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Abstract

When leaving classical physics and entering the realm of quantum physics, there are many
new concepts being introduced. One of the most fundamental ideas in quantum mechanics is
that particles no longer have exact known positions, but instead expected values and prob-
abilities. This leads to the phenomena of truly identical particles, since they no longer can
be distinguished simply by their positions. An important property differentiating different
kinds of particles is how a system behaves when two such identical particles are exchanged.
Historically, this divided particles into bosons and fermions, corresponding to symmetry and
antisymmetry under an exchange.

However, in two dimensions a new type of particle appears. These particles are called
anyons, and behave differently when particles are exchanged. Anyons can be further divided
into abelian and non-abelian anyons, of which this thesis will focus on the latter. The ex-
changes can then be represented by the fundamental group of the configuration space of the
particles, and in two dimensions this fundamental group is the braid group. Using rotors from
a Clifford algebra and studying excitations of Majorana fermions, this thesis will show a way
to calculate the exchange matrices of non-abelian anyons, and their corresponding eigenvalues.
Furthermore, suggestions on a generalization of this framework along with areas where it can
be applied are given.
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Sammanfattning

När man lämnar klassisk fysik och övergår till den kvantfysikaliska världen introduceras många
nya koncept. En av de mest grundläggande idéerna inom kvantmekaniken är att partiklar
inte längre har exakta positioner, eftersom dessa ersatts av väntevärden och sannolikheter.
Detta leder till fenomenet att partiklar kan vara verkligt identiska, eftersom de inte längre
kan särskiljas med hjälp av sina positioner. En viktig egenskap som särskiljer olika typer
av partiklar är hur ett system beter sig vid ett utbyte av två sådana identiska partiklar.
Historiskt sett delade denna egenskap upp partiklar i bosoner och fermioner, som uppvisar
symmetri respektive antisymmetri vid ett partikelutbyte.

I två dimensioner uppstår dock en ny typ av partiklar. Dessa partiklar kallas anyoner och
beter sig annorlunda vid ett partikelutbyte. Vidare kan de delas upp i abelska och icke-abelska
anyoner, varav denna rapport kommer fokusera på de senare. Utbytena kan representeras
av den fundamentala gruppen av partiklarnas konfigurationsrum, och i två dimensioner blir
denna fundamentala grupp flätgruppen. Genom att använda rotorer från en Cliffordalgebra
och studera excitationer av Majoranafermioner, så visar denna rapport ett sätt att beräkna ut-
bytesmatriserna för icke-abelska anyoner och deras tillhörande egenvärden. Vidare ges förslag
på en generalisering av detta ramverk, tillsammans med områden där det kan tillämpas.
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1 Introduction
One of the major differences between quantum physics and classical physics is that when leaving
the classical world, identical particles are no longer fully distinguished by their position - because
it is no longer possible to determine the exact position of a certain particle. Given a system of
N particles, the complex multivalued wave function |Ψ〉 = |Ψ(x1, ..., xN )〉 describes the system, in
the sense that |Ψ|2 is the probability density of finding the system in a certain state. The exact
positions of classical mechanics have thus been substituted by probabilities and expected values.
This gives rise to particles that are truly identical, since they can no longer be distinguished by
their position - a phenomenon that does not occur in classical physics. This leads to interesting
effects when it comes to these identical particles, especially concerning how the system behaves
when such particles are exchanged.

Elementary particles in three (or more) dimensions can be divided into fermions and bosons,
obeying Fermi-Dirac statistics and Bose-Einstein statistics, respectively. In terms of the wave
functions, these two kinds of particles are distinguished by the behavior of the wave function under
an exchange of two particles. For bosons the wave function is symmetric, i.e

|Ψ(x1, . . . , xj , . . . , xk, . . . , xN )〉 = |Ψ(x1, . . . , xk, . . . , xj , . . . , xN )〉 , (1)

when the particles j and k are exchanged. Similarly, the wave function for fermions is antisym-
metric, which means that

|Ψ(x1, . . . , xj , . . . , xk, . . . , xN )〉 = − |Ψ(x1, . . . , xk, . . . , xj , . . . , xN )〉 , (2)

and because of this antisymmetry fermions also obey the Pauli exclusion principle. As a result, the
difference between fermions and bosons can be seen as whether or not several particles are allowed
to be in the same state.

For a long time, it was believed that this is all there is to it, and since we live in a three-
dimensional world it is easy to understand why. However, in the special case of two dimensions
there is more freedom when it comes to the choice of statistics, as a result of the topology of the
resulting configuration space. Theoretically, particles called anyons appear in two dimensions, as
first discovered by Leinaas and Myrheim in 1977 [1]. The name was first coined by Wilczek in
1982 [2], and is derived from any phase or any statistics. It might be hard though, to justify
that a two-dimensional particle in a three-dimensional world is more than a purely mathematical
construct. Planar motion is still possible nevertheless, by essentially prohibiting movement in the
third dimension - allowing nature to be fooled into believing it is two-dimensional. Fermions and
bosons are still the only kinds of particles having been observed today, and trying to prove the
existence of particles obeying anyonic statistics is an ongoing effort. Researchers seem to be getting
closer to succeeding with that in recent years [3].

1.1 Abelian anyons
Anyons can be divided into two categories; abelian and non-abelian. Instead of the symmetry
relations seen earlier, the wave function for abelian anyons satisfies

|Ψ(x1, . . . , xj , . . . , xk, . . . , xN )〉 = eiπα |Ψ(x1, . . . , xk, . . . , xj , . . . , xN )〉 , α ∈ [0, 2) , (3)

where the periodic α is called the statistics parameter. This implies that instead of the two discrete
cases seen in higher dimensions, there is a continuous spectrum of statistics ranging from Bose-
Einstein (α = 0) to Fermi-Dirac (α = 1) and back again. It is worth noting here that since
|eiπα|2 = 1, the probability density |Ψ|2 is still unchanged, which is a requirement for any kind
of particle exchange (a requirement also satisfied by bosons and fermions). From (3) we can note
the peculiar property that if two abelian anyons are exchanged and then restored to their original
positions by another exchange, the wave function might still be different from the original one.
This type of anyon, although interesting, will not be the focus of this thesis.

1.2 Non-abelian anyons
Non-abelian anyons have similar properties, but the wave-function is altered more drastically than
by just a phase change when two particles are exchanged. Instead, the wave function is rotated
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to another one in the same degenerate space. This rotation can be described as a transformation
by an exchange matrix U , which can be seen as a matrix version of a complex phase. The wave
function thus changes as

|Ψ(x1, . . . , xj , . . . , xk, . . . , xN )〉 = U |Ψ(x1, . . . , xk, . . . , xj , . . . , xN )〉 . (4)

In order to preserve the probability density mentioned earlier, this exchange matrix U must be
unitary. An important property here is that the order of the particle exchanges makes a difference,
as opposed to when the wave function is just multiplied by complex phases. This noncommutativity
is actually what makes the study of non-abelian anyons interesting, and this thesis will focus on
finding the exchange matrices. These matrices have been discussed earlier by Ivanov in 2001 [4].
Here we will examine new ways to determine them, specifically through representations in Clifford
algebra.

