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Abstract

This bachelor’s thesis gives a thorough introduction to geometric algebra (GA), an
overview of conformal geometric algebra (CGA) and an application to the processing
of single particle data from cryo-electron microscopy (cryo-EM).

The geometric algebra over the vector space Rp,q, i.e. the Clifford algebra over an
orthogonal basis of the space, is a strikingly simple algebraic construction built from the
geometric product, which generalizes the scalar and cross products between vectors. In
terms of this product, a host of algebraically and geometrically meaningful operations can
be defined. These encode linear subspaces, incidence relations, direct sums, intersections
and orthogonal complements, as well as reflections and rotations. It is with good reason
that geometric algebra is often referred to as a universal language of geometry.

Conformal geometric algebra is the application of geometric algebra in the context of
the conformal embedding of R3 into the Minkowski space R4,1. By way of this embedding,
linear subspaces of R4,1 represent arbitrary points, lines, planes, point pairs, circles and
spheres in R3. Reflections and rotations in R4,1 become conformal transformations in R3:
reflections, rotations, translations, dilations and inversions.

The analysis of single-particle cryo-electron microscopy data leads to the common
curves problem. By a variant of the Fourier slice theorem, this problem involves hemi-
spheres and their intersections. This thesis presents a rewriting, inspired by CGA, into a
problem of planes and lines. Concretely, an image in the Fourier domain is transformed
by mapping points according to

x↦ x

1 −
√

1 − x2

in suitable units. The inversive nature of this transformation causes certain issues that
render its usage a trade-off rather than an unconditional advantage.

Keywords: Geometric algebra, Clifford algebra, conformal geometric algebra, single
particle analysis, cryo-electron microscopy, common curves, stereographic projection, in-
version



Sammanfattning

Detta kandidatexamensarbete ger en grundlig introduktion till geometrisk algebra (GA),
en översiktlig redogörelse för konform geometrisk algebra (CGA) samt en tillämpning på
behandlingen av enpartikeldata från kryo-elektronmikroskopi (kryo-EM).

Den geometriska algebran över vektorrummet Rp,q, eller Cliffordalgebran över en or-
togonal bas till rummet, är en slående enkel algebraisk konstruktion som bygger på den
geometriska produkten, vilken generaliserar skalär- och kryssprodukterna mellan vektorer.
Med utgångspunkt i denna produkt kan en rad algebraiskt och geometriskt meningsful-
la operationer definieras. Dessa representerar linjära delrum, incidensrelationer, direkta
summor, snitt och ortogonala komplement, såväl som speglingar och rotationer. Det är
av goda skäl som geometrisk algebra ofta beskrivs som ett universellt språk för geometri.

Konform geometrisk algebra är tillämpningen av geometrisk algebra i anslutning till
den konforma inbäddningen av R3 i Minkowskirummet R4,1. Genom denna inbäddning
representerar linjära delrum av R4,1 godtyckliga punkter, linjer, plan, punktpar, cirklar
och sfärer i R3. Speglingar och rotationer i R4,1 blir konforma avbildningar i R3: speglingar,
rotationer, translationer, dilationer och inversioner.

Analysen av enpartikeldata från kryo-elektronmikroskopi leder till problemet med
gemensamma kurvor. Enligt en variant av projektionssatsen (“the Fourier slice theorem”)
inbegriper detta problem halvsfärer och deras skärningkurvor. I detta arbete presenteras
en omskrivning, inspirerad av CGA, till ett problem rörande plan och linjer. Konkret
transformeras en bild i Fourierrymden genom att punkterna skickas enligt

x↦ x

1 −
√

1 − x2

i lämpliga enheter. Denna avbildnings inversiva natur orsakar vissa problem som gör dess
användning till en kompromiss snarare än en otvetydig fördel.
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1 Introduction
This thesis consists of three parts. The first part is a detailed introduction to the funda-
mentals of geometric algebra, aimed at those without prior knowledge of the subject. The
second part is an overview of conformal geometric algebra (CGA), which is an interesting
subject in its own right, and also serves as a source of examples of computation with
geometric algebra. In the third part, inspiration and ideas from CGA are applied to the
common curves problem from single particle cryo-electron microscopy (cryo-EM).

1.1 Geometric algebra

Vectors are highly useful mathematical objects that can be viewed in a multitude of
different ways. In particular, they are algebraic objects that describe geometry. The
usual vector space Rn supports scalar multiplication αx and vector addition x+y, as well
as the inner or scalar product x ⋅ y. In three dimensions, one can also define the cross
product x × y. The usefulness of all these operations is confirmed by their abundance
throughout mathematics and physics.

However, in the view that vectors are a kind of generalized numbers, there seems to
be something missing: A product between vectors that behaves similarly to the ordinary
product between numbers. The scalar product of two vectors always results in a scalar
and not a vector (it might be better called a bilinear form rather than a product). The
cross product is only uniquely defined in three dimensions; moreover, it is not associative
((a×b)×c ≠ a×(b×c)), which seems to be the least that can be required of an algebraically
familiar product.

Geometric algebra is based around the geometric product, written simply xy, which is
associative and even invertible in many cases, and combines the scalar and cross products.
The definition as a quotient algebra “requiring as little as possible” reveals a unified
structure of scalars, vectors and higher-dimensional objects called multivectors. Elements
in the new algebra have geometrical significance that allows linear subspaces as well as
common geometrical operations to be compactly expressed. The intersection and direct
sum of linear subspaces can under many conditions be expressed using the new meet and
wedge products.

1.2 Conformal geometric algebra

The ability to express linear subspaces as algebraic objects is useful when dealing with
Rn on its own, yet may be further exploited by viewing Rn not on its own, but embedded
in an ambient space X via a map X∶ Rn →X. Linear subspaces of X may, through their
intersections with X(Rn), represent nonlinear subspaces of Rn. The simplest example
is projective geometry, in which X = Rn+1 and X(x) = x + en+1. Here, arbitrary points,
lines and planes become linear subspaces. A more powerful construction is conformal
geometry, where X = Rn+1,1 and X is based on stereographic projection. In conformal
geometry, linear subspaces of R4,1 represent subsets of R3 such as arbitrary planes, lines,
points, spheres, circles and point pairs.

