the standard basis. In this space we naturally have n − 1 braid group
generators by exchanging neighbouring t anyons and we introduce the following
notation.

Definition 5.2.1. The representation of the j:th braid group generator σj in
Ṽtn is denoted ρn(σj).

For example, we have

t t

b1 b2 b3

ρ2(σ1)7−−−−→
t t

b1 b2 b3

(5.6)

this is precisely the B operator

B :
t t

b1 b2 b3
7→

t t

b1 b2 b3

=
∑
e

(
Bb3

b1tt

)
eb2

t t

b1 e b3
. (5.7)

This shows that ρ2(σ1) in Ṽt2 for fixed b1 and b3 is given by

ρ2(σ1) = Bb3
b1tt

. (5.8)

Thus, in the full basis that is

ρ2(σ1) =
⊕
b1,b3

Bb3
b1tt

. (5.9)

Indeed, there is no mixing of the values for b1 or b3, as seen from the definition
of the B matrix, this matrix really only acts on the subspace generated by the
possible values of the label b2 while keeping the labels b1 and b3 fixed.

Written out explicitly, we have

Bb3
b1tt

=


(
Bb3

b1tt

)
(b2)1,(b2)1

(
Bb3

b1tt

)
(b2)1,(b2)2

· · ·(
Bb3

b1tt

)
(b2)2,(b2)1

(
Bb3

b1tt

)
(b2)2,(b2)2

· · ·
...

...
. . .

 (5.10)

where (b2)j denotes the j:th allowed value for the intermediate charge b2. The
allowed values for b2 depend on b1 and b3, in particular we must have that
b1 × (b2)j = b3 is a valid fusion. Note how the number of possible values for b2
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determine the dimension of Bb3
b1tt

. This also implicitly assumes we have chosen
a specific order for our basis.

Here we have expressed ρ2(σ1) in the full basis of the fusion space Ṽt2 with
basis elements

|b1b2b3⟩ ≡
t t

b1 b2 b3
(5.11)

for all possible values of b1, b2 and b3. The action of ρ2(σ1) on |b1(b2)jb3⟩ can
thus be written as

ρ2(σ1)|b1(b2)jb3⟩ =
∑
k

(
Bb3

b1tt

)
(b2)k,(b2)j

|b1(b2)kb3⟩. (5.12)

Consider now the larger fusion space Ṽtn with standard fusion states

|b1b2 · · · bnbn+1⟩ ≡
t t

b1 b2 b3
. . .

t t

bn−1 bn bn+1

. (5.13)

for all allowed values of the labels b1, b2, . . . , bn+1. The braid generator σ1 still
braids the first two t anyons. However, the basis of the space is now larger,
giving us a larger representation ρn(σ1). The right charge sector for σ1 can
now be seen to consist of all the labels b3, b4, . . . , bn+1. The B matrix still only
depends on b1 and b3, so the block structure is similar to the previous example,
but with the exception that there are more possible instances of the b3 label,
due to the presence of b4, . . . bn+1. Thus,

ρn(σ1) =
⊕

b1,b3,...,bn+1

Bb3
b1tt

. (5.14)

This can also be understood by decomposing the fusion space as

Ṽtn =
⊕
c

V c
t2 ⊗ Ṽctn−2 (5.15)

and realizing that ρn(σ1) acts only on the V c
t2 part of the space. However, in

order to use this decomposition we must first use the F operator to put the
state in this fused state.

In order for Eq. (5.14) to be valid, and for the blocks to not interwoven, i.e.
so that we don’t have a situation like

ρn(σ1) =



(
B

(b3)1
(b1)1tt

)
11

0
(
B

(b3)1
(b1)1tt

)
12

· · ·

0
(
B

(b3)1
(b1)2tt

)
11

0 · · ·(
B

(b3)1
(b1)1tt

)
21

0
(
B

(b3)1
(b1)1tt

)
22

· · ·
...

...
...

. . .

 (5.16)

but rather

ρn(σ1) =



(
B

(b3)1
(b1)1tt

)
11

(
B

(b3)1
(b1)1tt

)
12

0 · · ·(
B

(b3)1
(b1)1tt

)
21

(
B

(b3)1
(b1)1tt

)
22

0 · · ·

0 0
(
B

(b3)1
(b1)2tt

)
11

· · ·
...

...
...

. . .

 , (5.17)
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we must have that the basis is ordered such that each for each value of b2
all basis elements for given b2 follow immediately after each other, and or-
dered in the same way for each value of b2. Such a choice for the order of
the basis can of course be made, however, this order will most likely cause
ρn(σ2), ρn(σ3), . . . , ρn(σn−1) to have charge sectors appearing in non-contiguous
order, giving interweaving blocks. To somewhat remedy this, we shall order the
basis by the leftmost and rightmost charge sectors b1 and bn. The values for
these labels can never be mixed, while all other intermediate charges can be
mixed. Thus, all representations of the braid generators ρn(σj) respect these
outer charge sector blocks. There is however no ordering of the basis that gives
a consistent non-interweaving block structure for ρn(σ2), see Example 6.3.5 as a
concrete example of this. It is clear that for each generator σj there is a choice
of the order of the basis such that its representation ρn(σj) has this described
block form. That is, the basis can be partitioned into subsets where each subset
spans an invariant subspace under ρn(σj). This discussion is summed up in the
following result.

Theorem 5.2.1. In a given anyon model with non-trivial charge label t, the
fusion space Ṽtn gives rise to a representation for the braid group Bn, where the
generators are represented by

ρn(σj) = P−1
j

 ⊕
b1,...,bj ,bj+2,...,bn+1

B
bj+2

bjtt

Pj (5.18)

where Pj is some permutation matrix, permuting the basis of the fusion space
as described above.

It is now clear that only the immediate left and right charges bj and bj+2

respectively are essentially all that is needed to determine ρn(σj), regardless of
n. Writing out ρn(σj) in the full basis of the fusion space Ṽtn gives repeated
blocks which may be interweaved as described. The number of times that a
given block is repeated is given by the number of corresponding left and right
charge sectors in the full basis. More specifically, consider ρn(σj) and the block
associated with bj and bj+2. The number of times this block is repeated is given
by the number of possible values for bj and bj+2, so that the following fusions
are allowed

b1 × · · · × bj−1 = bj

bj+2 × · · · × bn = bn+1.
(5.19)

Indeed, the bold symbols in

· · ·
t t t t

bj−1 bj bj+1 bj+2 bj+3

· · · (5.20)

are the ones that correspond to one instance of the corresponding block of
ρn(σj). For fixed bj and bj+2 there may be several values for the labels b1, . . . , bj−1

and bj+3, . . . , bn+1 corresponding the same block.
Finally, we verify that the obtained representation indeed satisfies the braid

group relations.

Lemma 5.2.2. The mapping ρ(σj) =
⊕
B

bj+2

bjtt
is a representation of the braid

group.
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Proof. It suffices to show that ρ(σj) satisfies the braid group relations Eq. (2.25).

1. The first relation Eq. (2.25a) is trivially satisfied since the B operator
B

bj+2

bjtt
holds all labels fixed except bj+1. Thus, for |j−k| ≥ 2 the free label

of ρ(σj) does not affect ρ(σk) and vice versa.

2. The second relation Eq. (2.25b) requires the hexagon equation Eq. (4.36).
Note that the commutativity forced by the hexagon equation Fig. 4.3
implies the braid relation for trivial left charge sector. The case of non-
trivial left charge sector is handled by using the F operator to “factor out”
the left charge sector, so that Ṽt3 =

⊕
b1,b4

V b1
b1

⊗V b4
t3 and use the hexagon

equation on the V b4
t3 -part of the fusion space.

5.3 Determining the braid group generators ρn(σj)
Consider the fusion space V c

a1···an
in a given anyon model, the representation

ρ(σj) gives the anyonic phase introduced to the total wave function when par-
ticles aj and aj+1 are exchanged. Recall from Chapter 2 that the braid group
is generated by σ1, . . . , σn, thus it suffices to give expressions for ρ(σj) in order
to be able to compute any braid in a given anyon model.

Before showing how ρ(σj) is computed, we begin by making our notation
slightly more flexible. Consider the fusion space V c

a1...an
. As we have seen, the

fusion states are on the form

a2 a3

a1 b1 b2
. . .

an−1 an

bn−3 bn−2 c
. (5.21)

We shall sometimes write such states on the form of the standard basis states
of V c

1a1...an
, i.e. as

a1 a2

1 a1 b1
. . .

an−1 an

bn−3 bn−2 c
. (5.22)

The reason being that it is then simpler to represent braiding of a1 with a2.
This observation allows us to extend the fusion diagrams with trivial charges
when convenient.

In the following results, we use the convention of representing braid operators
in the smallest relevant part of the fusion space, as described in Section 5.2.
Extending the representation to any size of the fusion space involves duplicating
blocks depending on the charge sectors of the smaller space.

Lemma 5.3.1. In a general anyon model, in the standard basis of the fusion
space V c

a1···an
we have

ρ(σ1)ij = δijR
j
a1a2

⇐⇒ ρ(σ1) = Ra1a2 (5.23)

in the basis spanned by b1. The indices i and j range over the possible values
for b1.
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Proof. In the general case, the representation ρ(σ1) for the first generator σ1
that braids a1 with a2, is given by

ρ(σ1)

(
a1 a2

1 a1 b1
. . .

)
=

 a1 a2

1 a2 b1

. . .

 =
∑
g

[(
Bb1

1a1a2

)
ga2

(
a1 a2

1 g b1
. . .

)]
(5.24)

Since 1 fuses trivially we must have g = a1 and thus ρ(σ1) is one-dimensional
with

ρ(σ1) =
(
Bb1

1a1a2

)
a1,a2

=
∑
f

((
F−1

)b1
1a2a1

)
fa2

Rf
a1a2

(
F b1
1a1a2

)
a1f

= Rb1
a1a2

,

(5.25)
where the last equality follows from Lemma 4.3.1.

Remark 5.3.1. Above, ρ(σ1) is expressed in the basis for the reduced space
Va1a2 =

⊕
b1
V b1
a1a2

, having basis determined by the possible anyonic labels b1.
The full space V c

a1···an
has basis states determined by all the possible intermedi-

ate labels b1, . . . , bn−2 and we implicitly used the operator on the space reduced
to fusion states with only b1 as free intermediate charge.

Extending ρ(σ1) to the full space is straight forward: In order to determine
the action of ρ(σ1) on a given fusion state in the basis of the full fusion space it
suffices to consider the action of ρ(σ1) on the labels a1 and a2 in the given fusion
state. This information is precisely captured in the representation of ρ(σ1) in
the reduced basis. This results in repeating blocks in the matrix representing
ρ(σ1) when considering the basis of the full fusion space. This motivates the
slight abuse of notation.

This discussion applies to any braiding operator, and we shall often use
this abuse of notation, it should always be clear what part of the space that
the operator acts on. See Section 5.2 for further discussion of the braid group
representation. △

Lemma 5.3.2. In a general anyon model, consider the fusion space V c
a1···an

with the standard basis with intermediate charges b1, . . . , bn−1, then

ρ(σj) =
⊕

bj−2,bj

B
bj
bj−2ajaj+1

, (5.26)

Proof. Note that ρ(σj) is precisely the B-matrix applied appropriately,. . . aj aj+1

bj−2 e bj

. . .

 =
∑
bj−1

[(
B

bj
bj−2ajaj+1

)
bj−1e

(
. . .

aj aj+1

bj−2 bj−1 bj
. . .

)]
,

(5.27)
thus the result follows.

With the convention b0 = a1 and b−1 = 1, Lemma 5.3.2 subsumes Lemma 5.3.1,
and also the following result, which we state explicitly for convenience. Recall
that a denotes the antiparticle of a.
Lemma 5.3.3. In a general anyon model, consider the fusion space V 1

a1···an

with its standard basis (b1, . . . , bn−3) (note that c = 1 forces bn−2 = an), then

ρ(σn−1)ij = δijR
j
an−1an

, (5.28)
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acting on the bn−3-part of the space.