1.3 Outline of work
As mentioned earlier, our interest is focused on the non-abelian anyons. First, we will in section
2 discuss the configuration space of a two-dimensional system of identical particles, with non-
coincident positions. Here, the topological properties of that space will be examined in order to
find the corresponding braiding properties of the non-abelian anyons. The braid group will then
be a fundamental part of the following work.

Section 3 will focus on the description of the quantum state of an arbitrary system of fermions.
It is discussed in terms of the fermionic creation and annihilation operators, since these can be
used to define the corresponding operators for Majorana fermions. Bound Majorana fermions can
appear as a type of quasiparticle excitation that can exhibit non-abelian statistics, which is why
they are discussed here. The corresponding Majorana operators will be defined through the regular
fermionic operators.

The next step in finding the exchange matrices is giving a brief introduction to the Clifford
algebra in section 4. Specifically, we discuss how this geometric algebra is a powerful tool when
describing rotations in a vector space - using a tool called rotors. A parallel will be drawn here to
the previous section, because of similarities between the Majorana operators and the basis elements
in a Clifford algebra.

Interpreting the Clifford algebra basis elements as Majorana operators is the final step needed
to find the matrices. In this context, the braiding properties of the rotors will be examined, and if
it is a way of finding the exchange matrices. The matrices are discussed in section 5. Specifically,
the case of 4 Majorana fermions will be discussed, in order to limit the size of the matrices and
thus enabling more thorough examination of their properties. The corresponding eigenvalues will
be determined in section 6.

Finally, in section 7, we discuss how to generalize the methods used to a system of arbitrary
size. As a conclusion, a summary of our work will be given in section 8 along with suggestions of
possible continuations in section 9.
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2 Configuration space
We are studying N identical particles in d dimensions, where d will later be set to 2, and are inter-
ested in the corresponding configuration spaceMd

N . The position of the i:th particle is described by
a vector xi ∈ Rd, and N particles can therefore be seen as an element of (Rd)N = RdN . But every
point in RdN is not part of the configuration space, since we have to consider two assumptions;
that the particles are indistinguishable and that two particles cannot occupy the same point. The
latter assumption, which is known as the particles being hard-cored, is not as obvious as it might
seem. It is however necessary in order to have a notion of how many particles there are, since if
multiple particles could occupy the same point, there would be an ambiguity in the particle count.
For more details, see [5].

Define the diagonal ∆as

∆= {(x1, ..., xN ) ∈ RdN | ∃ i 6= j : xi = xj} , (5)

and the configuration space can be written as

Md
N =

(
RdN \ ∆

)
/SN , (6)

where the quotient of the permutation group SN symmetrizes the space and thus accounts for
the indistinguishability of the particles. Before that, the hard-cored property of the particles was
accounted for by removing the diagonal, since points in RdN along the diagonal are not possible
configurations of the system. It can then be shown that the fundamental group π1 associated with
this configuration space is given by

π1(Md
N ) ∼=


1 , d = 1

BN , d = 2

SN , d ≥ 3

, (7)

where BN is the braid group and SN the permutation group [6]. The fundamental group of a
topological space contains information about when loops in the space can be continuously deformed
[7]. This is why the topological difference between two and three dimensions makes a big difference
for the configuration space. If a loop in three dimensions encloses a particle it can still be deformed,
unlike in two dimensions where the loop becomes “stuck” on anything inside it. This topological
property is the very reason anyons appear in two dimensions.

2.1 Braid group
As mentioned earlier we are, in order to study anyons, interested in the special case where d = 2.
An important part will then be to examine the properties of the braid group BN , defined by its
generators {τ1, ..., τN−1}. These generators satisfy the braid relations

τiτj = τjτi , |i− j| > 1 , (8)
τiτi+1τi = τi+1τiτi+1 , i = 1, 2, ..., N − 2 . (9)

Since this construction is not purely mathematical in the sense that it has a physical meaning, it
can be fitting to take a step back in order to think about what this actually means. A way to
visualize the physical meaning behind the braid group is by using a representation called braid
diagrams. Imagining that the Euclidean plane for d = 2 moves upwards along a vertical time axis,
the trajectories of the particles will form world lines in this three-dimensional spacetime. If the
particles remain in the same positions, these world lines will be vertical, as illustrated in figure 1.
However, if the particles instead move and are exchanged, the world lines will be intertwined and
form braids.
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Figure 1: World lines being formed without particle exchange.

Observed from the side, the world lines formed by the particle trajectories are illustrated in
these diagrams. In a braid diagram time progresses upwards, and the action of the braid group
generator τi is interpreted as the exchange of particles i and i+ 1. Figures 2 and 3 show that the
braid relations are satisfied in this representation. An equality relation between two braids simply
means that the same braid has been formed in the two cases, even though different braid group
generators have been applied.

=
τi

τj

τj

τi

Figure 2: τiτj = τjτi

=

τi

τi+1

τi

τi+1

τi

τi+1

Figure 3: τiτi+1τi = τi+1τiτi+1

In order to find exchange matrices, we need to examine the braiding of world lines occurring
when two arbitrary particles are exchanged. However, the action of a generator of the braid group
is interpreted as the exchange of two adjacent particles. If that was only type of exchange possible,
it would impose a strong constraint on this model. This means that in order to use the braid group
to describe an arbitrary exchange, something more is needed. Consider the braiding in figure 4,
and specifically note that that all of the strands except the first and last one are unaffected by the
procedure. Those two, highlighted in different colors for clarity, were exchanged.
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τi

τi+1

τi+2

τi+3

τi+2

τi+1

τi

Figure 4: τiτi+1τi+2τi+3τi+2τi+1τi

In general, the exchange between particles i and i+ 1 + n can be written as the composition

τiτi+1 . . . τi+n . . . τi+1τi , (10)

which illustrates that the braid group generators are in some way fundamental. It is then sufficient
to find exchange matrices for adjacent particles, since an arbitrary exchange matrix can be found
by multiplying those. Actually, every combination of the braid group generators can be written
using only the two elements τ1 and σ = τ1τ2...τN−1. For example, let N = 4 and we have the braid
group B4, generated by {τ1, τ2, τ3}. We then see, by using the braid relations (8) and (9), that

στ1σ
−1 = τ1τ2τ3τ1(τ1τ2τ3)−1

= τ1τ2τ1τ3τ
−1
3 τ−12 τ−11

= τ2τ1τ2τ
−1
2 τ−11 = τ2 ,

(11)

which also gives
σ2τ1σ

−2 = στ2σ
−1 = (τ1τ2τ3)τ2(τ1τ2τ3)−1

= τ1τ2τ3τ2τ
−1
3 τ−12 τ−11

= τ1τ3τ2τ3τ
−1
3 τ−12 τ−11

= τ1τ3τ
−1
1 = τ3 .