1.3 Cryo-electron microscopy and the common curves problem

Single particle cryo-electron microscopy (cryo-EM) is an imaging technique used to de-
termine the three-dimensional structures of identical, isolated molecules that have been
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rapidly frozen in ice. The physics and practice behind the method are largely beyond the
scope of this thesis, but one mathematical problem that arises in the processing of the
data involves spheres and their intersections. In Section 4, I will present this problem
and present a rewriting of it based on ideas from conformal geometry.
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2 Geometric algebra
In this section, I will give an introduction to geometric algebra in the context of a general
space Rp,q and some specific examples, without special focus on conformal geometry or
the common curves problem.

The presentation is heavily based on that found in [1, Chapters 1–3] (an older version
is published as [2]), which develops the subject in a powerful way that allows the proofs
of many formulae to be reduced to elementary set logic. However, the treatment is
quite concise and is aimed at mathematically rather experienced readers. Here, I have
prioritized ease of understanding over rigour and compactness, and have tried to provide
concrete examples to make the text quickly digestible. I have written it with an audience
of my fellow undergraduate students in mind, trying to produce an introduction that I
would have liked to read myself. The reader is only assumed to be familiar with standard
linear algebra, in particular vectors, the dot product and to a lesser extent the cross
product.

If the reader still wonders why one should be excited about geometric algebra, consult
[3] (but beware of notational differences; see Section 2.4.1). It gives a brief introduction
to the subject, followed by a long list of very elegant motivating examples. Another
good introductory treatment, focusing on geometric algebra in the context of physics (for
which it is very well suited) is given in [4].

2.1 Constructing the geometric algebra

Here, I will construct the geometric algebra in a way that is informal in order to convey
the essential points more clearly, but that can in principle be made totally rigorous (see
for example [1, Section 2.1]).

2.1.1 Vector spaces with signature

We are used to thinking of vectors as members of the Euclidean vector space Rn with a
basis {e1, . . . ,en}, equipped with the ordinary scalar product defined by

ei ⋅ ej ∶=
⎧⎪⎪⎨⎪⎪⎩

1 i = j
0 i ≠ j,

and extending bilinearly (requiring that it is a linear function in both arguments):

∀α,β ∈ R ∀x,y,z ∈ Rn (αx + βy) ⋅ z = α (x ⋅ z) + β (y ⋅ z),
x ⋅ (αy + βz) = α (x ⋅ y) + β (x ⋅ z). (2.1)

We will generalize this definition slightly by allowing some of the basis vectors to square
to −1. More precisely, the first p vectors square to 1 and the remaining q ones (where
n = p + q) square to −1:

ei ⋅ ej ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 i = j and i ≤ p
−1 i = j and i > p

0 i ≠ j.
(2.2)

This new vector space is called Rp,q and is said to have the signature (p, q). It is a theorem,
Sylvester’s Law of Inertia [1, Theorem 2.4], that the signature is invariant under changes
of orthogonal basis.
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Note that the new scalar product violates one of the conventional axioms of inner
products: that x ⋅ x = 0 ⇔ x = 0. For example, in R1,1 (which has a basis {e1,e2} with
e1 ⋅ e1 = 1 and e2 ⋅ e2 = −1), consider the vector e1 + e2:

(e1 + e2) ⋅ (e1 + e2) = e1 ⋅ e1 + 2e1 ⋅ e2 + e2 ⋅ e2

= 1 + 2 ⋅ 0 − 1

= 0.

We say that e1 + e2 is an example of a null vector. More generally, in Rn,1 with the basis
{e1, . . . ,en,e−} (incidentally, the setting of special relativity is the Minkowski space R3,1,
or more often R1,3, with e− representing the time dimension), any vector X can be written

X = x + te−

with x ∈ Span{e1, . . . ,en}. Then X ⋅X will be 0 whenever x ⋅x = t2. The set of null vectors
thus forms a cone, known as the null cone (or in the terminology of relativity, the light
cone). This will become important when we deal with conformal geometry.

2.1.2 The tensor algebra

The first step towards constructing the geometric algebra involves creating the most
general conceivable structure that fulfils our expectations of a product similar to the
ordinary multiplication of real numbers.

We start with only the real numbers R and the basis B = {e1, . . . ,en}, which we for
the moment think of as nothing more than a collection of n different symbols. In this
section, the scalar product will not be used at all; hence the results apply regardless of the
signature of B (the signature will become important in the next section). In principle, we
could use any finite set of our choosing as the basis; the resulting algebra is then usually
referred to as a Clifford algebra rather than a geometric algebra, since there may be no
geometric interpretation. This concept will be alluded to in Section 2.2.2.

Let us call the new structure T , and begin to write down a wish list for its properties
(we denote elements of T by A, B and C, and real numbers by α and β):

• T should contain all the basis vectors e1, . . . ,en.

• T should be a vector space, i.e. it should be an abelian group under addition A+B
with a zero element 0 and support scalar multiplication satisfying the usual rules

0A = 0

1A =A

(α + β)A = αA + βA
α(A +B) = αA + αB
α(βA) = (αβ)A

(2.3)

So far, we have described the defining properties of Rn. This means that Rn must be a
subset of T . Let us now add a product to our list:

• There should be a product, written simplyAB (andAk for repeated multiplication),
such that T is closed under it, that is, for any A,B ∈ T , AB is a new element of
T . This property is where the scalar product on Rn fails.
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• The product should be distributive: (A+B)C =AC+BC andA(B+C) =AB+AC.

• The product should be associative: A(BC) = (AB)C. This rules out the cross
product and allows the parentheses to be omitted: ABC.

The first rule means that one can form elements such as e1e2 and 2e2 + 3(e3e1). Notice
that the last two items are very similar to the last three of the axioms (2.3) for a vector
space. It also seems natural that (3e3)e1 should be the same thing as 3(e3e1). This
motivates combining these two different sets of criteria into one:

• The scalars should be elements of T , and multiplication with a scalar should be the
same as the vector space scalar multiplication. That is, an expression such as αA
is unambiguous.

• Multiplication with a scalar is always commutative: Aα = αA.