Proof. Since the result of the fusion is assumed to be the trivial particle 1, we
must have the indices as follows,

ρ(σn−1)

(
. . .

an−1 an

bn−3 an 1

)
=

. . . an−1 an

bn−3 an−1 1


=
∑
g

[(
B1

bn−3an−1an

)
gan−1

(
. . .

an−1 an

bn−3 g 1

)]
.

(5.29)

Since the last fusion reads g × an = 1 we must have g = an and thus

ρ(σn−1) =
(
B1

bn−3an−1an

)
anan−1

=
∑
f

((
F−1

)1
bn−3anan−1

)
fan−1

Rf
an−1an

(
F 1
bn−3an−1an

)
anf

= Rbn−3
an−1an

(5.30)

where the last equality follows from Lemma 4.3.1.

Remark 5.3.2. Note that ρ(σ1) and ρ(σn−1) are equal in the restricted ba-
sis, up to charge conjugation of the basis. Furthermore, note that if time is
reversed, the roles of ρ(σ1) and ρ(σ1)

−1 are interchanged. Reversing the fusion
in time means reading the fusion diagram from right/bottom to left/top. This
is an example of time reversal symmetry; time reversal corresponds to charge
conjugation, see [38]. △

Time reversal as charge conjugation is also simply manifested in the following
lemma, as a result of Lemma 5.3.1 and 5.3.3.

Lemma 5.3.4. In the standard basis the R matrix can be written as

a b

c
= Rc

ab

a b

c ⇐⇒
a b

1 b c

= Rc
ab

a b

1 a c
⇐⇒

a b

c a 1

= Rc
ab

a b

c b 1
.

(5.31)

5.4 Determining the exchange operator Up

Given any abstract anyon model, single out a non-trivial anyonic charge t and
consider exchange of a pair of anyons around p enclosed anyons. That is, con-
sider the fusion space Ṽtp+2 .

In the standard basis of Ṽtn , we can compute the braid group generators
ρn(σj) for j = 1, 2, . . . , n − 1 as shown in Section 5.3. The exchange operator
Up (as introduced in Section 2.3) is then

Up = ρn(σ1)ρn(σ2) · · · ρn(σp)ρn(σp+1)ρn(σp) · · · ρn(σ2)ρn(σ1). (5.32)

However, working in the standard basis is rather problematic for computing Up,
instead we change basis.
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With the F matrix we change basis from the standard basis to a basis where
the enclosed p anyons are fused. If p = 2 then we have

t
t t

t

a b

c

d e

=
∑
f

(
F d
btt

)
fc

t t t t

a b f d e
. (5.33)

This extends to arbitrary number p of enclosed particles by repeated application
of the F matrix. For any p ≥ 2 we can thus change basis from the standard
basis to the fused basis

t c t

a b d e
(5.34)

where c is the resulting charge of the fused enclosed p particles. More explicitly
that is

t t
· · ·

t t F7−→ c

c1

c2

c3

t

t

t
...

t t =:
t c t

(5.35)

The intermediate charge c depends on p such that c is a possible result of the
fusion t× t× · · · × t︸ ︷︷ ︸

p

. Explicitly that is

p = 0 =⇒ c = 1

p = 1 =⇒ c = t

p = 2 =⇒ c is a possible result of the fusion t× t

p = 3 =⇒ c is a possible result of the fusion t× t× t

...

(5.36)

This can be written as a decomposition of the fusion space

Ṽtp+2 =
⊕
c

V c
tp ⊗ Ṽtct. (5.37)

The braid Up acts only on the subspace Ṽtct. In particular, the braid corre-
sponding to Up does not depend on the intermediate charges c1, c2, . . . , cp−2.
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We are now ready to compute Up for general p,

Up

(
t c t

a b d e

)
=

t c t

a b d e

=
∑
f

(
Bd

act

)
fb

t c t

a f d e

=
∑
f

(
Bd

act

)
fb

∑
g

(
Be

ftt

)
gd

t c t

a f g e

=
∑
f

(
Bd

act

)
fb

∑
g

(
Be

ftt

)
gd

∑
h

(Bg
atc)hf

t c t

a h g e

.

(5.38)

Thus, we have the following theorem.

Theorem 5.4.1. In a given abstract anyon model, exchange of a pair of t-
anyons around p enclosed t-anyons is described by the exchange operator Up

given by
Up =

⊕
c

U1,c (5.39)

where U1,c denotes the exchange operator for two t anyons around one anyon
of type c, and c ranges over all possible total charges of the p enclosed anyons,
that is, the possible total charges c for the fusion space V c

tp . U1,c is given by

U1,c

(
t c t

a b d e

)
=

t c t

a b d e

=
∑
f,g,h

(
Bd

act

)
fb

(
Be

ftt

)
gd

(Bg
atc)hf

t c t

a h g e

.

(5.40)

5.5 Abelian representations: Abelian anyons
In this section we show how abelian anyons are modeled in the framework of
abstract anyon models. First, note that abelian anyons are characterized by
that each fusion has a unique result, i.e. fusion of a with b results in a unique
label c for all a and b,

a× b = c. (5.41)

As a consequence of this we have that any fusion space of abelian anyons is
trivial and one-dimensional. All intermediate charges are uniquely determined
by the simple fusion rules.



CHAPTER 5. ANYONIC BRAID GROUP REPRESENTATIONS 51

As a first example we shall see how bosonic and fermionic statistics fits
into the framework of abstract anyon models. In the computations, recall that
Rc

ab = Rc
ba. In this section we deviate from our convention and denote the

trivial particle by 0 and positive integers denote non-trivial label, the reason
being that fusion is defined as the sum of the labels.

Example 5.5.1 (Z(n)
2 ). Let the set of anyonic charges be Z2 = {0, 1}, the

trivial vacuum particle 0 and one non-trivial particle 1, with corresponding
fusion corresponding to addition in Z2, in particular

1× 1 = 0. (5.42)

Since the fusion spaces are trivial, we take F a+b+c
abc = 1 for all a, b and c. Thus,

the pentagon equation Eq. (4.35) is trivial and the hexagon equation Eq. (4.36)
reduces to

Rg
ac

(
F d
bac

)g
e
Re

ab =
∑
f

(
F d
bca

)g
f
Rd

af

(
F d
abc

)f
e

⇐⇒ Ra+c
ac Ra+b

ab =
∑
f

Ra+b+c
af .

(5.43)

We have d = a+ b+ c from the F symbol
(
F d
bac

)
, this gives a+ f = a+ b+ c,

i.e. f = b+ c. The hexagon equation is thus reduced to

Ra+c
ac Ra+b

ab = Ra+b+c
a,(b+c). (5.44)

Since Ra+b
ab = 1 if a or b equals 0, the only non-trivial case is

R0
11R

0
11 = 1 ⇐⇒ R0

11 = ±1. (5.45)

Thus, the chosen model, i.e. charges and fusion modeled by Z2 gives two distinct
abelian anyon models which we parametrize by n = 0, 1 so that we have

R0
11 = einπ. (5.46)

We denote these two models by Z(n)
2 for n = 0, 1. In conclusion, we see that

fermionic statistics are modeled by Z(1)
2 . Similarly, bosonic statistics is modeled

by Z(0)
2 . ♢

In the above example we considered fusion modeled by Z2 and saw that
this gives rise to two distinct models. Before stating the general result, we first
extend the example to see more clearly how the hexagon equation determines
the R matrices.
Example 5.5.2 (Z(n)

3 ). Let fusion be modeled on Z3, so that the charge label
set is Z3 = {0, 1, 2} and fusion is given by addition modulo 3,

a× b = [a+ b]3. (5.47)

The only non-trivial instances of the hexagon equation are(
R2

11

)2
= R0

12(
R2

12

)2
= R2

11(
R1

22

)2
= R2

12

R2
11R

0
12 = 1

R0
12R

1
22 = 1.

(5.48)
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The first two equations combined give
(
R2

11

)3
= 1 ⇐⇒ R2

11 = ei2πn/3. Each of
the three solutions for R2

11, corresponding to n = 0, 1, 2 give a solution for R2
12

and R1
22. This gives rise to three distinct models:

• Z(0)
3 : The trivial solution Ra+b

ab ≡ 1 for all a, b.

• Z(1)
3 : Take R2

11 = ei2π/3, the fourth equation gives R0
12 = ei4π/3 and the

fifth equation gives R1
22 = ei2π/3.

• Z(2)
3 : Take R2

11 = ei4π/3, the fourth equation gives R0
12 = ei2π/3 and the

fifth equation gives R1
22 = ei2π/3.

The possible solutions can be compactly written as

Ra+b
ab = ei

2πn
3 ab (5.49)

♢

Indeed, the more general result holds, discussed further in [4], motivating
the following definition.

Definition 5.5.1. The abelian model Z(n)
N is given by taking the charge label

set to be ZN and fusion given by addition modulo N ,

a× b = [a+ b]N . (5.50)

In this model we have

F a+b+c
abc ≡ 1 (5.51)
Ra+b

ab = ei
2πn
N ab. (5.52)

By Definition 4.5.1 we thus have

Ba+b+c
abc = Rb+c

bc , (5.53)

note that the left charge a does not enter the expression.

Consider Z(n)
N and the fusion space Ṽ1m which now is one-dimensional con-

taining one standard fusion state

1 1

a a+ 1 a+ 2
. . .

1 1

a+m− 1 a+m a+m+ 1
(5.54)

where a is any charge in ZN representing the fact that the m considered anyons
may be part of a larger set of anyons. In Lemma 5.3.2 we showed

ρ(σj) = B
bj
bj−2ajaj+1

. (5.55)

Equations (5.52) and (5.53) reduces this to

ρ(σj) = R2
11 = ei

2πn
N (5.56)

for all j. This precisely models abelian anyons with anyonic phase α = 2n
N , i.e.

any fractional phase. What we have obtained here precisely corresponds to the
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discussion of abelian anyons in Section 3.3.1 which was treated before we had
the general framework of abstract anyon models.

Furthermore, in the fusion space Ṽ1m of the Z(n)
N model, the exchange oper-

ator Up is

Up = ρ(σ1)ρ(σ2) · · · ρ(σp)ρ(σp+1)ρ(σp) · · · ρ(σ2)ρ(σ1)

= (ρ(σ1))
2p+1

= ei(2p+1)α.
(5.57)

Theorem 5.4.1 is clearly not needed in the abelian case, we instantly have all
information of Up. However, Theorem 5.4.1 still applies, first change basis to
the fused basis

1 1

a a+ 1 a+ 2
· · ·

1 1

a+ p+ 1 a+ p+ 2 a+ p+ 3

F7−→
1 p 1

a a+ 1 a+ p+ 1 a+ p+ 2

(5.58)

and Theorem 5.4.1 gives

Up

(
1 c 1

a b d e

)
=
∑
f

(
Bd

act

)
fb

∑
g

(
Be

ftt

)
gd

∑
h

(Bg
atc)hf

1 c 1

a h g e
. (5.59)

As we’ve seen, the intermediate charges play no role, indeed the fusion space is
one-dimensional. In the Z(n)

N -model, this expression for Up immediately reduces
to

Up = Rc1R11R1c = eipαπeiαπeipαπ = ei(2p+1)απ (5.60)

as expected.



Chapter 6

Fibonacci anyons

The Fibonacci anyon model is one of the simplest non-abelian anyon models
containing all the interesting features of non-abelian anyons. It is commonly
studied as a prototypical example of non-abelian anyons. Another common
model is the Ising model, however Ising anyons cannot be used for general
quantum computation.

The Fibonacci anyon model which is studied in Chapter 6 has support from
the topological quantum field theory SU(2)3 Chern-Simons-Witten (CSW) [38,
19]. In this state there will be additional abelian phases present, which do not
occur in the model that we shall describe in this chapter. These additional
abelian phases may have physical consequences for some experiments, but they
are not of interest for the higher-dimensional non-abelian representation, which
is what we are primarily interested in.