(12)

By using induction, it can also be shown for a braid group BN of arbitrary size. The generator
τk+1, where 1 ≤ k ≤ N − 2, can then be written as

σkτ1σ
−k = σk−1τ2σ

−k+1 = στkσ
−1

= τ1τ2 . . . τk−1τkτk+1 . . . τN−2τN−1τkσ
−1

= τ1τ2 . . . τk−1τkτk+1τk . . . τN−2τN−1σ
−1

= τ1τ2 . . . τk−1τk+1τkτk+1 . . . τN−2τN−1σ
−1

= τk+1τ1τ2 . . . τk−1τkτk+1 . . . τN−2τN−1σ
−1 = τk+1σσ

−1 = τk+1 .

(13)
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3 Fermionic operators
When working with a system of fermions, each single particle state has an annihilation operator
ψn, and its conjugate ψ†n, which is the corresponding creation operator. The general state of a
system with multiple particles can be written as

|Ψ〉 = |k1k2 . . .〉 , (14)

where each kn is the occupation number for an exited state, counting how many particles there
are in that state. The Pauli exclusion principle for fermions states that multiple particles cannot
occupy the same state, implying that a certain state either is occupied by a single particle or not
occupied at all. As a result, the occupation numbers can only take the values 0 and 1. The ground
state, also known as the vacuum state, is in this notation written as

|0〉 = |00 . . .〉 , (15)

i.e the state where there is no particle in any of the excited states.
The action of the creation and annihilation operators on the state of the system is then simply

given by

ψ†n |k1 . . .〉 =

{
0 , kn = 1

(−1)
∑
j<n kj |k1 . . . kn + 1 . . .〉 , kn = 0

,

ψn |k1 . . .〉 =

{
0 , kn = 0

(−1)
∑
j<n kj |k1 . . . kn − 1 . . .〉 , kn = 1

,

(16)

which shows why these operators can be seen to be “creating” and “annihilating” states. The
factor (−1)

∑
j<n kj is a phase factor originating from the antisymmetry property of fermions, which

depends on how many states below the affected one that are filled. From (16), it is then easily
observed that these operators fulfill the relations

{ψn, ψm} = 0 ,

{ψ†n, ψ†m} = 0 ,

{ψn, ψ†m} = δnm ,

(17)

where {A,B} = AB +BA is the anticommutator and δnm is the Kronecker delta

δnm =

{
1 , n = m

0 , n 6= m
. (18)

3.1 Majorana fermions
Construction of non-abelian anyon statistics can be done by observing excited states of particles
called Majorana fermions. In most literature (as well as here), these quasiparticle excitations are
still referred to as Majorana fermions, despite their not so fermionic behavior. From the fermionic
operators we can, for each fermion, create two Majorana operators through the relations

γ2n−1 = ψn + ψ†n ,

γ2n =
ψn − ψ†n

i
.

(19)

The index notation used here means that each regular fermion state gives rise to two Majorana
fermions, since these operators satisfy

γ†2n−1 = (ψn + ψ†n)† = ψ†n + ψn = γ2n−1 ,

γ†2n =

(
ψn − ψ†n

i

)†
=
ψ†n − ψn
−i

= γ2n ,
(20)

i.e they are hermitean (self-conjugate) and the creation and annihilation operators are identical.
This is the definition of a Majorana fermion, which is its own anti-particle. By the definition (19),
these Majorana operators then appear in pairs of two.
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Using the relations (17), we find that all of the possible combinations of two of these operators
are

γ2n−1γ2m−1 = ψnψm + ψ†nψ
†
m + ψ†nψm + ψnψ

†
m = −γ2m−1γ2n−1 ,

γ2nγ2m = −(ψnψm + ψ†nψ
†
m − ψ†nψm − ψnψ†m) = −γ2nγ2m ,

γ2n−1γ2m =
1

i
(ψnψm − ψ†nψ†m + ψ†nψm − ψnψ†m) = −γ2mγ2n−1 ,

(21)

which shows that
γkγj = −γjγk , ∀j 6= k . (22)

The indices j and k are arbitrary here, but not equal, implying that different Majorana operators
always anticommute, regardless of whether they belong to the same pair or not. Furthermore, the
squares of these Majorana operators become

(γ2n−1)2 = ψ2
n + (ψ†n)2 + ψ†nψn + ψnψ

†
n = 1 ,

(γ2n)2 = −(ψ2
n + (ψ†n)2 − ψ†nψn − ψnψ†n) = 1 .

(23)

To summarize, we have shown that the Majorana operators satisfy the relations

γ2i = 1 ,

γiγj = −γjγi , i 6= j,
(24)

or, in a more compact manner,
{γi, γj} = 2δij . (25)
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4 Clifford algebra
Consider the space R3 with the orthonormal basis {e1, e2, e3}. We introduce the wedge product
e1 ∧ e2 of e1 and e2, which will represent the oriented parallelogram spanned by vectors e1 and
e2. This is a new type of vector called a 2-blade, or bivector, and we have the condition that
e2 ∧ e1 = −e1 ∧ e2. Analogously, the wedge product e1 ∧ e2 ∧ e3 is the oriented parallelepiped
spanned by the three vectors e1, e2 and e3. This is called a 3-blade, or trivector. This notion
of blades can be generalized to an arbitrary dimension, where a k-blade represents a finite k-
dimensional linear subspace.

Define the Clifford product of two arbitrary vectors a, b ∈ Rn as

ab = a · b+ a ∧ b , (26)

where · denotes the usual scalar product. From (26) we then obtain the relations

e2i = 1

eiej = −ejei , i 6= j,
(27)

for the orthonormal basis vectors, which can be summarized as

{ei, ej} = 2δij . (28)

Continuing the example in R3, we can generate a space using this Clifford product, where the
basis for this new space will be {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}. This space is the Clifford
algebra of R3, denoted by Cl(R3) [8]. The Clifford algebra of Rn can be written in a more compact
way if we introduce ∧k(Rn) as the set of all k-blades in Rn (i.e ∧0(Rn) is the scalars, ∧1(Rn) is
the vectors, ∧2(Rn) is the bivectors, etc.), because we can then express Cl(Rn) as

Cl(Rn) = ∧0(Rn)⊕ ∧1(Rn)⊕ ∧2(Rn)⊕ ...⊕ ∧n(Rn) =

n⊕
k=0

∧k(Rn) . (29)

From this way of expressing the Clifford algebra, the dimension of the space can be calculated via
combinatorics. We can easily see that

dim ∧k (Rn) =

(
n

k

)
, (30)

just by the number of ways the basis vectors in the blade can be rearranged. This gives

dimCl(Rn) = dim
n⊕
k=0

∧k(Rn) =

n∑
k=0

(
n

k

)
= 2n , (31)

where the last sum is a well known result.

4.1 Rotors
Now consider the Clifford algebra created from an ordinary N -dimensional vector space RN , with
a set of orthonormal basis vectors {e1, . . . , eN}. The notation eiej then, as mentioned earlier,
represents the 2-blade corresponding to the coordinate plane spanned by ei and ej . The relation
(28), however, is strikingly similar to the property (25) of the Majorana operators defined in the
previous section - implying that if we rename the basis vectors as γi, they can be interpreted as
representations of the Majorana fermions.