Remark. These requirements ensure that the new multiplication is bilinear:

A(αB + βC) = α(AB) + β(AC)
(αA + βB)C = α(AC) + β(BC)

by distributivity, associativity, and the commutativity of scalars.

Notice that these last criteria were both quite natural and introduced something very
new to the ordinary notion of a vector space. In the new algebra, scalars and vectors are
the same kind of thing, so there must exist mixed-grade elements such as, for example,
1 + e1 and 7 + 3e1e2. This hardly appears useful at first, but such objects will in fact
sometimes have geometric significance (see Examples 2.1.4 and 2.1.5). Another uncon-
ventional consequence is that there is no difference between the zero scalar and the zero
vector: 0 = 0.

Intuitively, we can define a structure T that is generated by the above requirements,
in the sense that an element A is by definition in T if and only if it can be proven to be
in T using the above rules. In the field of abstract algebra, there is a large machinery to
give an explicit construction of such a structure, which avoids logical issues of provability
and gives a simple characterization of the elements thus obtained. Suffice it to say that
the resulting structure is called the tensor algebra or free associative algebra over B (the
algebra of non-commuting polynomials with variables in B and real coefficients), denoted
T (Rn), and that it consists of finite linear combinations of items of the form ei1ei2 . . .eik ,
where k is finite but arbitrarily large. Concretely, an element might look like

A = 2 + e1 − π e1e1 + 8e1e2 +
5

2
e2e1 − 4e1e2e2e1,

and so forth. The product is called the tensor product and is commonly written ⊗, but
here we have omitted the symbol for compatibility with the geometric product.

Example 2.1.1. Let us evaluate a product in T (R2):
(2 + e2 + e2e1)(5 + 3e1) = 10 + 5e2 + 5e2e1

+ 6e1 + 3e2e1 + 3e2e1e1 expanding parentheses
= 10 + 6e1 + 5e2 + 8e2e1 + 3e2e1e1 collecting like terms.

In both steps of the above example, we have made use of associativity. Notice that
in a sense, the product doesn’t do anything; it is simply juxtaposition of elements. To
create a more interesting product, we need to impose an additional relation. This is the
subject of the next section.
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2.1.3 The geometric product

The leap from the unwieldy tensor algebra to the geometric algebra is remarkably simple.
Take the vector space Rp,q with signature (p, q) and n = p+q as described in Section 2.1.1
and form the tensor algebra T (Rp,q). Impose the following additional constraint, called
the defining equation of the geometric algebra, connecting the tensor product to the scalar
product defined in (2.2) and completing the wish list:

• For every vector x = a1e1 + ⋅ ⋅ ⋅ + anen,

xx = x ⋅ x. (2.4)

(I have written xx instead of x2 for complete clarity.)

The algebra thus created is called the geometric algebra over Rp,q and is denoted G(Rp,q)
(formally, it is a quotient algebra of T ). Its elements are called multivectors. The new
product is called the geometric product and has a rich structure compared to the tensor
product.

Example 2.1.2. The defining equation (2.4) can be directly applied to further simplify
the result of Example 2.1.1:

10 + 6e1 + 5e2 + 8e2e1 + 3e2e1e1 = 10 + 6e1 + 5e2 + 8e2e1 + 3e2 e21 = e1 ⋅ e1 = 1 in R2

= 10 + 6e1 + 8e2 + 8e2e1 collecting like terms.

There is also a less direct identity that expresses the scalar product of two vectors in
terms of their geometric product:

Theorem 2.1. For any two vectors x and y,

x ⋅ y = xy + yx

2
. (2.5)

Proof. Expand the expression (x + y)2 in two different ways:

(x + y)2 = (x + y)(x + y) = x2 + xy + yx + y2,

(x + y)2 = (x + y) ⋅ (x + y) = x ⋅ x + x ⋅ y + y ⋅ x + y ⋅ y

= x2 + 2x ⋅ y + y2.

Comparing the two expressions gives (2.5). ∎

Corollary 2.1.1. x and y anticommute (xy = −yx) if and only if they are orthogonal
(that is, x ⋅ y = 0).

Proof. Immediate from (2.5). ∎

By Corollary 2.1.1, the geometric product can be specified for basis vectors similarly
to (2.2):

eiej =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 i = j and i ≤ p
−1 i = j and i > p
−ejei i ≠ j.

(2.6)

By linearity (as detailed in Section 2.2.1), this completely specifies the geometric product
for all multivectors, and can therefore be used as an alternative defining equation to (2.4).
It is easier to compute with, but less illuminating.

Equation (2.6) can also be used to put a multivector into a standard form where every
term has a strictly increasing sequence of basis vector indices.
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Example 2.1.3. Equation (2.6) can be used to write the result of Example 2.1.2 in a
canonical form:

10 + 6e1 + 8e2 + 8e2e1 = 10 + 6e1 + 8e2 − 8e1e2.

Rewriting a general multivector in this way, it is apparent that there are exactly 2n

distinct combinations of basis vectors. For example, in G(R3), every multivector can be
written as a linear combination of the eight elements

1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3.

These elements are called the canonical basis blades. In summary, G(Rp,q) is a 2p+q-
dimensional vector space with a basis of 2p+q canonical basis blades.

Here are two more rather exciting examples of concrete computation with the geomet-
ric product. They should give a hint of the geometric significance of the newly defined
product and of mixed-grade multivectors.

Example 2.1.4. Consider G(R2), the geometric algebra of the plane, and let n̂ ∶= 1√
5
(2e1 + e2).

Take an arbitrary vector x = xe1 + ye2 and evaluate n̂xn̂:

n̂xn̂ = 1

5
(2e1 + e2)(xe1 + ye2)(2e1 + e2)

= 1

5
(2e1 + e2)(2xe1e1 + xe1e2 + 2ye2e1 + ye2e2) expanding the product

= 1

5
(2e1 + e2)(2x + y + (x − 2y)e1e2) simplifying using (2.6)

= 1

5
((4x + 2y)e1 + (2x − 4y)e1e1e2
+ (2x + y)e2 + (x − 2y)e2e1e2) expanding the product

= 1

5
((4x + 2y)e1 + (2x − 4y)e2
+ (2x + y)e2 − (x − 2y)e1) simplifying using (2.6)

= 1

5
((3x + 4y)e1 + (4x − 3y)e2) collecting like terms.