This chapter is partly based on [44, 19, 51]. The literature is rather vague
on deriving the properties of Fibonacci anyons, in this chapter we spelled out
the details more clearly.

6.1 Preliminaries
The Fibonacci anyon model consists of two particle types, 1 (the mandatory
trivial particle type) and τ (non-trivial) with the corresponding fusion rules

1× 1 = 1, 1× τ = τ × 1 = τ, τ × τ = 1 + τ. (6.1)

Furthermore, τ is its own anti-particle τ . We shall refer to the τ anyon as
Fibonacci anyons.

As we shall now see, the dimension of the fusion space of n Fibonacci anyons
grows as the Fibonacci numbers as n increases. Thus motivating the name of
the model. First, recall the definition of the Fibonacci numbers.

Definition 6.1.1. The n:th Fibonacci number Fib(n) is defined by the recur-
rence relation

Fib(0) = 0

Fib(1) = 1

Fib(n) = Fib(n− 1) + Fib(n− 2).

(6.2)

For example:

54
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n −3 −2 −1 0 1 2 3 4 5 6 7

Fib(n) 2 −1 1 0 1 1 2 3 5 8 13

Furthermore, we have the closed-form formula

Fib(n) = φn − (−φ)−n

√
5

(6.3)

where φ = 1+
√
5

2 is the golden ratio

φ = lim
n→∞

Fib(n+ 1)

Fib(n) . (6.4)

Consider the fusion spaces V 1
τn , where τn denotes n repetitions of τ . This

is the space of possible fusions of n Fibonacci anyons, having total charge 1.
Writing out the canonical basis for these spaces we find

V 1
τ2 :

{
τ τ

1 τ 1

}

V 1
τ3 :

{
τ τ τ

1 τ τ 1

}

V 1
τ4 :

{
τ τ τ τ

1 τ 1 τ 1
,

τ τ τ τ

1 τ τ τ 1

}

V 1
τ5 ≃ Ṽτ :

{
τ τ τ τ τ

1 τ 1 τ τ 1
,

τ τ τ τ τ

1 τ τ 1 τ 1
,

τ τ τ τ τ

1 τ τ τ τ 1

}

≃

{
τ

1 τ
,

τ

τ 1
,

τ

τ τ

}

V 1
τ6 ≃ Ṽτ2 :

{
τ τ τ τ τ τ

1 τ 1 τ 1 τ 1
,

τ τ τ τ τ τ

1 τ 1 τ τ τ 1
,

τ τ τ τ τ τ

1 τ τ τ 1 τ 1
,

τ τ τ τ τ τ

1 τ τ 1 τ τ 1
,

τ τ τ τ τ τ

1 τ τ τ τ τ 1

}

≃

{
τ τ

1 τ 1
,

τ τ

1 τ τ
,

τ τ

τ τ 1
,

τ τ

τ 1 τ
,

τ τ

τ τ τ

}
.

(6.5)

Note that V 1
τn ≃ Ṽτn−4 in the sense that the two τ anyons on the left and right

side in V 1
τn give all possible charge sectors for Ṽτn−4 . Continuing this list is

straight forward. Note that the bottom line in the fusion diagrams of the fusion
states in the bases can be seen as strings of τ and 1, having 1τ at the start and
τ1 at the end. Furthermore, the string is subject to the condition that 1 may
not be followed by 1. Indeed, 1 on the bottom row fuses with τ from the top,
to give τ . We now make this more precise.

Definition 6.1.2. A Fibonacci string of length n on two symbols, say 1 and τ ,
is a string of length n on the symbols 1 and τ subject to the condition that 1
may not be followed by 1.
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There are two Fibonacci string of length one, namely 1 and τ , of length two
we have three Fibonacci strings, 1τ, τ1, ττ , etc. Note that the free charge labels,
marked in bold in the above fusion states, are precisely Fibonacci strings. Let
fn denote the number of Fibonacci strings of length n. We then have

dimVτn = dimV 1
τn + dimV τ

τn = fn−3 + fn−2 = fn−1

dim Ṽτn = fn+1.
(6.6)

The following result determines the number fn.
Lemma 6.1.1. The number fn of Fibonacci strings of length n is Fib(n + 2),
where Fib(n) denotes the n:th Fibonacci number.
Proof. Let fn denote the number of Fibonacci strings of length n, and let fan
denote the number of Fibonacci strings of length n ending with a, where a = 1, τ .
We then have fn = f1n + fτn . This, together with the definition of Fibonacci
strings gives

fn+1 = f1n+1 + fτn+1

= fτn +
(
f1n + fτn

)
=
(
fτn + f1n

)
+
(
f1n−1 + fτn−1

)
= fn + fn−1.

(6.7)

This is precisely the recursion relation for the Fibonacci numbers. Finally, initial
values f1 = 2, f2 = 3 shows that

fn = Fib(n+ 2). (6.8)

We can now use this to characterize the dimension of fusion spaces.
Lemma 6.1.2. The dimension of the fusion space with n Fibonacci with dif-
ferent charge sectors is given by

dimV 1
τn = Fib(n− 1)

dimV τ
τn = Fib(n)

dimVτn = Fib(n+ 1)

dim Ṽτn = Fib(n+ 3)

(6.9)

Proof. The first equality follows from

dimV 1
τn = fn−3 = Fib((n− 3) + 2) = Fib(n− 1). (6.10)

Next,
dimV τ

τn = dimV 1
τn+1 = Fib(n). (6.11)

Next,
dimVτn =dim

(
V 1
τn ⊕ V τ

τn

)
=dimV 1

τn + dimV τ
τn

=Fib(n− 1) + Fib(n)
=Fib(n+ 1).

(6.12)

Finally,
dim Ṽτn = fn+1 = Fib((n+ 1) + 2) = Fib(n+ 3). (6.13)
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The above approach, using Fibonacci strings, reveals how the possible in-
termediate charges determine how the Fibonacci fusion space grows. A more
direct approach is to identify the labels 1 and τ by the vectors

1 ≡
(
1
0

)
, τ ≡

(
0
1

)
. (6.14)

We can then represent fusion with τ by the matrix(
0 1
1 1

)
(6.15)

so that
τ × 1 =

(
0 1
1 1

)(
1
0

)
=

(
0
1

)
= τ

τ × τ =

(
0 1
1 1

)(
0
1

)
=

(
1
1

)
= 1 + τ.

(6.16)

It is easy to verify that(
0 1
1 1

)n

=

(
Fib(n− 1) Fib(n)

Fib(n) Fib(n+ 1)

)
(6.17)

We can now use this to determine fusion of n Fibonacci anyons,(
0 1
1 1

)n(
1
0

)
=

(
Fib(n− 1)

Fib(n)

)
(6.18)

i.e.
τn = Fib(n− 1)1 + Fib(n)τ. (6.19)

This counts the dimension of the fusion spaces V 1
τn and V τ

τn , respectively, in
agreement with Lemma 6.1.2.

As we have seen in Chapter 4, an anyon model is determined by the corre-
sponding F - and R-matrices. We continue determining these operators for the
case of Fibonacci anyons.

6.2 Determining the model: Computing the F
and R matrices

As a consequence of Lemma 4.3.1, the only non-trivial F -matrix is F τ
τττ and

F τ
τττ . Similarly the only non-trivial R-matrix is Rττ . Indeed, Rτ1 and R1τ

describes braiding of τ with the vacuum 1, i.e. there really is no braiding. To
simplify the notation, we define Fτ := F τ

τττ and F1 := F 1
τττ . The latter is one

dimensional, F1 = (F1)ττ , because the only allowed intermediate charge e in
the corresponding fusion diagram

τ τ

τ e 1
(6.20)

is e = τ . Next, it follows from the pentagon equation 4.35 that (F1)ττ = 1.



CHAPTER 6. FIBONACCI ANYONS 58

To determine Fτ , note that the pentagon equation 4.35 thus reduces to

(Fc)da (Fa)cb =
∑
e

(Fd)ce (Fe)db (Fb)ea (6.21)

where e ranges over the possible intermediate charges, determined by a, b, c and
d. Let b = c = 1 and a = d = τ , then e = τ and we have

(F1)ττ (Fτ )11 = (Fτ )1τ (Fτ )τ1 (F1)ττ
⇐⇒ F11 = F1τFτ1.

(6.22)

We choose Fτ to be unitary, thus it is on the form

Fτ =

(
aeiα beiβ

eiθbe−iβ −eiθaei−α

)
(6.23)

for α, β, θ ∈ [0, 2π) and a2 + b2 = 1. Thus, Eq. (6.22) can be written as

aeiα = b2. (6.24)

This immediately implies α = 0 and

a = b2 = 1− a2 =⇒
{
a = φ−1 =

√
5−1
2

b = φ−1/2
(6.25)

where φ is the golden ratio. It turns out that β is not fixed by the pentagon
equation, but can be set to zero as a phase convention [44]. Thus we have

Fτ =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
.

Similarly, the hexagon equation 4.36 reduces to

Rc
ττFcaR

a
ττ = Fc1F1a + FcτRττ τFτa (6.26)

which is solved by using the obtained value for Fτ as [51]

R1
ττ = e4πi/5, Rτ

ττ = e−3πi/5, (6.27)

or with the signs of the exponents reversed, corresponding to interchanging
clockwise and anti-clockwise braiding.

In conclusion,

Rττ =

(
R1

ττ 0

0 Rτ
ττ

)
=

(
e4πi/5 0

0 e−3πi/5

)
,

Fτττ =

(
F 11
τττ F 1τ

τττ

F τ1
τττ F ττ

τττ

)
=

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
.

(6.28)

For convenience, when discussing Fibonacci anyons, let

F := Fτττ , R := Rττ , B := F−1RF. (6.29)
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6.3 Braiding of Fibonacci anyons
In this section we shall compute the braid group generators for various number
of Fibonacci anyons. Ultimately, we shall compute ρ(σj) for V 1

τn . Having trivial
total charge represents the fact that we have exactly n Fibonacci anyons. If the
total charge would be τ , there would really be n+1 Fibonacci anyons available.
As we shall see, there will be some subtleties regarding different charge sectors,
i.e. different total charge, when considering braiding of intermediate τ anyons
in V 1

τn . We begin with some elementary examples.
Recall the decomposition

Va1···an =
⊕
c

V c
a1···an

, (6.30)

in particular
Vτn = V 1

τn ⊕ V τ
τn . (6.31)

6.3.1 Prototypical examples
Example 6.3.1 (Braiding in Vτ2). The two charge sectors of Vτ2 have the
standard basis

V 1
ττ = span

{
τ τ

1 τ 1

}
, V τ

ττ = span
{

τ τ

1 τ τ

}
. (6.32)

That is, the fusion space Vτ2 is two-dimensional and we denote the ordered basis
by {1, τ}. Since there is only two τ -anyons, there is only one generator for the
braid group, σ1. We compute ρ(σ1) by considering its action on the standard
fusion states,

ρ(σ1)
τ τ

1 τ 1
=

τ τ

1 τ 1

= R1
ττ

τ τ

1 τ 1

ρ(σ1)
τ τ

1 τ τ
=

τ τ

1 τ τ

= Rτ
ττ

τ τ

1 τ τ
.