A Clifford algebra, being a geometric algebra, is very efficient when it comes to describing
rotations. Noting that, by using the rules (27),

(γiγi+1)2 = γiγi+1γiγi+1 = −γiγiγi+1γi+1 = −1 , (32)

we see that this 2-blade has the same property as an imaginary unit. By the definition of the
exponential function ex through its Taylor series

ex =

∞∑
n=0

xn

n!
, (33)
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the 2-blade γiγi+1 can actually be interpreted as an imaginary unit - enabling use of Euler’s
formula, where the imaginary unit is replaced by γiγi+1.

The action of a rotation Φi by an angle θ in the plane spanned by γi and γi+1 on the basis
vectors that span the plane can then be written as

Φi(γi) =γi cos θ + γi+1 sin θ = γi cos θ + γiγiγi+1 sin θ = γi(cos θ + γiγi+1 sin θ) = γie
θγiγi+1 ,

Φi(γi+1) =− γi sin θ + γi+1 cos θ = −γi+1γi+1γi sin θ + γi+1 cos θ

=γi+1(γiγi+1 sin θ + cos θ) = γi+1e
θγiγi+1 .

(34)
A more convenient way to rewrite those two expressions can be found through

Φi(γi) =γie
θγiγi+1 = γi

(
cos

(
θ

2

)
+ γiγi+1 sin

(
θ

2

))
e
θ
2 γiγi+1

=

(
cos

(
θ

2

)
− γiγi+1 sin

(
θ

2

))
γie

θ
2 γiγi+1 = e−

θ
2 γiγi+1γie

θ
2 γiγi+1 ,

(35)

and
Φi(γi+1) =γi+1e

θγiγi+1 = γi+1

(
cos

(
θ

2

)
+ γiγi+1 sin

(
θ

2

))
e
θ
2 γiγi+1

=

(
cos

(
θ

2

)
− γiγi+1 sin

(
θ

2

))
γi+1e

θ
2 γiγi+1 = e−

θ
2 γiγi+1γi+1e

θ
2 γiγi+1 .

(36)

This allows the expression to be used even for vectors γj not in the plane of rotation (i.e j 6= i and
j 6= i+ 1), since

Φi(γj) =e−
θ
2 γiγi+1γje

θ
2 γiγi+1 =

(
cos

(
θ

2

)
− γiγi+1 sin

(
θ

2

))
γj

(
cos

(
θ

2

)
+ γiγi+1 sin

(
θ

2

))
=γje

− θ2 γiγi+1e
θ
2 γiγi+1 = γj ,

(37)
where the fact that γiγi+1γj = γjγiγi+1 was used. This is the expected result, since a rotation
in a certain plane should leave vectors perpendicular to that plane unaffected. Since an arbitrary
vector x ∈ RN can be written as

x =

N∑
i=1

ciγi , (38)

the linearity allows the rotation of this vector an angle θ in the γiγi+1-plane to be written as

Φi(x) = e−
θ
2 γiγi+1xe

θ
2 γiγi+1 . (39)

The object Ri = e
θ
2 γiγi+1 appearing here is called a rotor, and in a more compact manner we can

now write
Φi(x) = R−1i xRi . (40)

Now define an operator Ti, as suggested by Ivanov in 2001 [4], through

Ti(γj) =


γi+1 , j = i

−γi , j = i+ 1

γj , j 6= i , j 6= i+ 1

. (41)

Originally, this was just a transformation of the Majorana operators. However, with the interpre-
tation of γi as a basis element in a Clifford algebra, the operator Ti can be seen as acting on RN ,
where it is a rotation of an angle θ = π

2 counterclockwise in the γiγi+1-plane. Using the newfound
rotor expression of a rotation, with the rotation angle now being θ = π

2 , the operator Ti can be
expressed using the rotors

Ri = e
π
4 γiγi+1 =

(
cos
(π

4

)
+ γiγi+1 sin

(π
4

))
=

1√
2

(1 + γiγi+1) . (42)

In the following sections, this is the expression referred to when mentioning the rotor Ri. This
specific rotor also satisfies

R†i =

(
1√
2

(1 + γiγi+1)

)†
=

1√
2

(1− γiγi+1) = R−1i , (43)
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and we can rewrite (40) as
Ti(x) = R†ixRi . (44)

In the following subsection, it will be shown that these rotors corresponding to the operator
Ti satisfy the braid relations. This result can in turn be used to show that the rotors are similar,
implying that they share the same eigenvalues. With the choice of S = RiRi+1, we see that

SRiS
† = RiRi+1Ri(RiRi+1)† = RiRi+1RiR

†
i+1R

†
i = Ri+1RiRi+1R

†
i+1R

†
i = Ri+1 , (45)

which is the condition that proves Ri and Ri+1 are similar. Since this holds for an arbitrary value
of i = 1, 2, . . . N − 2, by induction all of the rotors are similar.

4.1.1 Braid relations

There are several ways of verifying that these rotors satisfy the braid relations, by using the different
expressions. We can see that, by using the last expression in equation (42),

2
√

2RiRi+1Ri = (1 + γiγi+1)(1 + γi+1γi+2)(1 + γiγi+1)

= (1 + γiγi+1)(1 + γiγi+1 + γi+1γi+2 + γi+1γi+2γiγi+1)

= (1 + γiγi+1 + γi+1γi+2 + γi+2γi) + (γiγi+1 − 1 + γiγi+2 + γi+1γi+2)

= 2(γiγi+1 + γi+1γi+2) ,

(46)

and

2
√

2Ri+1RiRi+1 = (1 + γi+1γi+2)(1 + γiγi+1)(1 + γi+1γi+2)

= (1 + γi+1γi+2)(1 + γiγi+1 + γi+1γi+2 + γiγi+1γi+1γi+2)

= (1 + γiγi+1 + γi+1γi+2 + γiγi+2) + (γi+1γi+2 + γi+2γi − 1 + γiγi+1)

= 2(γiγi+1 + γi+1γi+2) ,

(47)

which means that the first braid relation, i.e

RiRi+1Ri = Ri+1RiRi+1 , i = 1, 2, ..., N − 2 , (48)

is satisfied for the rotors.
An interesting note here that might be misinterpreted as an inconsistency is that if the expres-

sion
Ri = e

π
4 γiγi+1 (49)

is used along with the ordinary exponential rule eAeB = eA+B , one will soon find that the first
braid relation is, in fact, not satisfied. This is because for noncommutative A and B, the Baker-
Campbell-Hausdorff formula

ln
(
eAeB

)
=A+B +

1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]])

− 1

24
[B, [A, [A,B]]]− 1

720
([B, [B, [B, [B,A]]]] + [A, [A, [A, [A,B]]]])

+
1

360
([A, [B, [B, [B,A]]]] + [B, [A, [A, [A,B]]]])

+
1

120
([B, [A, [B, [A,B]]]] + [A, [B, [A, [B,A]]]]) + . . .