The result is the reflection in the line spanned by n̂, as can be seen by comparing with the
formula for the reflection matrix in matrix algebra:

M = 2nnT − I = 2

5
[4 2
2 1

] − [1 0
0 1

] = 1

5
[3 4
4 −3

] where n = 1√
5
[2
1
].

We will see in Section 2.3.2 why this is the case.

Example 2.1.5. Consider G(R3), the geometric algebra of three-dimensional space, and
let R ∶= cosϕ− e1e2 sinϕ and R† ∶= cosϕ+ e1e2 sinϕ. Evaluate RxR† when x varies over
the basis vectors. Start with e1:

Re1R
† = (cosϕ − e1e2 sinϕ)e1(cosϕ + e1e2 sinϕ)
= cos2ϕe1 − cosϕ sinϕe1e2e1

+ cosϕ sinϕe1e1e2 − sin2ϕe1e2e1e1e2 expanding the product
= cos2ϕe1 − sin2ϕe1

+ cosϕ sinϕe2 + cosϕ sinϕe2 simplifying using (2.6)
= (cos2ϕ − sin2ϕ)e1 + 2 cosϕ sinϕe2 collecting like terms
= cos(2ϕ)e1 + sin(2ϕ)e2 double-angle identities.
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In the same way, it can be shown that Re2R† = − sin(2ϕ)e1 + cos(2ϕ)e2. As for e3,

Re3R
† = (cosϕ − e1e2 sinϕ)e3(cosϕ + e1e2 sinϕ)
= (cosϕ − e1e2 sinϕ)(cosϕ + e1e2 sinϕ)e3 anticommutation by (2.6)
= ( cos2ϕ − cosϕ sinϕe1e2

+ cosϕ sinϕe1e2 − sin2ϕe1e2e1e2)e3 expanding the product
= (cos2ϕ + sin2ϕ)e3 simplifying using (2.6)
= e3 by the Pythagorean theorem.

For a general x = xe1 + ye2 + ze3 we therefore find that

RxR† = (x cos(2ϕ) − y sin(2ϕ))e1 + (x sin(2ϕ) + y cos(2ϕ))e2 + ze3,

which describes a rotation by the angle 2ϕ in the xy-plane. The details of rotations will
be described in Section 2.3.3.

This could be a good point to take a moment and reflect (no pun intended) on the
simplicity and generality of the geometric product. The simple geometric condition of the
defining equation (2.4) gives rise to the rules in (2.6), which are not obviously geometric in
nature and introduce the concept of anticommutation, which does not have a foundational
role in standard linear algebra.

Example 2.1.6. It is difficult to see how the geometric algebra could be any simpler than
it already is. For example, suppose that you decide to require commutativity (AB = BA)
in addition to the defining equation (2.4). Then, all higher-grade elements e1e2 etc., will
be zero since, for example, e1e2 = −e2e1 = −e1e2. This leads to a contradiction (assuming
that the dimension of the underlying space is at least 2), since for example

e2 = 1e2 = e1e1e2 = e1 0 = 0,

but e2 ≠ 0.

2.2 Structure of the geometric algebra

Having completed the construction of G(Rp,q) and given some examples of concrete com-
putation in the previous section, this section is dedicated to defining a collection of new
operations in terms of the geometric product and proving their general properties in a
more abstract manner. Most proofs have been written out in considerable detail for the
benefit of the reader. However, attempting the proofs oneself can be recommended as an
excellent way of gaining familiarity with the algebra.

2.2.1 Proofs and linear extension

As the multivectors are constructed with explicit reference to a standard basis, a common
theme will be linear extension: defining something for the basis elements only, and then
extending the definition to the entire algebra by requiring it to be a linear function. This
is the basic premise of linear algebra and, though no doubt familiar, is worth dwelling on
for a moment because of its importance:

Lemma 2.2. For any vector space V , (for example, V = G(Rp,q)), a function f ∶ G(Rp,q)→
V can be uniquely specified by giving its values on the 2p+q basis blades and requiring that
it be a linear function.

11



Proof. Take G(R2) as an example (the general case is analogous). f is specified by

f(a + a1e1 + a2e2 + a12e1e2) = af(1) + a1f(e1) + a2f(e2) + a12f(e1e2). ∎
In the same spirit, linear equalities can be economically proven:

Lemma 2.3. Suppose that f ∶ G(Rp,q) → V and g∶ G(Rp,q) → V are linear functions that
agree on the basis blades. Then f(A) = g(A) for any multivector A.

Proof. Again, take G(R2) as an example (the general case is again analogous).

f(a + a1e1 + a2e2 + a12e1e2) = af(1) + a1f(e1) + a2f(e2) + a12f(e1e2)
= ag(1) + a1g(e1) + a2g(e2) + a12g(e1e2)
= g(a + a1e1 + a2e2 + a12e1e2). ∎

Lemmas 2.2 and 2.3 will be the basic tools of this section. They will also be used in
variants where the domain is a different vector space than G(Rp,q), for example Rp,q.

2.2.2 The combinatorial view

To develop a concise method for defining operators and proving formulae, it will be
useful to think of a canonical basis blade X = ei1 . . .eik , with i1 < ⋅ ⋅ ⋅ < ik, as being
identical to the set of its indices {i1, . . . , ik}. For example, we will write e1e2 = {1,2} and
e2e1e3 = −e1e2e3 = −{1,2,3}. In this view, it can be seen by rearranging into canonical
form as in Example 2.1.3 that, for two canonical basis blades X and Y,

XY = ±X△Y. (2.7)

where △ denotes the symmetric difference (in computer terminology, exclusive OR) of
two sets:

X△Y ∶= (X ∪Y) ∖ (X ∩Y). (2.8)
Example 2.2.1. Let A = e1e4e3 = −{1,3,4} and B = e2e1 = −{1,2} (they are not canoni-
cal basis blades because of the minus signs). By repeated application of (2.6) we find AB =
−e1e4e3e2e1 = −e1e1e2e3e4 = −e2e3e4 = −{2,3,4}. Indeed, {1,3,4}△ {1,2} = {2,3,4}.