(6.33)

Thus we have

ρ(σ1)11 = R1
ττ

ρ(σ1)1τ = 0

ρ(σ1)ττ = Rτ
ττ

ρ(σ1)τ1 = 0

 ⇐⇒ ρ(σ1) =

(
R1

ττ 0
0 Rτ

ττ

)
. (6.34)

This also follows immediately from Lemma 5.3.1. ♢

Example 6.3.2 (Braiding in Vτ3). The two charge sectors of Vτ3 have the
standard basis

V 1
τττ = span

{
τ τ τ

1 τ τ 1

}
, V τ

τττ = span
{

τ τ τ

1 τ 1 τ
,

τ τ τ

1 τ τ τ

}
. (6.35)
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That is, the fusion space Vτ3 is three-dimensional, and we denote the ordered
basis by {τ1, 1τ, ττ}. Since there are three τ -anyons, there are two generators
for the braid group, σ1 and σ2. Lemma 5.3.1 gives

ρ(σ1)(τ1),(τ1) = Rτ
ττ

ρ(σ1)(1τ),(1τ) = R1
ττ

ρ(σ1)(ττ),(ττ) = Rτ
ττ

ρ(σ1)i,j = 0 for i ̸= j.

(6.36)

In matrix form that is

ρ(σ1) =

Rτ
ττ

R1
ττ

Rτ
ττ

 = Rτ
ττ ⊕R. (6.37)

The empty entries in the matrix are zero, we shall use this convention throughout
the thesis, to make the notation less cluttered.

Lemma 5.3.3 gives
ρ(σ2)(τ1),(τ1) = Rτ

ττ . (6.38)

We compute ρ(σ2) for the τ -charge sector by considering its action on the stan-
dard fusion states

ρ(σ2)
τ τ τ

1 τ 1 τ
=

τ τ τ

1 τ 1 τ

= (Bτ
τττ )11

τ τ τ

1 τ 1 τ
+ (Bτ

τττ )τ1
τ τ τ

1 τ τ τ
,

ρ(σ2)
τ τ τ

1 τ τ τ
=

τ τ τ

1 τ τ τ

= (Bτ
τττ )1τ

τ τ τ

1 τ 1 τ
+ (Bτ

τττ )ττ
τ τ τ

1 τ τ τ
.

(6.39)

Thus we have
ρ(σ2)(1τ),(1τ) = (Bτ

τττ )11
ρ(σ2)(1τ),(ττ) = (Bτ

τττ )1τ
ρ(σ2)(ττ),(1τ) = (Bτ

τττ )τ1
ρ(σ2)(ττ),(ττ) = (Bτ

τττ )ττ .

(6.40)

In matrix form that is

ρ(σ2) =

Rτ
ττ

B11 B1τ

Bτ1 Bττ

 = Rτ
ττ ⊕B. (6.41)

♢

Example 6.3.3 (Braiding in V 1
τ4). Consider V 1

τ4 , this is the smallest non-trivial
proper fusion space, having dimension two. The fusion space is proper in the
sense that the there is only one charge sector and it is the trivial (vacuum) charge
sector. That is, there are really only 4 Fibonacci anyons. The following result
determines the braid group representation by exchange of Fibonacci anyons in
the standard basis of V 1

τ4 . This shall be used in the discussion of topological
quantum computation with Fibonacci anyons in Section 7.2. ♢
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Proposition 6.3.1. The representation of the braid group generators deter-
mined by V 1

τ4 in the standard basis is

ρ(σ1) = R, ρ(σ2) = B, ρ(σ3) = R. (6.42)

Proof. Lemma 5.3.1 gives

ρ(σ1) = Bτ
1ττ = Rττ =

(
R1

ττ 0
0 Rτ

ττ

)
. (6.43)

Lemma 5.3.2 gives

ρ(σ2)ij = (Bτ
τττ )ij =

∑
f

((
F−1

)τ
τττ

)
fi
Rf

ττ (F
τ
τττ )jf (6.44)

i.e.
ρ(σ2) = F−1RF =: B. (6.45)

Finally, Lemma 5.3.3 gives

ρ(σ3)ij = δijR
j
ττ =⇒ ρ(σ3) = Rττ (6.46)

since τ is its own antiparticle, τ = τ .

6.3.2 General braiding in Ṽτn

Recall the discussion of charge sectors from Section 5.1. Since we cannot, in
general, restrict the fusion space to a fixed charge sector, we shall compute the
braid group generators in all charge sectors for two, three and four τ anyons.
That is, we shall compute ρn(σj) in Ṽτn for n = 2, 3, 4. (This notation was
introduced in Definitions 5.1.1 and 5.2.1.) These examples give important in-
sights of how the braid representation grows with the number of anyons, but
most importantly these braids shall later be crucial when determining Up in
Theorem 6.4.1.

Example 6.3.4 (Braiding in Ṽτ2). The fusion space Ṽτ2 has standard basis{
valid intermediate charges abc in

τ τ

a b c

}
≡
{
1τ1, 1ττ, ττ1,

τ1τ,
τττ

}
,

(6.47)
grouped into the four charge sector, 11, 1τ , τ1 and ττ , respectively, where the
first symbol denotes the left charge sector and the right symbol denotes the
right charge sector.. From Lemma 5.3.2 we have

ρ2(σ1) = Bc
aττ ⇐⇒ ρ2(σ1)ij = (Bc

aττ )ij (6.48)

where the indices i and j run over the given basis element. In the above given
order of the basis fusion states the B-matrix is block diagonal. That is, in the
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obvious identification of the fusion space with C5 we have

ρ2(σ1) =


(B1

1ττ )ττ
(Bτ

1ττ )ττ
(B1

τττ )ττ
(Bτ

τττ )11 (Bτ
τττ )1τ

(Bτ
τττ )τ1 (Bτ

τττ )ττ



=


R1

ττ

Rτ
ττ

Rτ
ττ

B11 B1τ

Bτ1 Bττ


= R1

ττ ⊕Rτ
ττ ⊕Rτ

ττ ⊕B.

(6.49)

♢

Example 6.3.5 (Braiding in Ṽτ3). Next, taking a third Fibonacci anyon τ into
account gives the fusion space Ṽτ3 with standard basis

valid intermediate charges

abcd in
τ τ τ

a b c d

 ≡

1ττ1,
1τ1τ,
1τττ,

τ1τ1,
τττ1,

τ1ττ,
ττ1τ,
ττττ

 . (6.50)

Again, we have grouped the states by charge sectors. In this order of the basis
we have

ρ3(σ1) = Rτ
ττ ⊕ R ⊕B ⊕

B11 B12

Rτ
ττ

B21 B22


ρ3(σ2) = Rτ

ττ ⊕B ⊕ R ⊕

Rτ
ττ

B11 B1τ

Bτ1 Bττ


♢

Example 6.3.6 (Braiding in Ṽτ4). In the ordered basis


valid intermediate charges

abcde in
τ τ τ τ

a b c d e

 ≡


1τ1τ1,
1τττ1,

1τ1ττ,
1ττ1τ,
1ττττ,

τ1ττ1,
ττ1τ1,
ττττ1,

τ1τ1τ,
τ1τττ,
τττ1τ,
ττ1ττ,
τττττ


(6.51)

we have

ρ4(σ1) =

(
R1

ττ

Rτ
ττ

)
⊕

R1
ττ

Rτ
ττ

Rτ
ττ

⊕

⊕

B11 B1τ

Rτ
ττ

Bτ1 Bττ

⊕


B11 B12

B11 B12

Rτ
ττ

B21 B22

B21 B22


(6.52)
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ρ4(σ2) =

(
B11 B1τ

Bτ1 Bττ

)
⊕

B11 B1τ

Rτ
ττ

Bτ1 Bττ

⊕

⊕

Rτ
ττ

B11 B1τ

Bτ1 Bττ

⊕


R1

ττ

Rτ
ττ

Rτ
ττ

B11 B12

B21 B22


(6.53)

ρ4(σ3) =

(
R1

ττ

Rτ
ττ

)
⊕

Rτ
ττ

B11 B1τ

Bτ1 Bττ

⊕

⊕

Rτ
ττ

R1
ττ

Rτ
ττ

⊕


B11 B1τ

Bτ1 Bττ

B11 B1τ

Rτ
ττ

Bτ1 Bττ


(6.54)

Note that in this order of the basis, the last block of ρ4(σ2) is precisely
ρ2(σ1). Indeed, basis elements in the ττ -sector is ordered by the internal charge
sectors. ♢

Remark 6.3.1. As is clearly manifested in the three examples, the represen-
tation of the braid group generators is always split into four blocks, one block
for each two-sided charge sector, 11, 1τ, τ1 and ττ . These blocks will always
be disjoint since there is no way of transforming between them. Compare with
the decomposition Vab =

⊕
c V

c
ab. The dimension of each of these blocks grows

as the Fibonacci numbers because the basis states in each block are Fibonacci
strings of 1’s and τ ’s, essentially of length n− 3, n− 2, n− 2, n− 1 respectively
(disregarding the fixed labels due to charge sectors). Thus, by Lemma 6.1.1 we
have that the dimension of ρn(σj) for n Fibonacci anyons is given by

dim ρn(σj) = Fn−1 + Fn︸ ︷︷ ︸
Fn+1

+Fn + Fn+1︸ ︷︷ ︸
Fn+2

= Fn+3 = dim Ṽτn . (6.55)

△

This can be continued to compute ρn(σj) in Ṽτn for any n and j. This is
done programmatically in Appendix A.

6.3.3 Spectrum of ρn(σj)

Theorem 6.3.2. The spectrum without multiplicities of the representation of
the braid group generator ρn(σj) is independent of n and j and given by

spec(ρn(σj)) =
{
R1

ττ , R
τ
ττ

}
. (6.56)

Proof. From Lemma 2.3.1 we have that the all braid group generators σj are
conjugate, this translates to that the corresponding representations ρn(σj) are
similar for fixed n. That is, for fixed n there exists an invertible matrix A such
that

ρn(σj+1) = Aρn(σj)A
−1. (6.57)
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(In particular we have A = ρn(σj)ρn(σj+1) from the proof of Lemma 2.3.1.)
Thus, the eigenvalues of ρn(σj) are independent of j. Fix j = 1, the represen-
tation ρn(σ1) of σ1 acts on Ṽτn with basis elements

τ τ

b1 b2 b3
· · ·

τ τ

bn−1 bn bn+1

. (6.58)

However, only the labels b1, b2, b3 enter in the expression for ρn(σ1), thus it is
really only the space Ṽτ2 with basis elements

τ τ

b1 b2 b3
(6.59)

that ρn(σ1) acts on. Thus, as discussed in Remark 5.3.1, as n increases the
matrix ρn(σ1) increases and gets repeated blocks. These repeated blocks give
no new eigenvalues (but give increased multiplicity for the existing eigenvalues).
Thus, the spectrum of ρn(σ1) is independent of n, not counting multiplicities.

To sum up, the spectrum of ρn(σj), not counting multiplicities, is indepen-
dent of both n and j. Thus, we can compute the spectrum from the special case
ρ2(σ1), computed in Example 6.3.4.

Remark 6.3.2. This theorem trivially generalizes to any anyon model. How-
ever, the specific eigenvalues are of course different. △

6.4 Exchange operator Up and statistical repul-
sion

Consider the fusion space Ṽτn and exchange of a pair of anyons, j and k, around
p enclosed anyons, j+1, j+2, . . . , k− 1. We shall use Section 5.4, in particular
Theorem 5.4.1, to compute Up for general p for Fibonacci anyons. As discussed
in Section 5.2, the dimension of the representation of the braid group depends
on the number of considered anyons, in the case of Fibonacci anyons we saw in
Remark 6.3.1 that the dimension of Ṽτn increases as the Fibonacci numbers as
n increases. If considering a fusion space with more particles than what enters
the represented braid, the braid operator will simply get repeated blocks. Thus,
we shall represent Up in the fusion space Ṽp+2. This is sufficient to compute the
spectrum. Furthermore, representing Up in a higher-dimensional fusion space is
in principle straight forward and described in full generality in Section 5.2.