(50)

must be used [9], where [A,B] = AB −BA is the commutator. In the case of the rotors,

A = γiγi+1 , B = γi+1γi+2 , (51)

and thus, using (24),
[A,B] = γiγi+1γi+1γi+2 − γi+1γi+2γiγi+1

= γiγi+2 − γi+2γi = 2γiγi+2 6= 0 ,
(52)

which shows why the extra terms in (50) needs to be accounted for in order to use (49) to show
that the rotors satisfy the braid relations.
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Let us now examine the commutator of different rotors. For future reference, we see that

RiRj =
1

2
(1 + γiγi+1)(1 + γjγj+1) =

1

2
(1 + γiγi+1 + γjγj+1 + γiγi+1γjγj+1) , (53)

which gives

[Ri, Rj ] = RiRj −RjRi

=
1

2
(1 + γiγi+1 + γjγj+1 + γiγi+1γjγj+1)− 1

2
(1 + γjγj+1 + γiγi+1 + γjγj+1γiγi+1)

=
1

2
(γiγi+1 + γjγj+1 + γiγi+1γjγj+1 − γjγj+1 − γiγi+1 − γjγj+1γiγi+1)

=
1

2
(γiγi+1γjγj+1 − γjγj+1γiγi+1) .

(54)

Assuming that |i− j| > 1, and with the properties (24),

[Ri, Rj ] =
1

2
(γiγi+1γjγj+1 − γjγj+1γiγi+1)

=
1

2
(γiγi+1γjγj+1 − γiγi+1γjγj+1) = 0 ,

(55)

which confirms that the rotors satisfy the second braid relation, i.e

RiRj = RjRi , |i− j| > 1 . (56)

Equations (48) and (56) show that rotors satisfy the braid relations and actually are a repre-
sentation of the braid group generators. If the basis vector γi, as mentioned earlier, is interpreted
as a representation of the i:th particle, the rotors Ri are a representation of the generators of the
braid group, which describes the exchange of particles. For the operators Ti, this gives

Ti(Ti+1(Ti(x))) = R†iR
†
i+1R

†
ixRiRi+1Ri = (RiRi+1Ri)

†xRiRi+1Ri

= (Ri+1RiRi+1)†xRi+1RiRi+1 = R†i+1R
†
iR
†
i+1xRi+1RiRi+1

= Ti+1(Ti(Ti+1(x))) ,

(57)

and in the same manner

Ti(Tj(x)) = R†iR
†
jxRjRi = (RjRi)

†xRjRi

= (RiRj)
†xRiRj = R†jR

†
ixRiRj = Tj(Ti(x)) , |i− j| > 1 .

(58)

This result, that the operators Ti are another representation of the braid group generators, could
also have been shown directly from the definition (41). Doing it in this order highlights the more
fundamental rotors as the cause of these relations, and finding this property also gives a second
way of creating the exchange matrices.

4.1.2 Non-abelian properties

For the case when |i− j| = 1, we can relabel j = i+ 1, and (54) gives

[Ri, Rj ] =
1

2
(γiγi+1γjγj+1 − γjγj+1γiγi+1)

=
1

2
(γiγi+1γi+1γi+2 − γi+1γi+2γiγi+1)

=
1

2
(γiγi+2 − γi+2γi) = γiγi+2 .

(59)

Since the commutator [Ri, Ri+1] 6= 0, Ri and Ri+1 do not commute and it is shown that RiRi+1 6=
Ri+1Ri. This is an important result, since it shows that this representation describes non-abelian
anyons, for which the order of exchange makes a difference. This separates them from abelian
anyons, where a particle exchange of adjacent particles, independent of which particles are ex-
changed, contributes with a phase eiπα. The corresponding operators should then commute, since
the exchange between abelian anyons does not depend on the order of exchange.
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5 Exchange matrices
Everything discussed in the previous sections now enables us to find the exchange matrices. Let
us here, in order to be able to perform all of the calculations thoroughly, restrict ourselves to the
case of four Majorana operators. The results can be generalized to larger systems, which will be
discussed in a later section. We now have N = 4 in the previous sections. Exchange matrices can
then be created both from the rotors Ri and from the operators Ti, since both were shown to be
representations of the braid group generators τi.

5.1 Rotors
With N = 4 there are three different rotors: R1, R2 and R3. Viewing the states

|00〉 = |0〉 ,

|10〉 = ψ†1 |0〉 ,

|01〉 = ψ†2 |0〉 ,

|11〉 = ψ†1ψ
†
2 |0〉 ,

(60)

as a basis for the state space, we can through linear algebra find a matrix representation for each
rotor by observing its action on each element in the basis. We find that

R1 |00〉 =
1√
2

(1 + γ1γ2) |00〉 =
1√
2

(1 +
1

i
(ψ2

1 − (ψ†1)2 + ψ†1ψ1 − ψ1ψ
†
1)) |00〉

=
1√
2

(1 + i) |00〉 = ei
π
4 |00〉 ,

R1 |10〉 =
1√
2

(1 + γ1γ2) |10〉 =
1√
2

(1 +
1

i
(ψ2

1 − (ψ†1)2 + ψ†1ψ1 − ψ1ψ
†
1)) |10〉

=
1√
2

(1− i) |10〉 = e−i
π
4 |10〉 ,

R1 |01〉 =
1√
2

(1 + γ1γ2) |01〉 =
1√
2

(1 +
1

i
(ψ2

1 − (ψ†1)2 + ψ†1ψ1 − ψ1ψ
†
1)) |01〉

=
1√
2

(1 + i) |01〉 = ei
π
4 |01〉 ,

R1 |11〉 =
1√
2

(1 + γ1γ2) |11〉 =
1√
2

(1 +
1

i
(ψ2

1 − (ψ†1)2 + ψ†1ψ1 − ψ1ψ
†
1)) |11〉

=
1√
2

(1− i) |11〉 = e−i
π
4 |11〉 .

(61)

The matrix representation of R1 in this basis can thus be written as

[R1] =


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4

 . (62)

These calculations were relatively simply since the Majorana operators in the expression for R1

belong to the same pair. For R3 this is also the case, where the same calculations instead yield

R3 |00〉 =
1√
2

(1 + γ3γ4) |00〉 =
1√
2

(1 +
1

i
(ψ2

2 − (ψ†2)2 + ψ†2ψ2 − ψ2ψ
†
2)) |00〉

=
1√
2

(1 + i) |00〉 = ei
π
4 |00〉 ,

R3 |10〉 =
1√
2

(1 + γ3γ4) |10〉 =
1√
2

(1 +
1

i
(ψ2

2 − (ψ†2)2 + ψ†2ψ2 − ψ2ψ
†
2)) |10〉

=
1√
2

(1 + i) |10〉 = ei
π
4 |10〉 ,

(63)
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R3 |01〉 =
1√
2

(1 + γ3γ4) |01〉 =
1√
2

(1 +
1

i
(ψ2

2 − (ψ†2)2 + ψ†2ψ2 − ψ2ψ
†
2)) |01〉

=
1√
2

(1− i) |01〉 = e−i
π
4 |01〉 ,

R3 |11〉 =
1√
2

(1 + γ3γ4) |11〉 =
1√
2

(1 +
1

i
(ψ2

2 − (ψ†2)2 + ψ†2ψ2 − ψ2ψ
†
2)) |11〉

=
1√
2

(1− i) |11〉 = e−i
π
4 |11〉 ,

and the matrix representation becomes

[R3] =


ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4

 . (64)