2.2.3 The outer product

Look back to Equation (2.5). It states that the inner product can be thought of as a
symmetrization of the geometric product. It is then natural to define a kind of dual to
the inner product, called the outer, exterior or wedge product (all synonyms), that is the
corresponding anti-symmetrization:

x ∧ y ∶= xy − yx

2
. (2.9)

Clearly then,
xy = x ⋅ y + x ∧ y. (2.10)

One could extend the definition (2.9) to arbitrary multivectors rather than only vectors,
but it turns out that the following definition, the first of many similar definitions, is more
fruitful. We use the “Boolean” notation

(P ) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 P is true
0 P is false

(2.11)

in combination with the combinatorial view of Section 2.2.2.
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Definition 2.1. For any two canonical basis blades X and Y,

X ∧Y ∶= (X ∩Y = ∅)XY. (2.12)

Moreover, ∧ is required to be bilinear, which extends the definition to the whole of G(Rp,q).
Example 2.2.2. Let us compute two outer products. The second example hints at the
connection to the cross product, which is described in Example 2.2.8.

(e1 + 2e2) ∧ (e1 + e2e3) = e1 ∧ e1 + 2e2 ∧ e1 + e1 ∧ (e2e3) + 2e2 ∧ (e2e3)
= 2e2e1 + e1e2e3 = −2e1e2 + e1e2e3.

(x1e1 + y1e2) ∧ (x2e1 + y2e2) = x1x2e1 ∧ e1 + y1x2e2 ∧ e1 + x1y2e1 ∧ e2 + y1y2e2 ∧ e2

= y1x2e2e1 + x1y2e1e2 = (x1y2 − y1x2)e1e2.
The next theorem shows how this type of definition can be manipulated when proving

formulae:

Theorem 2.4. The wedge product is associative: For any multivectors A,B,C ∈ G(Rp,q),
(A ∧B) ∧C =A ∧ (B ∧C). (2.13)

Proof. First, note that both sides are linear functions of A, B and C. Therefore, by
Lemma 2.3, it is sufficient to prove the formula for arbitrary canonical basis blades. This
reduces the proof to set logic. Compare the left and right hand sides:

(X ∧Y) ∧Z = ((X ∩Y = ∅)XY) ∧Z applying (2.12)
= (X ∩Y = ∅) (XY) ∧Z

= (X ∩Y = ∅)((X△Y) ∩Z = ∅)XYZ applying (2.12) and (2.7)
= (X ∩Y = ∅)((X ∪Y) ∩Z = ∅)XYZ set logic
= (X ∩Y = ∅)(X ∩Z = ∅)(Y ∩Z = ∅)XYZ set logic,

X ∧ (Y ∧Z) =X ∧ ((Y ∩Z = ∅)YZ) applying (2.12)
= (Y ∩Z = ∅)X ∧ (YZ)
= (X ∩ (Y△Z) = ∅)(Y ∩Z = ∅)XYZ applying (2.12) and (2.7)
= (X ∩ (Y ∪Z) = ∅)(Y ∩Z = ∅)XYZ set logic
= (X ∩Y = ∅)(X ∩Z = ∅)(Y ∩Z = ∅)XYZ set logic.

The expressions are identical. ∎
Theorem 2.5. If x and y are vectors, the definitions (2.9) and (2.12) are equivalent.

Proof. Both definitions are clearly bilinear, so use a variant of Lemma 2.3 where the
domain is Rp,q. It then remains to prove that the two expressions are the same for
arbitrary basis vectors x = ei = {i} and y = ej = {j}. The definition simplifies:

ei ∧ ej = ({i} ∩ {j} = ∅)eiej
= (i ≠ j)eiej
= (i ≠ j) eiej + eiej

2

= (i ≠ j) eiej − ejei
2

eiej = −ejei when i ≠ j

= eiej − ejei
2

eiej − ejei = 0 when i = j

= xy − yx

2
. ∎
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Corollary 2.5.1. If x and y are vectors, then x ∧ y = −y ∧ x.

Corollary 2.5.2. If x is a vector, then x ∧ x = 0.

2.2.4 Exterior algebra

In the previous section, the exterior product was defined in terms of the geometric prod-
uct. However, the exterior product can also stand on its own and was in fact historically
invented before the geometric product. Instead of the geometric algebra, another algebra
can be constructed by enforcing a defining equation different from (2.4). Start with the
tensor algebra T (Rp,q) as described in Section 2.1.2, but to avoid confusion, write the
tensor product as A∧B rather than AB. Then, add the defining equation (require that
Corollary 2.5.2 holds):

For any vector x,
x ∧ x = 0. (2.14)

The algebra thus obtained is called the exterior algebra over Rp,q and is denoted ∧∗(Rp,q).
A short introductory treatment of exterior algebra (albeit single-grade, ∧k(Rn)) is given
in [5]. The product is called the exterior product because it will turn out to have precisely
the same properties as the product of Definition 2.1. In particular, it is automatically
associative since it inherits that property from the tensor product. That x ∧ y = −y ∧ x
for any vectors x and y (the statement of Corollary 2.5.1) can be seen by expanding
(x + y) ∧ (x + y):

0 = (x + y) ∧ (x + y) by the defining equation (2.14)
= x ∧ x + x ∧ y + y ∧ x + y ∧ y expanding the product
= x ∧ y + y ∧ x by (2.14) again.

An attractive feature of viewing the outer product this way is that the definition of the
exterior algebra makes no mention of the scalar product, the geometric product or the
signature of Rp,q. This means that, as far as the wedge product is concerned, Rn = Rp+q

and Rp,q are the same space. This fact will be used to simplify the proof of Theorem 2.8
in Section 2.2.6.

2.2.5 Generalizations of the inner product

In Section 2.2.3 the outer product was defined, first for vectors and then for arbitrary
multivectors, but the inner product has not yet been defined for arbitrary multivectors.
There are many similar ways to define inner products, but the following are perhaps the
most elegant:

Definition 2.2. Given two canonical basis blades X and Y, the scalar product X∗Y,
the left inner product X ⌞Y and the right inner product X ⌟Y are defined by

X ∗Y ∶= (X =Y)XY (2.15)
X ⌞Y ∶= (X ⊆Y)XY (2.16)
X ⌟Y ∶= (X ⊇Y)XY (2.17)

The definitions are extended linearly to the whole of G(Rp,q).