Theorem 6.4.1. Exchange of a pair of τ anyons around p enclosed τ anyons
introduces a non-abelian anyonic phase Up, given by

U0 = ρ2(σ1)

U1 = ρ3(σ1)ρ3(σ2)ρ3(σ1)

Up = U
⊕ Fib(p−1)
0 ⊕ U

⊕Fib(p)
1 , p ≥ 2

(6.60)

expressed in the fused basis Eq. (5.35), and the expression for Up is written in
a basis ordered so that all repeating blocks align nicely. The braid generators
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ρn(σj) are computed in Examples 6.3.4 and 6.3.5. Explicitly that is

U0 = R1
ττ ⊕Rτ

ττ ⊕Rτ
ττ ⊕B

U1 = (Rτ
ττ )

3 ⊕ (RBR)⊕ (BRB)⊕

⊕

Rτ
ττ (B11)

2
+B12B21B22 B12B21R

τ
ττ B12 (B22)

2
+B11B12R

τ
ττ

B12B21R
τ
ττ B11 (R

τ
ττ )

2
B12B22R

τ
ττ

B21 (B22)
2
+B11B21R

τ
ττ B21B22R

τ
ττ (B22)

3
+B12B21R

τ
ττ


(6.61)

Proof. The braid corresponding to U0 is given by Theorem 5.4.1 with c = 1.
That is, (using Lemma 4.5.1)

τ 1 τ

a b b e

=
∑
g

(Be
aττ )bg

τ 1 τ

a g g e

⇐⇒

τ τ

a b e

=
∑
g

(Be
aττ )bg

τ τ

a g e

(6.62)

This braid is computed as ρ2(σ1) in Example 6.3.4.
Similarly, the braid corresponding to U1 is given by Theorem 5.4.1 with

c = τ and is computed as ρ3(σ1)ρ3(σ2)ρ3(σ1) in Example 6.3.5.
Finally, for p ≥ 2 the possible values for c, i.e. the possible results from fusion

of p Fibonacci anyons, are 1 and τ . Furthermore, in the fused basis Eq. (5.35)
the exchange operator Up does not mix c, only the intermediate charges may
be mixed when braiding. Since the two possible values for c are accounted for
in U0 and U1, we conclude that U2 = U0 ⊕ U1. Next, Lemma 6.1.2 shows that
fusion of p anyons result in 1 in Fib(p − 1) ways and τ in Fib(p) ways. Thus,
we conclude

Up = U
⊕ Fib(p−1)
0 ⊕ U

⊕ Fib(p)
1 . (6.63)

From this we have

dimUp = dim(U0)Fib(p− 1) + dim(U1)Fib(p)
= 5Fib(p− 1) + 8Fib(p)
= 5 (Fib(p− 1) + Fib(p)) + 3Fib(p)
= 5Fib(p+ 1) + 3Fib(p)
= 3Fib(p+ 2) + 2Fib(p+ 1)

= 2Fib(p+ 3) + Fib(p+ 2)

= Fib(p+ 4) + Fib(p+ 3)

= Fib(p+ 5)

(6.64)

in agreement with Remark 6.3.1, since n = p+ 2.
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Re

Im

• e
iπ/5

•
e−iπ/5

•ei4π/5

•
e−3iπ/5

Figure 6.1: Eivenvalues of Up for Fibonacci anyons on the complex unit circle.

Remark 6.4.1. The fact that Up only gets repeated blocks for p for p ≥ 2
is due to the fact that fusion of p anyons of type τ always results in 1 or τ .
However, if we consider an anyon model with fusion rules

t× t = a, t× a = t (6.65)

so that
t× t× t = t (6.66)

then U2 and U3 are different, since the intermediate charge c is different. △

We now have an explicit expression for the exchange operator Up, allowing
us to compute the spectrum for Up.

Corollary 6.4.2. The eigenvalues of Up for Fibonacci anyons are

σ(Up) =


ei4π/5 with multiplicity Fib(p+ 3),
eiπ/5 with multiplicity 2Fib(p),
e−iπ/5 with multiplicity 3Fib(p),
e−i3π/5 with multiplicity 3Fib(p− 1)

 , (6.67)

c.f. Fig. 6.1.

Note that this expression is valid for all p ≥ 0 since Fib(p) is defined also
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for negative p. In particular we have

σ(U0) =


ei4π/5 mult. 2,
eiπ/5 mult. 0,
e−iπ/5 mult. 0,
e−i3π/5 mult. 3

 , (6.68)

σ(U1) =


ei4π/5 mult. 3,
eiπ/5 mult. 2,
e−iπ/5 mult. 3,
e−i3π/5 mult. 0

 , (6.69)

σ(U2) =


ei4π/5 mult. 5,
eiπ/5 mult. 2,
e−iπ/5 mult. 3,
e−i3π/5 mult. 3

 . (6.70)

Proof. Since Up consists of repeated blocks, it suffices to compute the eigenvalues
for each block, multiplied by the number of occurrences for each block to get
the multiplicities. Note that B = F−1RF is similar to R. The multiplicity for
ei4π/5 is 2Fib(p−1)+3Fib(p) = Fib(p+3), the other multiplicities are straight
forward.

Remark 6.4.2 (Consequences for statistical repulsion.). In Chapter 3 we showed
the connection between eigenvalues for the exchange operator and bounds for
the kinetic energy. In essence, the eigenvalue of Up closest to 1 along the com-
plex unit circle gives this energy bound. We thus see that simple exchange of
two Fibonacci τ -anyons have a higher corresponding kinetic energy than ex-
change of two τ -anyons around p ≥ 1 τ -anyons. In particular, for p ≥ 1 the
exchange operator Up has the eigenvalue e±iπ/5 closest to 1, corresponding to
a kinetic energy on the circle proportional to λ20 = (1/5)2 and for p = 0 we
get λ20 = (3/5)2. However, for this interpretation to be valid the wave function
must adjust to minimize the energy in configurations of this type. This is a
difficult problem, also for abelian anyons, see [31]. △

6.5 Quantum dimension and fusion probabilities
As discussed in detail in [44], the quantum dimension da of an anyon of type a
is the rate of growth in dimension of the fusion space V 1

an as n grows. Explicitly
that is

da = lim
n→∞

dim
(
V 1
an+1

)
dim (V 1

an)
. (6.71)

For Fibonacci anyons we thus have

dτ = lim
n→∞

dim
(
V 1
τn+1

)
dim (V 1

τn)
= lim

n→∞

Fib(n)
Fib(n− 1)

= φ (6.72)

and d1 = 1.
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Recall from Section 6.1 that fusion with a τ anyon can be represented as the
matrix (

0 1
1 1

)
(6.73)

which we call the Fibonacci matrix. It acts on

1 ≡
(
1
0

)
, τ ≡

(
0
1

)
. (6.74)

Thus, fusion with τ can be seen as a Markov process where the transition ma-
trix is precisely the matrix giving fusion with τ . The corresponding stationary
states of the Markov process is given by the eigenvectors. The characteristic
polynomial of the Fibonacci matrix is∣∣∣∣−λ 1

1 1− λ

∣∣∣∣ = λ2 − λ− 1 = 0 ⇐⇒ λ =
1±

√
5

2
= φ or −φ−1. (6.75)

Note the resemblance to the fusion rule, if we replace charge labels by the
corresponding quantum dimension we get

τ × τ = 1 + τ =⇒ d2τ = 1 + dτ ⇐⇒ dτ =
1±

√
5

2
= φ or −φ−1. (6.76)

The eigenvectors of the Fibonacci matrix corresponding to eigenvalues φ and
−φ−1 are (

1
φ

)
,

(
1

−φ−1

)
(6.77)

respectively. This represent the steady state distribution of anyons of type 1
and τ , corresponding to the first and second component respectively, in the limit
of fusion with τ anyons an infinite number of times. The first eigenvector gives
the first steady state. We read off the probabilities of getting 1 or τ as a result
from this infinite fusion as

P (1) =
1

1 + φ
= φ−2 ≈ 0.38, P (τ) =

φ

1 + φ
= φ−1 ≈ 0.62. (6.78)

The second eigenvector is non-physical, since it has a negative component.
That the quantum dimension dτ = φ of τ is irrational illustrates the fact that

the fusion space has no decomposition as a tensor product of subsystems. That
is, the dimension of the fusion space does not increase by an integer factor when
one more Fibonacci anyon is added, hence there is no part of the fusion space
that can be factored out which describes one single particle. Indeed, if we have
independent particles, such that each particle can be associated with a Hilbert
space h, then the total Hilbert space of n such particles is Hn = h⊗n and the
quantum dimension is simply dim Hn+1

dimHn
= dimh. Thus, quantum information

encoded in the fusion space is necessarily a collective property of all anyons.
Furthermore, quantum information can be encoded in the non-abelian phase of
the system, and we have seen that this anyonic phase is topological. This is the
key observation motivating topological quantum computation, which we explore
in the next chapter.



Chapter 7

Topological Quantum
Computation

This chapter can be seen as an application of non-abelian anyons to perform
topological quantum computation. For further details see [38, 15, 46, 5, 1].

The motivation for considering topological quantum computers is that most
existing attempts at constructing quantum computers, such as ion traps, su-
perconducting Josephson junctions and optical lattices, all share one pressing
limitation; decoherence. Quantum decoherence is the effect where a quantum
system, such as one implementing a quantum computer, essentially looses infor-
mation to the environment. When a system is coupled to the environment, the
dynamics of the system is no longer necessarily unitary, however, the total sys-
tem still evolves unitarily, but it is not feasible to keep track of the exact state of
the environment. The environment can introduce noise simply from heat, this
eventually leads to errors in the quantum information. Efforts of completely
isolating quantum systems from the environment have yet not proved success-
ful. In some cases this can be (partially) remedied by quantum error correction
algorithms.

Topological quantum computation solves the issue of decoherence by rep-
resenting the quantum information in a topological state, namely the braids
that we have discussed in length in previous chapters. A braid is topological
in the sense that homotopy equivalent braid represent the same physical state,
characterized solely by the braid group representation. There may still be an
error rate, however, it decreases exponentially with the spatial separation the
computational anyons [15], and is thus not an issue in principle.

Abelian anyons cannot be used for quantum computation, since the fusion
space of abelian anyons is necessarily one-dimensional while a qubit is two-
dimensional. In Section 7.2 we shall see how Fibonacci anyons, as introduced
in Chapter 6, can be used to perform quantum computation. First we give an
introduction to quantum computation in general, defining the concepts that are
built upon in topological quantum computation.

69
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7.1 Introduction to quantum computation
This section gives a concise introduction to quantum computation, this discus-
sion is self-contained and can be read in isolation from the rest of the thesis,
or skipped if the reader is already familiar with the concepts. The mentioned
results and further information can be found in [39].

7.1.1 Qubits
Quantum computation performs computation by manipulating qubits, similar
to how classical computation performs computation by manipulating bits. A
classical bit consists of exactly two discrete states, 0 and 1. A qubit is much
richer, it has two orthonormal states, |0⟩ and |1⟩, analogous to the classical case,
in addition to this a qubit can also be in linear combinations (superpositions)
of these states. In other words, a qubit is a two-dimensional quantum state

|ψ⟩ = aeiα|0⟩+ beiβ |1⟩. (7.1)

As it stands, |ψ⟩ depends on four real parameters, a ≥ 0, b ≥ 0, α and β.
However, a2 and b2 are the probabilities of finding the state |ψ⟩ in state |0⟩
and |1⟩, respectively, the superposition cannot be directly observed. This is the
Born rule. Because of this, we must have a2+ b2 = 1, thus fixing one parameter
a =

√
1− b2 which ranges between 0 and 1. Furthermore, the global phase of a

quantum system is not physical, see Section 2.4.1, thus an overall factor eiω is
not visible and we have

|ψ⟩ = eiω
(
aei(α−ω)|0⟩+ bei(β−ω)|1⟩

)
(7.2)

where ω is not known. Therefore, information of both α and β is not available,
only the difference β − α, as seen by eliminating ω by letting ω = α so that we
have

|ψ⟩ = eiω
(
a|0⟩+ bei(β−α)|1⟩

)
, (7.3)

or if we instead choose ω = β we put the relative phase α− β on the |0⟩ state

|ψ⟩ = eiω
(
aei(α−β)|0⟩+ b|1⟩

)
. (7.4)

In conclusion, the state |ψ⟩ is determined by two real parameters, 0 ≤ a ≤ 1,
and β − α which is 2π periodic. Finally, note that for a = 0 and a = 1, the
relative phase is no longer physical, it is part of the global phase. In conclu-
sion, the elements of the Hilbert space are not in one-to-one correspondence
with physical states. We now characterize the space obtained by identifying
physically indistinguishable states.