For R2 it becomes more complicated though, as R2 = 1√
2
(1+γ2γ3) contains Majorana operators

from two different pairs. From the definition (19) we can see that

R2 =
1√
2

(1 + γ2γ3) =
1√
2

(1 +
1

i
((ψ1 − ψ†1)(ψ2 + ψ†2)))

=
1√
2

(1− i(ψ1ψ2 + ψ1ψ
†
2 − ψ

†
1ψ2 − ψ†1ψ

†
2)) ,

(65)

and examining how this acts on the basis elements, we find that

R2 |00〉 =
1√
2

(1− i(ψ1ψ2 + ψ1ψ
†
2 − ψ

†
1ψ2 − ψ†1ψ

†
2)) |00〉

=
1√
2

(|00〉+ i |11〉) ,

R2 |10〉 =
1√
2

(1− i(ψ1ψ2 + ψ1ψ
†
2 − ψ

†
1ψ2 − ψ†1ψ

†
2)) |10〉

=
1√
2

(|10〉+ i |01〉) ,

R2 |01〉 =
1√
2

(1− i(ψ1ψ2 + ψ1ψ
†
2 − ψ

†
1ψ2 − ψ†1ψ

†
2)) |01〉

=
1√
2

(|01〉+ i |10〉) ,

R2 |11〉 =
1√
2

(1− i(ψ1ψ2 + ψ1ψ
†
2 − ψ

†
1ψ2 − ψ†1ψ

†
2)) |11〉

=
1√
2

(|11〉+ i |00〉) ,

(66)

which gives the matrix representation

[R2] =
1√
2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

 . (67)

Having calculated the matrix representations for all of the rotors, we can calculate the exchange
matrices for an exchange between any of the four particles, using the compositions of the braid
group generators seen in the end of section 2. Define the matrix

Up,i = [Ri][Ri+1] . . . [Ri+p] . . . [Ri+1][Ri] (68)

as the matrix interchanging particles i and i + 1 + p. These matrices are the ones mentioned in
the introduction, describing how the wave function changes as a result of a particle exchange. The
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possibilities where p = 0 in this limited case are

U0,1 = [R1] =


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4

 , (69)

U0,2 = [R2] =
1√
2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1

 , (70)

and

U0,3 = [R3] =


ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4

 . (71)

With p = 1, i.e when there is one particle between the ones being exchanged, we get

U1,1 = [R1][R2][R1] =
1√
2


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4




1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



=
1√
2


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



ei
π
4 0 0 ei

π
4

0 e−i
π
4 ei

3π
4 0

0 ei
π
4 ei

π
4 0

ei
3π
4 0 0 e−i

π
4



=
1√
2


i 0 0 i
0 −i i 0
0 i i 0
i 0 0 −i

 ,
(72)

and

U1,2 = [R2][R3][R2] =
1

2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4




1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



=
1

2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



ei
π
4 0 0 ei

3π
4

0 ei
π
4 ei

3π
4 0

0 ei
π
4 e−i

π
4 0

ei
π
4 0 0 e−i

π
4



=
1√
2


i 0 0 i
0 i i 0
0 i −i 0
i 0 0 −i



(73)

as the possible exchange matrices. In this case, there is only one matrix with p = 2. Using the
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result from (73), we find

U2,1 = [R1][R2][R3][R2][R1] =
1√
2


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



i 0 0 i
0 i i 0
0 i −i 0
i 0 0 −i



ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



=
1√
2


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



ei

3π
4 0 0 ei

π
4

0 ei
π
4 ei

3π
4 0

0 ei
π
4 e−i

π
4 0

ei
3π
4 0 0 e−i

3π
4



=
1√
2


−1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 −1

 ,
(74)

as the final exchange matrix.

5.1.1 Verifying relations

After all these calculations, we can verify them by checking that these matrices still have the right
properties. The matrix representations of the rotors should satisfy the braid relations, and all of
the exchange matrices should be unitary. The last property is important, since it is required in
order to preserve the probability density of the wave function under the particle exchange. The
diagonal matrices U0,1 = [R1] and U0,3 = [R3] can trivially be seen to be unitary, since their
conjugate transpose equals their inverse. We also see that

U0,2U
†
0,2 = [R2][R2]† =

1

2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1




1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 =
1

2


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 = I , (75)

where I denotes the 4× 4 identity matrix. This confirms that [R2] is unitary as well. In order to
check the other exchange matrices we can note that given two unitary matrices A and B, we have

A† = A−1 , B† = B−1 , (76)

which gives
(AB)† = B†A† = B−1A−1 = (AB)−1 . (77)

Equation (77) shows that the product of two unitary matrices also is unitary - implying that all
of the other exchange matrices are unitary since they are products of the unitary rotor matrices.

Furthermore, using (72), we see that

[R2][R1][R2] =
1

2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4




1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



=
1

2


1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



ei
π
4 0 0 ei

3π
4

0 e−i
π
4 ei

π
4 0

0 ei
3π
4 ei

π
4 0

ei
π
4 0 0 e−i

π
4



=
1√
2


i 0 0 i
0 −i i 0
0 i i 0
i 0 0 −i

 = [R1][R2][R1] .

(78)

This shows that the matrices satisfy the first of the braid relations when i = 1, i.e [R1][R2][R1] =

15



[R2][R1][R2]. For the other possible case, similar calculations show that, using (73),

[R3][R2][R3] =
1√
2


ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4




1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1



ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4



=
1√
2


ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4



ei
π
4 0 0 ei

π
4

0 ei
π
4 ei

π
4 0

0 ei
3π
4 e−i

π
4 0

ei
3π
4 0 0 e−i

π
4



=
1√
2


i 0 0 i
0 i i 0
0 i −i 0
i 0 0 −i

 = [R2][R3][R2] .

(79)

Thus the first braid relation is satisfied also in that case, i.e [R2][R3][R2] = [R3][R2][R3]. Checking
the second braid relation is easier, we see that

[R1][R3] =


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4



=


i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

 ,
(80)

while

[R3][R1] =


ei
π
4 0 0 0

0 ei
π
4 0 0

0 0 e−i
π
4 0

0 0 0 e−i
π
4



ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4



=


i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

 ,
(81)

which shows that [R1][R3] = [R3][R1]. In this limited scenario, that is the only case that needs to
be verified for the second relation.