14



Of these, the left inner product will be the most used. Note that in the case of two
vectors, the products are all equal to each other and to the usual scalar product:

x ∗ y = x ⌞ y = x ⌟ y = x ⋅ y (2.18)

and are given by linearly extending

ei ∗ ej = ei ⌞ ej = ei ⌟ ej = ei ⋅ ej = (i = j)eiej. (2.19)

Keep in mind that the notation for these products varies; see Section 2.4.1.
A few comments on the scalar product A ∗B. It is immediate from its definition (by

linearity) that it is commutative;

A ∗B = B ∗A (2.20)

for all multivectors A and B. It can also be shown using straightforward set logic that

A ∗B = ⟨AB⟩0 (2.21)

where ⟨X⟩0 ∶= (X = ∅)X (extended linearly) is the scalar part of X (see also (2.28)). It
is perhaps a little surprising that ⟨AB⟩0 = ⟨BA⟩0 for arbitrary multivectors.

Turning now to the left inner product, the following formula is taken from [1, Propo-
sition 2.9];

Theorem 2.6. For any multivectors A, B and C,

(A ∧B) ⌞C =A ⌞ (B ⌞C). (2.22)

Proof. Both sides are linear in A, B and C, so by Lemma 2.3, it is sufficient to prove the
formula for arbitrary canonical basis blades, which takes nothing but set logic:

(A ∧B) ⌞C = (A ∩B = ∅) (AB) ⌞C

= (A ∩B = ∅)(A△B ⊆C)ABC

= (A ∩B = ∅)(A ∪B ⊆C)ABC

= (A ∩B = ∅)(A ⊆C)(B ⊆C)ABC

= (A ∩B = ∅)(A ⊆C)A(B ⌞C)
= (A ⊆C ∖B)A(B ⌞C)
= (A ⊆ B△C)A(B ⌞C)
=A ⌞ (B ⌞C). ∎

The following formula, adapted from [6, Equation (3.70)], is also quite powerful:

Theorem 2.7. If x and y are vectors and A is any multivector, then

x ⌞ (y ∧A) = (x ⋅ y)A − y ∧ (x ⌞A). (2.23)

Proof. Again by linearity, consider only x = ei, y = ej and A =X, an arbitrary canonical
basis blade.

ei ⌞ (ej ∧X) = (j ∉X)ei ⌞ (ejX) by (2.12)
= (j ∉X)(i ∈ {j} ∪X)eiejX by (2.16)
= (j ∉X)[(i = j) + (i ∈X)]eiejX i = j and i ∈X disjoint
= (j ∉X)[(ei ⋅ ej)X + (i ∈X)eiejX] by (2.19)
= (j ∉X)[(ei ⋅ ej)X − (i ∈X)ejeiX] eiej = −ejei if i ≠ j
= (j ∉X)[(ei ⋅ ej)X − ej(ei ⌞X)] by (2.16)
= (j ∉X)[(ei ⋅ ej)X − ej ∧ (ei ⌞X)] by (2.12); j ∉X⇒ j ∉X ∖ {i}.
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The formula is proven if it can be shown that (ei ⋅ ej)X − ej ∧ (ei ⌞X) is zero whenever
j ∈ X; then the factor of (j ∉ X) is superfluous. Assume therefore that j ∈ X. If i ∉ X,
both terms are zero. If i ∈ X and i ≠ j, then ei ⋅ ej = 0 and ej ∧ (ei ⌞X) = 0 because
j ∈ X ∖ {i}. Finally, if i ∈ X and i = j, then (ei ⋅ ej)X = X and ej ∧ (ei ⌞X) = X, so the
difference is 0. ∎

The formulae (2.22) and (2.23) can be used to give expanded expressions for the inner
products between blades (blades will be introduced in Section 2.2.6), as the following
examples show. See also Example 2.2.7.

Example 2.2.3. Setting A to a vector z in (2.23), the formula simplifies to

x ⌞ (y ∧ z) = (x ⋅ y)z − (x ⋅ z)y. (2.24)

Notice that this is the negation of the well-known expression for the three-dimensional
triple cross product: x× (y×z) = (x ⋅z)y− (x ⋅y)z. See Example 2.2.8 for an elaboration
on this.

Example 2.2.4. Let a, b, c and d be vectors. Let us evaluate (a ∧ b) ⌞ (c ∧ d).

(a ∧ b) ⌞ (c ∧ d) = a ⌞ (b ⌞ (c ∧ d)) by (2.22)
= a ⌞ ((b ⋅ c)d − (b ⋅ d)c) by (2.24)
= (b ⋅ c)(a ⌞ d) − (b ⋅ d)(a ⌞ c)
= (b ⋅ c)(a ⋅ d) − (b ⋅ d)(a ⋅ c) by (2.18).

We have thus proven the Binet–Cauchy identity,

(a ∧ b) ⌞ (c ∧ d) = (b ⋅ c)(a ⋅ d) − (b ⋅ d)(a ⋅ c). (2.25)

2.2.6 Blades and linear subspaces

In contrast to the geometric product, the wedge product has a clear geometrical inter-
pretation: If x and y are vectors, x ∧ y should be thought of as the plane spanned by x
and y. In general, any linear subspace of Rp,q can be represented in by a multivector in
the following way:

Definition 2.3. Any multivector B that can be written in the form

B = x1 ∧ ⋅ ⋅ ⋅ ∧ xk, (2.26)

where the xi are vectors, is called a blade (more specifically, a k-blade).

Definition 2.4. Let B ∈ G(Rp,q) be a blade. The outer null space of B is

B ∶= {x ∈ Rp,q ∣ B ∧ x = 0} . (2.27)

From the definition, it is clear that B is a linear subspace of Rp,q. The next theorem
shows which subspace it is.

Theorem 2.8. Let x1, . . . ,xk be k linearly independent vectors and let B ∶= x1 ∧ ⋅ ⋅ ⋅ ∧ xk.
Then B = Span{x1, . . . ,xk}.
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Proof sketch. The following is a rather high-level argument, and would require some work
in filling out the details to make a formally complete proof.