7.1.2 The Bloch sphere
The space of the two parameters determining a qubit is the Cartesian product
of the interval [0, 1] representing the possible values for a, and the circle [0, 2π]
with endpoints 0 and 2π identified, representing the possible values for the
relative phase β − α. Thus, we have a cylinder with the property that all
points on the circles at a = 0 and a = 1, respectively, are identified, since the
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relative phase is non-physical at these points. The resulting space of physically
distinguishable states is topologically equivalent to a sphere. This space is
called the Bloch sphere, see Fig. 7.1. The Bloch sphere can be parameterized
by spherical coordinates and every qubit state can be written uniquely as

|ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩ (7.5)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. This provides geometric intuition for
single-qubit operations.

Figure 7.1: The Bloch sphere, uniquely representing all states of a qubit.

7.1.3 Multi-qubit systems
We can define d-dimensional analogues of qubits, referred to as qudits, by

|ψ⟩ = a0e
iθ0 |0⟩+ . . .+ ad−1e

iθd−1 |d− 1⟩. (7.6)

Similarly, classical bits can be generalized to computational units of d states.
However, the most common approach to have a larger computational space is to
instead introduce additional qubits. The state space of a single qubit is Hilbert
space C2, the state space of n qubits is the Hilbert space Hn

∼= (C2)⊗n ∼= C2n

and the basis states are

|000 · · · 0⟩, |100 · · · 0⟩, |010 · · · 0⟩, |110 · · · 0⟩, |001 · · · 0⟩, . . . , |11 · · · 1⟩, (7.7)

where we use the notation

|x1x2 · · ·xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩. (7.8)

Note the striking difference between quantum and classical bits: The state
of one classical bit is determined by one number (0 or 1). The state of one
qubit is determined by two continuous parameters, the amplitude trade-off and
the relative phase. The state of n classical bits is determined by n numbers
(each 0 or 1), the number of parameters grows linearly. The state of n qubits is
determined by 2n+1 − 2 continuous parameters, the term −2 is due to the fact
that two parameters are fixed by normalization and the global phase. These
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parameters are the coefficients in the linear combination of basis states, the
number of parameters grows exponentially. In conclusion, n qubits can be seen
as holding exponentially more information than classical bits. However, only n
classical bits can be read out from n qubits, because a measurement collapses
entanglement. This is an important consideration when designing quantum
algorithms.

Quantum information can be entangled across qubits. As an example, con-
sider the case of n = 2 qubits, the state

1√
2

(
|0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩

)
(7.9)

is entangled, the two qubits are necessarily in opposite states. If one knows
that the first qubit is in state |0⟩ then the second qubit is necessarily in state
|1⟩, and vice versa. Both possibilities occur with probability 1/2. The notion of
entanglement is captured exactly by the following definition.

Definition 7.1.1. A state |ψ⟩ ∈ H =
⊗

j Hj is said to be entangled if it cannot
be written on the form

⊗
j |ψj⟩.

7.1.4 Computing with qubits
Now, how do we actually compute with qubits? The dynamics of every quantum
system is determined by the Schrödinger equation,

i
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩ (7.10)

for some Hamiltonian H, necessarily being Hermitian and |ψ(t)⟩ an element of
a complex Hilbert space. The solution to this equation is

|ψ(t)⟩ = e−iHt|ψ(0)⟩. (7.11)

Since every unitary matrix can be written on the form e−iHt, we see that quan-
tum states have unitary time evolution. Quantum computation is performed
by taking an initial state |ψ⟩, often |ψ⟩ = |00 · · · 0⟩, and unitarily evolving it by
acting with a unitary operator U on |ψ⟩ to give a new state U |ψ⟩. If the system
consists of n qubits, the unitary operator is an element of U(2)⊗n = U(2n),
where U(m) is the group of m-dimensional unitary matrices. Similarly, evolu-
tion of qudits is described by U(d) matrices. Such a unitary action is achieved
by appropriately manipulating the Hamiltonian H. How this happens in prac-
tice depends heavily on how the qubit system is implemented. In the case of
ion traps, single qubit gates are performed by shooting a lase at the ion, and
entanglement is established via electromagnetic coupling. In the case of non-
abelian anyons, quantum gates are implemented via braids, as we shall see in
Section 7.2. Note that since unitary operators are invertible, quantum compu-
tation is necessarily reversible (provided that no wave function collapse occurs).

7.1.5 Quantum gates and universality
Quantum gates refer to a finite set of specific unitary operators, ones that are
implemented in the given physical system. Other unitary operations can then be
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implemented in terms of the basic quantum gates, expressed as a finite product
of quantum gates. Ideally, the set of quantum gates can implement any unitary
operator, if this is the case the set of quantum gates is called universal. To be
precise, this is never possible since the set of unitary operators is uncountable
while finite sequences of finite sets (representing products of quantum gates) is
countable. Instead, universality of a set of quantum gates requires that any uni-
tary operator can be approximated to arbitrary precision with a finite sequence
of quantum gates. That is, the subset of operators generated by the set of gates
is dense in U(d).

Unitary operators can be interpreted as rotations in Hilbert space, single-
qubit operations are effectively rotations on the Bloch sphere.

When performing explicit calculations, one often represents the basis states
as the vectors

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
(7.12)

and the tensor product (for multi-qubit systems) is computed as the Kronecker
product (

a
b

)
⊗
(
c
d

)
=


ac
ad
bc
bd

 . (7.13)

This can be repeated for any number of tensor products. Thus, we represent
quantum gates as matrices. Common single-qubit gates include the Pauli oper-
ators

σx = σ1 =

(
0 1
1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0
0 −1

)
(7.14)

rotating the state π radians along the x-, y- and z-axis, respectively. Note
that σx corresponds to the classical NOT gate, flipping |0⟩ and |1⟩. Often
one writes σ0 = I. The Pauli matrices are especially interesting since the set
{σ0, σ1, σ2, σ3} is a basis for GL2(C). Furthermore, c0σ0 + c1σ1 + c2σ2 + c3σ3
is Hermitian precisely when the coefficients c0, . . . , c3 are real. This is verified
by straight-forward calculations.

The phase shift gate

R(ϕ) =

(
1 0
0 eiϕ

)
; |0⟩ 7→ |0⟩, |1⟩ 7→ eiϕ|1⟩ (7.15)

generalizes σz, since R(π) = σz.
None of these gates introduce superpositions, for this one can use the Hadamard

gate
H =

1√
2

(
1 1
1 −1

)
(7.16)

which maps the basis states according to

|0⟩ 7→ 1√
2
(|0⟩+ |1⟩) , |1⟩ 7→ 1√

2
(|0⟩ − |1⟩) . (7.17)

This gate has no classical counterpart.



CHAPTER 7. TOPOLOGICAL QUANTUM COMPUTATION 74

Single-qubit cannot introduce entanglement, which is inherently a property
of multiple qubit. For this, one can use the CNOT gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 : C2 ⊗ C2 → C2 ⊗ C2 (7.18)

that acts on pairs of qubits, flipping the second qubit if and only if the first
qubit is in the state |1⟩, i.e.

|00⟩ 7→ |00⟩, |10⟩ 7→ |11⟩.
|01⟩ 7→ |01⟩, |11⟩ 7→ |10⟩.

(7.19)

It is called a controlled-NOT gate, similarly one defines the controlled-U gate
for any single-qubit gate U . A fundamental result of quantum computing shows
that the set {H,CNOT, R(π/4)} is universal [39]. In order have a single univer-
sal gate, it must act on at least three qubits, an example of this is the Deutsch
gate D(θ) give by

D(θ) = |a, b, c⟩ 7→

{
i cos(θ)|a, b, c⟩+ sin(θ)|a, b, 1− c⟩ for a = b = 1

|a, b, c⟩ otherwise,
(7.20)

or represented as a matrix

D(θ) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i cos(θ) sin(θ)
0 0 0 0 0 0 sin(θ) i cos(θ)


. (7.21)

This can be seen as a controlled-controlled-
(
i cos(θ) sin(θ)
sin(θ) i cos(θ)

)
gate. It is in

general a purely quantum gate, as it introduces phase shift, superposition and
entanglement. In classical computing, a three bit gate known as the Toffoli
gate is universal, it is precisely the D(π/2) gate, i.e. the CCNOT (Controlled
CNOT) gate. This shows that any classical computation can be performed as
a quantum computation. In fact, the other direction also holds, classical com-
putation can simulate quantum computation. However, in general this requires
an exponential increase in the number of bits.

7.1.6 Quantum algorithms
One of the most well-known quantum algorithms is Shor’s algorithm for inte-
ger factorization. It runs exponentially faster than the fastest known classical
factoring algorithm. Time complexity is essentially determined by the number
of gates needed to perform the algorithm. It is worth noting that quantum
and classical gates are physically very different. Many quantum algorithms, in-
cluding Shor’s, gain their exponential speedup from using the quantum Fourier
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transform (QFT). Because of this, the QFT will serve as a good example of how
quantum algorithms work. We now describe the QFT in some detail.

Define the n-qubit QFT on the basis states as

F|k⟩ = 1√
2n

2n−1∑
j=0

e2πijk/2
n

|j⟩ (7.22)

where we use the notation |k1k2 · · · kn⟩ = |k⟩ where k is the decimal repre-
sentation of the binary string k1k2 · · · kn. That is, the QFT transforms the
amplitudes of a general state according to

F

(
2n−1∑
k=0

xk|k⟩

)
=

2n−1∑
k=0

yk|k⟩ (7.23)

where

yk =
1√
2n

2n−1∑
j=0

xje
2πijk/2n . (7.24)

It is straight-forward to show that this transformation indeed is unitary. The
vector (yk)

2n−1
k=0 is precisely the classical discrete Fourier transform (DFT) of

the vector (xk)
2n−1
k=0 . Thus, QFT on n qubits performs DFT on the 2n complex

amplitudes. This vividly illustrates the computational power of qubits. Note,
however, that the entire result (yk)

2n−1
k=0 cannot be read out at once from the

resulting quantum state, the amplitudes yk can only be read off probabilistically
one at a time due to the nature of quantum measurement. The full power of
the QFT can be used by having the QFT as an intermediate step in a quantum
algorithm.

The QFT can be decomposed as

F|k⟩ = 1√
2n

2n−1∑
j=0

e2πijk/2
n

|j⟩ = 1√
2n

n⊗
ℓ=1

(
|0⟩+ e2πik/2

ℓ

|1⟩
)
, (7.25)

showing that one only needs the Hadamard and phase shift gates to implement
the QFT. In fact, only n(n − 1)/2 of these gates are needed to implement the
QFT, asymptotically that is O(n2) number of (quantum) gates, while the classic
DFT takes O(n2n) number of (classical) gates.

7.1.7 Density operators and partial trace
A quantum state |ψ⟩ can be represented as the density operator ρ = |ψ⟩⟨ψ|.
Recall that the expectation value ⟨A⟩ of an observable A for the state |ψ⟩ is
given by

⟨A⟩ = ⟨ψ|A|ψ⟩. (7.26)

With |ψ⟩ represented as a density operator we the following.