5.2 T operators
The operators Ti introduced in section 4.1 can also be expressed as matrices, since they are ordinary
rotations as known from linear algebra. Remembering that they also satisfy the braid relations,
just like the rotors, exchange matrices can be created through them as well. The operator was
defined as

Ti(γj) =


γi+1 , j = i

−γi , j = i+ 1

γj , j 6= i , j 6= i+ 1

, (82)

and observing its action on the basis vectors γi, the matrix [Ti] has non-zero elements

[Ti]ab =


1 , a = b 6= i, i+ 1

1 , (a, b) = (i+ 1, i)

−1 , (a, b) = (i, i+ 1)

. (83)

In the case considered in this section, where N = 4, this would give the three matrices

[T1] =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , (84)
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[T2] =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 , (85)

and

[T3] =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 , (86)

which, just like the rotors, are matrix representations of the braid group generators {τ1, τ2, τ3}.
The compositions of these create exchange matrices

Ũp,i = [Ti][Ti+1] . . . [Ti+p] . . . [Ti+1][Ti] , (87)

in analogy with how the exchange matrices Up,i were created. The notation with the tilde is used
to distinguish them from the exchange matrices Up,i calculated earlier. We find

Ũ0,1 = [T1] =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , (88)

Ũ0,2 = [T2] =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 , (89)

and

Ũ0,3 = [T3] =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 , (90)

as the three exchange matrices with p = 0. With p = 1, there are the matrices

Ũ1,1 = [T1][T2][T1] =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



=


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




0 −1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1



=


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

 ,

(91)

and

Ũ1,2 = [T2][T3][T2] =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1



=


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 0 −1 0
0 0 0 −1
0 1 0 0



=


1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

 .

(92)
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For the final exchange matrix, with p = 2, equation (92) gives

Ũ2,1 = [T1][T2][T3][T2][T1] =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1



=


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




0 −1 0 0
0 0 0 1
0 0 −1 0
1 0 0 0



=


0 0 0 −1
0 −1 0 0
0 0 −1 0
1 0 0 0

 .

(93)

5.2.1 Verifying relations

Just like earlier, it is now a good idea to verify that these exchange matrices satisfy the same
relations. Since the braid properties of the rotors were used to show that the operators Ti satisfied
the braid relations, the matrix representations should do the same. All of the exchange matrices
should also be unitary, as explained earlier. We find that

Ũ0,1Ũ
†
0,1 = [T1][T1]† =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I , (94)

Ũ0,2Ũ
†
0,2 = [T2][T2]† =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I , (95)

as well as

Ũ0,3Ũ
†
0,3 = [T3][T3]† =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I , (96)

which shows that the first three exchange matrices are unitary. Using the same reasoning as in
the previous subsection, equation (77) implies that the rest of them also are unitary, since they
themselves are products of unitary matrices.

Furthermore, using equation (91), we see that

[T2][T1][T2] =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1



=


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



=


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

 = [T1][T2][T1] .

(97)

This shows that the [Ti]-matrices satisfy the first of the braid relations when i = 1, i.e [T1][T2][T1] =
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[T2][T1][T2]. With 4 matrices, there is one more possible case for this relation. Using equation (92),

[T3][T2][T3] =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0



=


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0



=


1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

 = [T2][T3][T2] ,

(98)

and thus [T2][T3][T2] = [T3][T2][T3], which means that the first braid relation is satisfied in all of
the cases. Just as before, checking the second braid relation only requires the single case with

[T1][T3] =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (99)

and

[T3][T1] =


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (100)

which shows that [T1][T3] = [T3][T1].
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6 Eigenvalues
Given the exchange matrices calculated in the previous section, one property that specifically is
of interest is the eigenvalues of the matrices. They contain information about the repelling forces
between particles, and how the exchange statistics differ from ordinary fermions and bosons [10].
The eigenvalues are also invariant under a change of basis, which makes them more of an intrinsic
property of the system than a result of our choice of basis.

6.1 Rotors
For the exchange matrices Up,i calculated through the rotor representation of the braid group
generators, we find the characteristic polynomials

det(U0,1 − λI) = (ei
π
4 − λ)2(e−i

π
4 − λ)2 =

(
1 + i√

2
− λ
)2(

1− i√
2
− λ
)2

,

det(U0,2 − λI) = λ4 − 2
√

2λ3 + 4λ2 − 2
√

2λ+ 1 = (λ2 −
√

2λ+ 1)2

=

(
1 + i√

2
− λ
)2(

1− i√
2
− λ
)2

,

det(U0,3 − λI) = (ei
π
4 − λ)2(e−i

π
4 − λ)2 =

(
1 + i√

2
− λ
)2(

1− i√
2
− λ
)2

,

det(U1,1 − λI) = λ4 + 2λ2 + 1 = (i− λ)2(−i− λ)2 ,

det(U1,2 − λI) = λ4 + 2λ2 + 1 = (i− λ)2(−i− λ)2 ,

det(U2,1 − λI) = λ4 + 1

=

(
1 + i√

2
− λ
)(

1− i√
2
− λ
)(
−1 + i√

2
− λ
)(
−1− i√

2
− λ
)
.

(101)

If we denote the set of eigenvalues of a matrix A as Eigen(A), the roots to these polynomials give

Eigen(U0,1) = Eigen(U0,2) = Eigen(U0,3) =

{
1± i√

2

}
, (102)

where both values have the algebraic multiplicity 2. This also verifies the similarity of the ro-
tors, since they share the same eigenvalues. For the next exchange matrices, we instead get the
eigenvalues

Eigen(U1,1) = Eigen(U1,2) = {±i} , (103)
again both with multiplicity 2. Finally, for the last matrix,

Eigen(U2,1) =

{
±1 + i√

2
,±1− i√

2

}
. (104)

An illustration of how these eigenvalues differ from the three-dimensional case (±1) can be done
by mapping the eigenvalues onto the unit circle in the complex plane, as seen in figure 5.
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Figure 5: Eigenvalues of exchange matrices Up,i, with p = 0 (red), p = 1 (blue) and p = 2 (green).
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6.2 T operators
For the exchange matrices obtained through the matrix representations of the operators Ti, we
find the characteristic polynomials

det(Ũ0,1 − λI) = λ4 − 2λ3 + 2λ2 − 2λ+ 1 = (λ− 1)2(λ2 + 1) ,

det(Ũ0,2 − λI) = λ4 − 2λ3 + 2λ2 − 2λ+ 1 = (λ− 1)2(λ2 + 1) ,

det(Ũ0,3 − λI) = λ4 − 2λ3 + 2λ2 − 2λ+ 1 = (λ− 1)2(λ2 + 1) ,

det(Ũ1,1 − λI) = λ4 − 2λ2 + 1 = (λ2 − 1)2 ,

det(Ũ1,2 − λI) = λ4 − 2λ2 + 1 = (λ2 − 1)2 ,

det(Ũ2,1 − λI) = λ4 + 2λ3 + 2λ2 + 2λ+ 1 = (λ+ 1)2(λ2 + 1) ,

(105)

which gives the eigenvalues

Eigen(Ũ0,1) = Eigen(Ũ0,2) = Eigen(Ũ0,3) = {1,±i} , (106)

where the eigenvalue λ = 1 has the algebraic multiplicity 2. We also see that

Eigen(Ũ1,1) = Eigen(Ũ1,2) = {±1} , (107)

where both values has multiplicity 2. For the last matrix,

Eigen(Ũ2,1) = {−1,±i} , (108)

where, similarly to the first ones, the eigenvalue λ = −1 has multiplicity 2. In the same way as
in the previous section, these eigenvalues can also be illustrated on the unit circle in the complex
plane. This is shown in figure 6.
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Figure 6: Eigenvalues of exchange matrices Ũp,i, with p = 0 (red), p = 1 (blue) and p = 2 (green).
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7 Generalization
We have concluded that the exchange of non-abelian anyons can be represented by the braid group,
where the degree of the braid group is determined by the number of particles. In this study we
thoroughly examined the case of four Majorana fermions, and the next step would naturally be to
look at a system with more particles. The same methods that have been used to acquire the 4× 4
exchange matrices can be generalized to larger systems of arbitrary size. The expression (83), i.e