Lemma 7.1.1. The expectation value ⟨A⟩ for a state ρ = |ψ⟩⟨ψ| is given by

⟨A⟩ = tr(Aρ). (7.27)
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Proof. Let {|j⟩}j be an orthonormal basis, then

⟨ψ|A|ψ⟩ =
∑
j,k

⟨ψ|j⟩⟨j|A|k⟩⟨k|ψ⟩

=
∑
j,k

⟨j|A|k⟩⟨k|ψ⟩⟨ψ|j⟩

=
∑
j,k

⟨j|A|k⟩⟨k|ρ|j⟩

=
∑
j

⟨j|Aρ|j⟩

= tr(Aρ).

(7.28)

From the proof we see (letting A = I) that normalization of the state |ψ|2
corresponds to tr(ρ) = 1, and ⟨j|ρ|j⟩ is interpreted as the probability of mea-
suring the state ρ in the state |j⟩. Since the probabilities ⟨j|ρ|j⟩ must be non-
negative we see that ρ must be positive semi-definite. Finally, a straight-forward
calculation shows that ρ = |ψ⟩⟨ψ| is Hermitian.

A state on the form ρ = |ψ⟩⟨ψ| is said to be a pure state. More generally
density operators can be on the form ρ =

∑
j pj |ψj⟩⟨ψj | =

∑
j pjρj , and such

states are said to be mixed. Mixed states cannot be represented as a vector |ψ⟩.
An example of a mixed state is the purely mixed state ρ = 1

k Ik where Ik is the k-
dimensional identity matrix. This is a state in a k-dimensional quantum system
with the property that any measurement of the state has uniform probability,
since ⟨j|ρ|j⟩ = 1

k for all j.
A more general way to formulate this is to define a density operator as an

operator that is self-adjoint (Hermitian), positive semi-definite and of trace one.
For k = 2 (qubits), density operators have a nice interpretation in terms of

the Bloch sphere: Pure states are states on the surface of the Bloch sphere, and
mixed states are contained inside the sphere. The radius essentially corresponds
to decreasing purity, with the origin corresponding to the purely mixed state.
To make this precise, every qubit state (two-dimensional density operator) can
be represented as

ρ =
1

2
(I + r1σ1 + r2σ2 + r3σ3) (7.29)

where r = (r1, r2, r3) is known as the block vector, interpreted as the position
of the state ρ in the Bloch sphere.

The result of Lemma 7.1.1 for the expectation value ⟨A⟩ of an observable A
still holds for mixed states,

⟨A⟩ =
∑
j

pj⟨ψj |A|ψj⟩

=
∑
j

pj tr(ρjA)

= tr

∑
j

pjρjA


= tr (ρA) .

(7.30)
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Straight forward calculation shows that the trace is cyclic, tr(AB) = tr(BA).
The action of an operator on a state is given by

A :
|ψ⟩ 7→ A|ψ⟩
ρ 7→ AρA∗ (7.31)

depending on if we represent the state as a vector or a density matrix. If this is
not clear, observe that

(A|ψ⟩)(A|ψ⟩)∗ = A|ψ⟩⟨ψ|A∗ = AρA∗. (7.32)

Consider the composite system HA ⊗HB of subsystems A and B, let ρ be a
density operator in the composite system. If we only have access to subsystem
A, we only have information of the reduced density operator ρA defined as

ρA = trB(ρ), (7.33)

where trB(ρ) is the partial trace, tracing out subsystem B. It is the unique
linear operator defined by

trB :
L(HA ⊗HB) → L(HA)

R⊗ S 7→ R tr(S),
(7.34)

where L(V ) is the space of linear operators on V . The partial trace trA is
defined analogously.

The reduced density operator ρA is defined as such because if we only have
access to subsystem A, we can only make measurements corresponding to ob-
servables on the form M ⊗ I where M is any observable for subsystem A,
leaving system B invariant. The reduced density operator ρA must thus have
the property

⟨M⟩ρA = ⟨M ⊗ I⟩ρ ⇐⇒ tr
(
MρA

)
= tr

(
(M ⊗ I)ρ

)
. (7.35)

This is clearly satisfied if ρA = trB(ρ). Furthermore, it can be shown that this
is the unique solution [39].

7.2 Topological quantum computation with Fi-
bonacci anyons

In this section we give an account of how topological quantum computation can
be achieved with Fibonacci anyons. For further information, see [19, 23, 20, 53,
41, 24, 48].

7.2.1 Topological qubits
Implementing a qubit requires a two-dimensional quantum system. Recall from
Chapter 6 that the fusion space V 1

τ4 of four Fibonacci anyons with total charge
1 is two-dimensional, fewer anyons have trivial fusion spaces. We shall use the
fusion space V 1

τ4 to model qubits. Note that V 1
τ4

∼= V τ
τ3 so we can also work with

three anyons of total charge τ . In both cases no less than four Fibonacci anyons
are needed, the fusion space V τ

τ3 really consists of four anyons; the fourth is
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the total charge. These four Fibonacci anyons can in principle be produced by
pulling pairs of τ and anti-τ from the vacuum, recall that anti-τ is τ itself. This
can be seen as splitting (the inverse of fusing) the vacuum 1 = τ × τ = τ × τ .

We define Fibonacci qubits by specifying the computational basis as

|0⟩ :=
τ τ τ τ

1 τ 1 τ 1
, |1⟩ :=

τ τ τ τ

1 τ τ τ 1
. (7.36)

That is, the computational basis state |0⟩ is the fusion state where the first
and second Fibonacci anyons fuse trivially, and computational basis state |1⟩ is
the fusion state where the first and second Fibonacci anyons fuse with anyonic
charge τ . This also specifies how to read out data from such qubits; bring the
first and second anyons close together to let them fuse and observe the resulting
charge.

In the literature, in particular [19], another common notation replaces string
diagrams with a special notation used specifically for Fibonacci anyons, fusion
of two τ anyons is represented by

(•, •)0 :=

τ τ

1 =
τ τ

1 τ 1
,

(•, •)1 :=

τ τ

τ =
τ τ

1 τ τ
.

(7.37)

The subscripts denote the resulting charge of the fusion and uses 0 and 1 to
denote the vacuum and τ , respectively. Fusion parenthesis can be combined so
that

((•, •)c1 , (•, •)c2)c =
τ τ τ τ

c1
1 c1

c2
c

. (7.38)

This is a fused state, it is not equal to a standard fusion state.
In this notation the F operator is represented as

(•, (•, •)a)c =
∑
b

F c
ab ((•, •)b, •)c

⇐⇒
τ τ

τ c

a =
∑
b

(F c
τττ )ab

τ τ

τ b c
,

(7.39)

7.2.2 Single Fibonacci qubit gates
In the fusion space V 1

τ4 we have the braid generators

ρ(σ1) = R, ρ(σ2) = B, ρ(σ3) = R (7.40)

as shown in Proposition 6.3.1, where

R =

(
e−4πi/5 0

0 e3πi/5

)
, B =

(
φ−1e−4πi/5 φe3πi/5

φe3πi/5 −φ−1

)
(7.41)
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and φ = (1 +
√
5)/2 is the golden ratio. Sometimes one works with the mirror

image of this model by substituting e−4πi/5 7→ e4πi/5 and e3πi/5 7→ e−3πi/5, these
two models are essentially the same. Thus, in this setup there are essentially
four single-qubit gates, R and B and their inverses R−1 and B−1. It is clear that
the fusion space V τ

τ3 has the two braid group generators σ1 = R and σ2 = B,
making it clear that one can work with either one of these fusion spaces for
Fibonacci qubits. Furthermore, this shows that braiding the fourth Fibonacci
anyon gives nothing new, it suffices to work with σ1 and σ2.

As discussed in Section 7.1.5, in order to be able to perform general quantum
computation the set of quantum gates must be universal. The set of quantum
gates {R,R−1, B,B−1} for a Fibonacci qubit is indeed universal [38, 53, 15].
Thus, braiding of Fibonacci anyons is rich enough to model single qubits. How-
ever, note that the universality result only implies that there are braids that
approximate any element of SU(2) to arbitrary non-zero error. To achieve higher
precision, longer braids are needed. It is not known if there exists a braid that
exactly represents the Pauli x-matrix up to a global phase [53, sec. 1.5].

7.2.3 Topological multi-qubit systems
In order to perform general quantum computation we must be able to manip-
ulate multiple qubits. The Hilbert space Hn of n qubits is 2n-dimensional,
therefore we must have a fusion space of at least 2n dimensions in order to
model Hn. We shall not expect to find fusion spaces of exactly 2n dimensions
since the dimension of the fusion space V 1

τm of m Fibonacci anyons grow as the
Fibonacci numbers with increasing m.

In order to implement two qubits, a fusion space of at least dimension four
shall be needed. The smallest fusion space V 1

τm with dimension at least four is

V 1
τ6 = span

{
τ τ τ τ τ τ

1 τ 1 τ 1 τ 1
,

τ τ τ τ τ τ

1 τ 1 τ τ τ 1
,

τ τ τ τ τ τ

1 τ τ τ 1 τ 1
,

τ τ τ τ τ τ

1 τ τ 1 τ τ 1
,

τ τ τ τ τ τ

1 τ τ τ τ τ 1

}
.

(7.42)

In principle one can declare the computational basis states |00⟩, |01⟩, |10⟩, |11⟩
to be the first through forth fusion states, leaving the fifth fusion state non-
computational. A more efficient scheme would be to let each of these fusion
states be one of the states of a five-dimensional qudit. More generally, the
fusion space V 1

τn , which is Fib(n− 1)-dimensional, can be used to implement a
Fib(n− 1)-dimensional qudit. See further discussion [1].

The most common approach in the literature instead uses n Fibonacci qubits
to implement n qubits, by using the fusion space V 1

τ2n+2 . The computational
basis is defined as

|x1x2, . . . xn⟩ :=
τ τ τ τ τ

1 τ ax1 τ ax2 τ
· · ·

τ

τ 1
(7.43)

where a0 = 1 and a1 = τ .
The quantum gates of this system is exactly the possible braids, generated

by the braid generators ρm(σj), as computed in general in Chapter 6 and Ap-
pendix A. Similar to single Fibonacci qubits, also multi-Fibonacci-qubits gates
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are universal [53]. However, efficiently finding braids that approximate a given
unitary operator can be difficult, a brute force search becomes infeasible as the
dimension of the Hilbert space increases, because the number of possible braids
increases exponentially. A solution to this is the Solovay-Kitaev theorem, one
of the fundamental results in quantum computing. The theorem essentially
states that given a set universal gates, there is a method for approximating
any gate with a surprisingly short sequence of gates [39, Appendix 3] [9]. This
method has been successfully applied to Fibonacci qubits in, for example, [19]
to efficiently find braids that approximate any unitary operation.

7.2.4 Leakage errors
For n ≥ 2, the fusion space V 1

τ2n+2 has higher dimension than the number of
computational states, indeed Fib(2n + 1) > 2n. This leads to the existence of
non-computational fusion states. During braiding, this can lead to errors known
as leakage errors. To clearly see this, consider n = 2 Fibonacci qubits, i.e. the
fusion space V 1

τ2n+2 = V 1
τ6 , the computational basis is

|00⟩ =
τ τ τ τ τ τ

1 τ 1 τ 1 τ 1

|01⟩ =
τ τ τ τ τ τ

1 τ τ τ 1 τ 1

|10⟩ =
τ τ τ τ τ τ

1 τ 1 τ τ τ 1

|11⟩ =
τ τ τ τ τ τ

1 τ τ τ τ τ 1

|NC⟩ =
τ τ τ τ τ τ

1 τ τ 1 τ τ 1

(7.44)

where |NC⟩ denotes the non-computational state. Generally there are several
non-computational states, but only one in this example. When performing
braiding, even though the computation starts out in a computational state, a
braid may take the state to a non-computational state. A clear example of this
is braiding of the third and fourth Fibonacci anyon when in the |11⟩ state, this
takes the state to a superposition of |11⟩ and |NC⟩ according to

B :
τ τ

τ τ τ
7→

τ τ

τ τ τ

= (Bτ
τττ )1τ

τ τ

τ 1 τ
+ (Bτ

τττ )ττ
τ τ

τ τ τ
. (7.45)

The problem of leakage errors becomes unavoidable when performing braids
that entangle two qubits. Entangling qubits is needed in order to perform gen-
eral quantum computation, this can be done by braiding the Fibonacci anyons
of the first qubit around the Fibonacci anyons, this necessarily introduces leak-
age errors. In [19, 47] various methods to work around this are discussed. It
is shown that transitions into the non-computational state can be tracked and
avoided by braiding only one Fibonacci anyon while keeping all others fixed,
called single particle weaves. This scheme still allows for universal quantum
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computation. To illustrate how this works, consider the first qubit and the
corresponding non-computational state,

|0⟩ =
τ τ τ

1 τ 1 τ

|1⟩ =
τ τ τ

1 τ τ τ

|NC⟩ =
τ τ τ

1 τ τ 1
.