[Ti]ab =


1 , a = b 6= i, i+ 1

1 , (a, b) = (i+ 1, i)

−1 , (a, b) = (i, i+ 1)

, (109)

which determines the components of the matrix representations of the operators Ti, is independent
of the size of the system and can thus easily be generalized, along with the corresponding exchange
matrices

Ũp,i = [Ti][Ti+1] . . . [Ti+p] . . . [Ti+1][Ti] . (110)

These matrices, just like the matrices [Ti], are of size N × N , since they are operators acting on
the vector space RN .

The matrix representations of the rotors will require some more work. The basis now becomes

|00 . . . 0〉 = |0〉 ,

|10 . . . 0〉 = ψ†1 |0〉 ,

|01 . . . 0〉 = ψ†2 |0〉 ,
...

|11 . . . 1〉 = ψ†1ψ
†
2 . . . ψ

†
N
2

|0〉 ,

(111)

which contains exactly 2
N
2 elements. The factor 1

2 is a result of the pairing between Majorana
fermions. This number of basis elements is the reason these matrices grow exponentially larger
when increasing the number of particles, since the corresponding matrices will be of size 2

N
2 × 2

N
2 .

It is thus also the reason why such a relatively small case was examined in depth earlier. The
matrices can be determined in the same way as earlier, by observing how the rotor

Ri =
1√
2

(1 + γiγi+1) (112)

acts on the basis elements. When expanding the Majorana operators γi in terms of the fermion
operators according to equation (19), one will also encounter the difference between the matrices
corresponding to rotors Ri with even and odd i. If i is odd, both γi and γi+1 belong to the same
pair, while if i is even they do not - resulting in a more complicated matrix, as seen earlier. When
these matrices are known, the exchange matrices can again be determined through

Up,i = [Ri][Ri+1] . . . [Ri+p] . . . [Ri+1][Ri] . (113)

We can here also briefly discuss the differences between the exchange matrices Ũp,i and Up,i.
They are both representations of the braid group generators, but differ since they act on different
spaces. We have seen that Ti operate on the Majorana operators γi, while the rotors Ri instead
operate on the state |Ψ〉 of the system. This also gives rise to the difference in size between the
two kinds of exchange matrices; Ũp,i is of size N × N while Up,i is of size 2

N
2 × 2

N
2 . These sizes

show that it was only a coincidence that they happened to be the same size in the case discussed
in section 5, where N = 4. An interesting note here is the similarity between these sizes and the
dimensions of RN (which obviously is N) and the corresponding Clifford algebra. The latter is
given by (31) as

dimCl(RN ) = 2N . (114)
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8 Summary
In this thesis we discussed non-abelian anyons and their properties. The configuration space Md

N

was created, which lead to the conclusion that the fundamental group of the configuration space
in two dimensions is the braid group, i.e π1(M2

N ) ∼= BN . We then examined the braid relations,
and their connection to the physical system of particles. We realized that in order to find exchange
matrices, we would need to look for matrix representations of the braid group generators τi.

With the purpose of reaching this main goal, we discussed the fermionic creation and annihi-
lation operators along with their effect on quantum states. From these operators we also showed
how to create Majorana fermions, since excitations of these can exhibit non-abelian statistics. We
then introduced the Clifford algebra through the definitions of k-blades and the Clifford product.
It became clear that it was a very powerful tool in this setting, both for the ability to cooperate
with the Majorana operators and for producing representations of the braid group generators. The
latter was shown to be the rotors Ri of the Clifford algebra.

These rotors, and the corresponding operators Ti, were shown to satisfy the braid relations and
were then used to create exchange matrices for the non-abelian anyons. The case of 4 Majorana
fermions was studied thoroughly, and it was verified that the matrices then satisfied all of the
required conditions. In that limited case, we also calculated all of the eigenvalues of the exchange
matrices. In conclusion, we found that a Clifford algebra has a natural connection to the framework
of non-abelian anyons, and can be of great help when calculating the corresponding exchange
matrices.
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9 Future work
As mentioned earlier, one obvious continuation of our work is to use the same methods to produce
exchange matrices, but for larger systems. The procedure for this was summarized in section 7.
An interesting thing would be to examine if it is possible to verify the properties of the matrices
in a more general setting, i.e without confining the system to a specific value of N . Furthermore,
there are two other areas where our results could be used for continued work.

9.1 Lower limit of the kinetic energy
One possible continuation that would require some more study is to more thoroughly examine
the exchange matrix eigenvalues. As mentioned in section 6, they contain information about the
repelling force between particles. More specifically, they could be used to find a lower limit of this
force in this kind of system. It would then also be possible to give a lower limit of the kinetic
energy of the system [6]. Given a system of N particles, a purely kinetic Hamiltonian is given by

Ĥ = T̂ = − ~2

2m

N∑
j=1

∇2
j , (115)

where ∇j is the gradient acting on the j:th coordinate. In a system with anyons, Hardy’s inequality
could be used to give a lower limit of the kinetic energy

T = 〈Ψ|T̂ |Ψ〉 . (116)

This limit would then also depend on the eigenvalues of the exchange operators [10]. It could then
be of interest to generalize this limit to the case of non-abelian anyons, and examine whether the
eigenvalues calculated in our work could be used to draw any conclusions.

9.2 Topological quantum computers
Theoretically, one of the more relevant applications of anyons and the theory of braid group
statistics is found in the field of quantum computers. In a regular computer, the memory consists
of bits, which can take the values 0 or 1. In a quantum computer these are replaced by quantum
bits (qubits), which are quantum states given by

|ψ〉 = aeiα |0〉+ beiβ |1〉 , a, b ∈ R , (117)

where |0〉 and |1〉 are the two classical states of a bit. One of the major problems of this setup is
how sensitive these quantum mechanical systems are to interference from the outside world, which
is a phenomenon known as quantum decoherence [11]. To avoid this, one would need to completely
isolate the system from its environment.

However, another approach would be to use the braids of non-abelian anyons to form the logic
gates of the computer, which would then be called a topological quantum computer. The advantage
of using these braids as opposed to trapped “particles in a box” is that it would greatly improve the
stability of the computer [12]. The reasoning behind this is quite intuitive; a small perturbation
of trapped particles can cause decoherence, but will not change the topological properties of the
world line braids. Further study could then show whether the exchange matrices and methods from
our work could be applied in this area, when performing calculations involving these topological
qubits.
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