(7.46)

The corresponding braid group generators are

ρ(σ1) =

ei4π/5 0 0
0 e−i3π/5 0
0 0 e−i3π/5


=

(
ei4π/5 0
0 e−i3π/5

)
⊕ e−i3π/5

ρ(σ2) =

φ−1e−4πi/5 φe3πi/5 0
φe3πi/5 −φ−1 0

0 0 e−3iπ/5


=

(
φ−1e−4πi/5 φe3πi/5

φe3πi/5 −φ−1

)
⊕ e−i3π/5.

(7.47)

Note that [19] uses the mirrored phase convention. In this way, any braid
accumulates a phase e−i3Wπ/5 in the non-computational block, where W is the
winding number of the braid. Thus, the winding number can be used to put
restrictions on braids and avoid transitions into the non-computational state.



Chapter 8

Summary and conclusions

We have introduced anyons as identical quantum mechanical particles in two
dimensions. The key characteristic of anyons is that the fundamental group
π1(Cn) of the configuration space Cn of n identical particles is the braid group
Bn, as opposed to three dimensions where π1(Cn) is the symmetric group Sn.
The braid group gives rise to braid statistics via particle exchange symmetry
modeled by representations of the braid group. Non-abelian representations
correspond to non-abelian anyons, which has been the main focus of this thesis.
They are studied from two points of views; as dynamical free quantum particles,
and as static elements that can be used for quantum computation.

In Chapter 3 we obtained the lower bound for the relative kinetic energy,∫
R2

∣∣∣∇xrel
jk
u
∣∣∣2 dxrel

jk ≥
∫ ∞

r=0

∫ 2π

φ=0

(
|∂ru|2 + λ20,pr

|u|2

r2

)
rdφdr (8.1)

where pr is the number of enclosed anyons in the circular loop at radius r and

λ20,pr
= inf {λ2 : eiλπ is an eigenvalue of Upr} (8.2)

where Up is the exchange operator describing simple exchange of a pair of anyons
around p enclosed anyons.

In order to determine Up, and thus its spectrum, we introduced the abstract
anyon models, where a general characterization of Up was obtained by studying
fused fusion states

t t
· · ·

t t F7−→ c

c1

c2

c3

t

t

t
...

t t =:
t c t

. (8.3)

This allows us to decompose the fusion space as

Ṽtp+2 =
⊕
c

V c
tp ⊗ Ṽtct. (8.4)

With this we proved Theorem 5.4.1:
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Theorem. In a given abstract anyon model, exchange of a pair of t-anyons
around p enclosed t-anyons is described by the exchange operator Up given by

Up =
⊕
c

U1,c (8.5)

where U1,c denotes the exchange operator for two t anyons around one anyon
of type c, and c ranges over all possible total charges of the p enclosed anyons,
that is, the possible total charges c for the fusion space V c

tp . U1,c is given by

U1,c

(
t c t

a b d e

)
=

t c t

a b d e

=
∑
f,g,h

(
Bd

act

)
fb

(
Be

ftt

)
gd

(Bg
atc)hf

t c t

a h g e

.

(8.6)

The Fibonacci anyons, defined by the fusion rules

1× 1 = 1, 1× τ = τ × 1 = τ, τ × τ = 1 + τ, (8.7)

were studied and we characterized the exchange operator Up explicitly in The-
orem 6.4.1:

Theorem. Exchange of a pair of τ anyons around p enclosed τ anyons intro-
duces a non-abelian anyonic phase Up, given by

U0 = ρ2(σ1)

U1 = ρ3(σ1)ρ3(σ2)ρ3(σ1)

Up = U
⊕ Fib(p−1)
0 ⊕ U

⊕Fib(p)
1 , p ≥ 2

(8.8)

expressed in the fused basis Eq. (5.35). The components are given by

U0 = R1
ττ ⊕Rτ

ττ ⊕Rτ
ττ ⊕B

U1 = (Rτ
ττ )

3 ⊕ (RBR)⊕ (BRB)⊕

⊕

Rτ
ττ (B11)

2
+B12B21B22 B12B21R

τ
ττ B12 (B22)

2
+B11B12R

τ
ττ

B12B21R
τ
ττ B11 (R

τ
ττ )

2
B12B22R

τ
ττ

B21 (B22)
2
+B11B21R

τ
ττ B21B22R

τ
ττ (B22)

3
+B12B21R

τ
ττ


(8.9)

where R and B are given in Eqs. (6.28) and (6.29), and below.

We used this to draw conclusions regarding statistical repulsion for Fibonacci
anyons. The above theorem allowed us to easily compute the spectrum of Up

for Fibonacci anyons in Corollary 6.4.2 as

σ(Up) =


ei4π/5 with multiplicity Fib(p+ 3),
eiπ/5 with multiplicity 2Fib(p),
e−iπ/5 with multiplicity 3Fib(p),
e−i3π/5 with multiplicity 3Fib(p− 1)

 (8.10)
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for all p. From this the constant λ20,p of the lower bound Eq. (8.1) was computed

λ20,p =

{
(3/5)2, p = 0,

(1/5)2, p ≥ 1,
(8.11)

showing that it may be energetically favorable for Fibonacci anyons to encircle
other Fibonacci anyons. This can be theorized as implying some sort of cluster-
ing phenomenon. However, such phenomenon has not been confirmed in even
in the case of abelian anyons.

If the Fibonacci anyons are considered to be static and have controllable
position, they may in principle be used to perform quantum computation. We
showed this by observing that the fusion space V 1

τ4 is two dimensional, just as
required for a qubit. Motivated by this, one defined Fibonacci qubits as

|0⟩ :=
τ τ τ τ

1 τ 1 τ 1
, |1⟩ :=

τ τ τ τ

1 τ τ τ 1
. (8.12)

We showed how quantum gates can be implemented by braiding the Fibonacci
anyons. The representation of the braid group generators of the fusion space
V 1
τ4 is given by

ρ(σ1) = R, ρ(σ2) = B, ρ(σ3) = R (8.13)

as shown in Proposition 6.3.1, where

R =

(
e−4πi/5 0

0 e3πi/5

)
, B =

(
φ−1e−4πi/5 φe3πi/5

φe3πi/5 −φ−1

)
. (8.14)

This describes how the state of Fibonacci qubits are changed when the τ -anyons
are braided. Furthermore, Fibonacci anyons can be combined to give multi-
qubit systems, thus being able to perform general quantum computation.

Possible continuation of this work is to improve the machinery for non-
abelian statistics. Possibly gaining sharper bounds by considering the global
nature of non-abelian states. For example, studying the Ising anyons in detail
would also be a good next step, and compare to the case of Fibonacci anyons.
Taking this further, a general explicit characterization of the spectrum of Up for
general anyon models would be desirable.



Appendix A

Programmatically
computing ρn(σj) for
Fibonacci anyons

In this appendix we compute the representation for the braid group generators
ρn(σj) in Ṽτn , for any n ≥ 2 and 1 ≤ j ≤ n − 1. The code is not optimized
in any way, it is mostly a proof of concept, included here for convenience, to
simplify reproduction of computations.

A.1 Symbolic computation
The following Mathematica code symbolically generates ρn(σj) for any n and j.

(* FibString[n] returns a list all Fibonacci strings
of length n, sorted by charge sectors.
A Fibonacci string is a list of 1's and 2's with no recurring 1's. *)

FibStringRecurse[1] := {{1}, {2}};
FibStringRecurse[n_] := Flatten[

Map[
If[

Last[#] == 2,
{Flatten[{#, 1}],
Flatten[{#, 2}]}, {Flatten[{#, 2}]}

] &,
FibString[n - 1]],

1
];

FibString[n_] := SortBy[FibStringRecurse[n], {First[#], Last[#]} &];

(* FibStringCS[n, csl, csr] returns FibString[n] restricted to left and right
charge sectors given by csl and csr. *)

FibStringCS[n_, csl_, csr_] := Select[
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FibStringRecurse[n],
First[#] == csl && Last[#] == csr &

];

(* σ[n,j] returns the representation of the j:th braid group generator
in the fusion space of n Fibonacci anyons, including all possible
left and right charge sectors. *)

σMeta[n_, j_, fusionStates_] := Map[
Module[{labels, row, idx, idx2, fusionStateCopy},

fusionStateCopy = #;
labels = Take[#, {j, j + 2}];
row = ConstantArray[0, Length[fusionStates]];
idx = Position[fusionStates, #][[1]][[1]];
Switch[labels,

{1, 2, 1}, row[[idx]] = R1,
{1, 2, 2}, row[[idx]] = Rτ,
{2, 2, 1}, row[[idx]] = Rτ,
{2, 1, 2}, (

row[[idx]] = B11;
fusionStateCopy[[j + 1]] = 2;
idx2 = Position[fusionStates, fusionStateCopy][[1]][[1]];
row[[idx2]] = B12

),
{2, 2, 2}, (

row[[idx]] = B22;
fusionStateCopy[[j + 1]] = 1;
idx2 = Position[fusionStates, fusionStateCopy][[1]][[1]];
row[[idx2]] = B21;

)
];
row

] &, fusionStates];

σ[n_, j_] := σMeta[n, j, FibString[n + 1]];

σ[n_, j_, csl_, csr_] := σMeta[n, j, FibStringCS[n + 1, csl, csr]];

(* U[p] returns σ₁σ₂⋯σₚσₚ₊₁σₚ⋯σ₂σ₁ on p+2 Fibonacci anyons. *)
U[p_] := Dot @@ Flatten[{

Table[σ[p + 2, j], {j, 1, p + 1}],
Table[σ[p + 2, j], {j, p, 1, -1}]

}, 1];
U[p_, csl_, csr_] := Dot @@ Flatten[{

Table[σ[p + 2, j, csl, csr], {j, 1, p + 1}],
Table[σ[p + 2, j, csl, csr], {j, p, 1, -1}]

}, 1];

(* Example *)
Print[MatrixForm[σ[3, 1]]];
Print[σ[3, 1].σ[3, 2].σ[3, 1] == U[1]];



APPENDIX A. PROGRAMMATICALLY COMPUTING ρN (σJ) 87

A.2 Numeric results
The following code builds on the code in the previous section to give numerical
values for the braid group generators.

(* Plug in values for the parameters. *)
R1 = Exp[4 Pi I/5];
Rτ = Exp[-3 Pi I/5];
R = ({

{R1, 0},
{0, Rτ}

});
φ = GoldenRatio;
F = ({

{φ^-1, φ^(-1/2)},
{φ^(-1/2), -φ^-1}

});
B = Inverse[F].R.F;
B11 = B[[1, 1]];
B12 = B[[1, 2]];
B21 = B[[2, 1]];
B22 = B[[2, 2]];

(* Compute argument of eigenvalues. Performance boos by computing using N[..],
then convert back by Rationalize[../Pi]. *)

EigenvaluesArg[data_] := Sort[Rationalize[Arg[Eigenvalues[N[data]]]/Pi]Pi];

(* Example *)
Print[EigenvaluesArg[σ[3, 1]]];

This can be used to verify multiple results, e.g. Corollary 6.4.2.
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