Notice that the theorem is formulated exclusively in terms of the wedge product. We
are therefore examining the exterior algebra. As indicated in Section 2.2.4, any result in
the exterior algebra cannot depend on the signature. Therefore, let us assume, without
loss of generality, that the space is Euclidean (Rn = Rn,0). This manoeuvre makes all the
tools of standard linear algebra available.

In particular, {x1, . . . ,xk} can be orthonormalized (e.g. by the Gram–Schmidt method)
to form an orthonormal basis {e′1, . . . ,e′k} of Span{x1, . . . ,xk} such that

x1 = a11e′1
x2 = a21e′1 + a22e′2

⋮
xk = ak1e′1 + ak2e′2 + ⋅ ⋅ ⋅ + akke′k.

Then, x1 ∧ x2 = a11e′1 ∧ (a21e′1 + a22e′2) = a11a22 e′1 ∧ e′2, and in general,

B = a11a22 . . . akk e′1 ∧ e′2 ∧ ⋅ ⋅ ⋅ ∧ e′k.

The set {e′1, . . . ,e′k} can be extended to an orthogonal basis B′ = {e′1, . . . ,e′k,e′k+1, . . . ,e′n}
of the whole of Rn. Now (this is the informal part), the new basis vectors have all
the algebraic properties of the standard basis vectors e1, . . . ,en. Therefore, the exterior
algebras (and indeed the geometric algebras) generated by the two bases are isomorphic.
This means that

(e′1 ∧ e′2 ∧ ⋅ ⋅ ⋅ ∧ e′k) ∧ e′j = ({1},{2}, . . . ,{k},{j} all disjoint)e′1e′2 . . .e′ke′j by (2.12)
= (1,2, . . . , k, j all different)e′1e′2 . . .e′ke′j
= (j ∉ {1,2, . . . , k})e′1e′2 . . .e′ke′j.

For an arbitrary vector x = x1e′1 + ⋅ ⋅ ⋅ + xne′n, since the elements

(e′1e′2 . . .e′ke′k+1), . . . , (e′1e′2 . . .e′ke′n)

are all linearly independent, B∧x = 0 must be equivalent to that xk+1 = ⋅ ⋅ ⋅ = xn = 0 which
means precisely that x ∈ Span{x1, . . . ,xk}. ∎

This theorem may be phrased in another way:

Corollary 2.8.1. Let x1, . . . ,xk be vectors. Then x1 ∧ ⋅ ⋅ ⋅ ∧ xk = 0 if and only if they are
linearly dependent.

We now turn to the algebraic properties of blades. For a general multivector A, not
much can be said about A2 or even A ∧A. For blades, the situation is more orderly.

Lemma 2.9. For any blade B, B ∧B = 0.

Proof. Since x ∧ y = −y ∧ x,

x1 ∧ ⋅ ⋅ ⋅ ∧ xk ∧ x1 ∧ ⋅ ⋅ ⋅ ∧ xk

= ± xk ∧ ⋅ ⋅ ⋅ ∧ x1 ∧ x1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
0

∧ ⋅ ⋅ ⋅ ∧ xk = 0. ∎
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Theorem 2.10 (Proposition 3.2 in [1]). Every blade B = x1 ∧ ⋅ ⋅ ⋅ ∧xk can be written as a
geometric product B = y1 . . .yk where {y1, . . . ,yk} is an orthogonal set.

Proof. By Theorem A.2, there exists an orthogonal basis {b1, . . . ,bk} of B. Writing

xi =
k

∑
j=1

aijbj,

we find that
B = λ b1 . . .bk

where λ ∈ R is some function of the aij (in fact, λ = det[aij], as is argued in [1] by noting
that λ is multilinear and alternating in the bj). ∎

Corollary 2.10.1. If B is a blade, B2 is a scalar.

Proof. By Theorem 2.10, write B as a geometric product B = y1 . . .yk where the yi are
orthogonal to each other. Then,

y1 . . .yk y1 . . .yk = ± yk . . .y2y
2
1y2 . . .yk orthogonal vectors anticommute

= ± y2
1 yk . . .y3y

2
2y3 . . .yk y2

1 ∈ R and scalars commute
⋮
= ± y2

1y
2
2 . . .y

2
k. ∎

Remark. It can also be shown (though it is not as easy), that any multivector A with
A2 ∈ R must be a blade (see [1, Example 3.1 and Exercise 6.12]).

Corollary 2.10.2. Any blade B with B2 ≠ 0 (a non-null blade) is invertible with respect
to the geometric product.

Proof. The inverse is B−1 = B
B2 . ∎

Example 2.2.5. A standard problem in linear algebra is solving systems of linear equa-
tions. For example, a three-dimensional system can be written xa + yb + zc = r, where
a,b,c, r ∈ R3 are given and x, y, z ∈ R are unknown. The system can be solved for
e.g. y using the exterior product: Left-multiplying by a and right-multiplying by c gives
a ∧ r ∧ c = y a ∧ b ∧ c. Therefore, since blades are invertible, y = (a ∧ r ∧ c)(a ∧ b ∧ c)−1,
and similarly for x and z.

The grade of a nonzero blade B can be defined as grB ∶= dimB. A blade of grade k is
called a k-blade. The zero element is a k-blade for every k. Following the notation of [6],
we will sometimes write A⟨k⟩, B⟨k⟩ etc. for blades of grade k. A k-vector or multivector of
grade k is a linear combination of k-blades. The set of all k-vectors is a linear subspace
of G(Rp,q) denoted Gk(Rp,q).
Example 2.2.6. In three dimensions, we have

G0(R3) = Span{1}, G2(R3) = Span{e1e2,e1e3,e2e3},
G1(R3) = Span{e1,e2,e3}, G3(R3) = Span{e1e2e3}.
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The grade projection onto grade k is defined for all canonical basis blades X by

⟨X⟩k ∶= (∣X∣ = k)X (2.28)

where ∣X∣ is the cardinality of X, and extended linearly to the whole of G(Rp,q). It is
then readily seen that a number of definitions can be specialized for k-vectors:

A⟨k⟩ ∧B⟨l⟩ = ⟨A⟨k⟩B⟨l⟩⟩k+l (2.29)
A⟨k⟩ ⌞B⟨l⟩ = ⟨A⟨k⟩B⟨l⟩⟩l−k (2.30)
A⟨k⟩ ⌟B⟨l⟩ = ⟨A⟨k⟩B⟨l⟩⟩k−l . (2.31)

Proof. We prove (2.30). The others can be proven very similarly. Since the k-vectors
form a vector space (and so do the l-vectors) and both sides are bilinear, it suffices to
consider canonical basis k- and l-blades. Compare the expressions:

X⟨k⟩ ⌞Y⟨l⟩ = (X⟨k⟩ ⊆Y⟨l⟩)X⟨k⟩Y⟨l⟩,
⟨X⟨k⟩Y⟨l⟩⟩l−k = (∣X⟨k⟩△Y⟨l⟩∣ = l − k)X⟨k⟩Y⟨l⟩.

We must show that X⟨k⟩ ⊆Y⟨l⟩ is equivalent to ∣X⟨k⟩△Y⟨l⟩∣ = l − k. We have

∣X⟨k⟩△Y⟨l⟩∣ = ∣X⟨k⟩ ∪Y⟨l⟩∣ − ∣X⟨k⟩ ∩Y⟨l⟩∣
= ∣X⟨k⟩∣ + ∣Y⟨l⟩∣ − 2∣X⟨k⟩ ∩Y⟨l⟩∣
= k + l − 2∣X⟨k⟩ ∩Y⟨l⟩∣
= l − k ⇐⇒ ∣X⟨k⟩ ∩Y⟨l⟩∣ = k,

and this is certainly equivalent to X⟨k⟩ ⊆Y⟨l⟩. ∎

A large enough number of results have now been collected that many useful formu-
lae can be quickly derived. The sequence of steps in the following derivation is quite
interesting:

Example 2.2.7. Let x and y be two vectors. We wish to evaluate (x∧y)2. Set B ∶= B⟨2⟩ ∶=
x∧y. By Corollary 2.10.1, we know that B2 is a scalar, so B2 = ⟨B2⟩0 = ⟨B2⟩2−2 = B⌞B
by (2.30). That is, (x ∧ y)2 = (x∧y)⌞(x∧y). Applying the Binet–Cauchy identity (2.25)
then results in the so-called Lagrange identity

(x ∧ y)2 = (x ⋅ y)2 − x2y2. (2.32)

In particular, if the space is Euclidean, this quantity is always non-positive by the Cauchy-
Schwarz inequality. The reader may verify the identity directly using (2.5) and (2.9).

2.2.7 The dual and orthogonal complements

Given a linear subspace V of Rp,q, the orthogonal complement of V is defined to be
V ⊥ ∶= {x ∈ Rp,q ∣ ∀y ∈ V x ⋅ y = 0}. We have seen in Section 2.2.6 that a linear subspace
can be thought of as the outer null space B of a blade B. The orthogonal complement
of B can be represented algebraically by the following construction.

Definition 2.5. The pseudoscalar in Rp,q is

I ∶= e1e2 . . .ep+q. (2.33)
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Notice that I2 = ±1, so 1/I2 = I2 and I−1 = I3. The pseudoscalar has a characteristic
algebraic property:

Lemma 2.11. For any multivector A,

AI =A ⌞ I. (2.34)

Proof. This follows from linearity because all canonical basis blades are subsets of I =
{1, . . . , n}. ∎

Definition 2.6. Given a multivector A, the dual or complement of A is

Ac ∶=AI−1 =A ⌞ I−1. (2.35)

Lemma 2.12. For any multivectors A and B,

A ⌞Bc = (A ∧B)c, (2.36)
A ∧Bc = (A ⌞B)c. (2.37)

Proof. Equation (2.36) is simply (2.22) in disguise:

A ⌞Bc =A ⌞ (B ⌞ I−1) (2.22)= (A ∧B) ⌞ I−1 = (A ∧B)c.

From this, (2.37) follows:

A ∧Bc = (A ∧Bc) I−1I = (A ∧Bc)c I
= (A ⌞ (Bc)c) I by (2.36)
= (A ⌞ (BI−2)) I = (A ⌞B) I−1 = (A ⌞B)c. ∎

It is a theorem (refer to [1, Theorem 3.3] for a proof) that if B is a blade then so is
Bc. Its outer null space is the orthogonal complement of that of B:

Theorem 2.13. If B is a nonzero blade, then B
⊥ = Bc.

Proof. Let x be an arbitrary vector. First note that Bc ∧ x = ±x ∧Bc because Bc is a
blade. By (2.37), x ∧Bc = 0 if and only if x ⌞B = 0. Writing B = x1 ∧ ⋅ ⋅ ⋅ ∧ xk, repeated
application of (2.23) gives

x ⌞B = (x ⋅ x1)(x2 ∧ x3 ∧ x4 ∧ ⋅ ⋅ ⋅ ∧ xk)
− (x ⋅ x2)(x1 ∧ x3 ∧ x4 ∧ ⋅ ⋅ ⋅ ∧ xk)
+ (x ⋅ x3)(x1 ∧ x2 ∧ x4 ∧ ⋅ ⋅ ⋅ ∧ xk)
⋮
± (x ⋅ xk)(x1 ∧ x2 ∧ x3 ∧ x4 ∧ ⋅ ⋅ ⋅ ∧ xk−1).

(2.38)

Since the above is a linear combination of linearly independent blades, it is zero if and
only if all the coefficients (x ⋅xi) are zero. Therefore, x ⋅y = 0 for all y ∈ Span{x1, . . .xk},
which by Theorem 2.8 is equal to B

⊥
. ∎

Example 2.2.8. In R3, the familiar cross product can be defined for two vectors:

x × y ∶= (x ∧ y)c. (2.39)
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In Example 2.2.3 we mentioned the triple cross product x × (y × z), which can now be
expressed in terms of geometric algebra:

x × (y × z) = (x ∧ (y ∧ z)c)c by (2.39)
= ((x ⌞ (y ∧ z))c)c by (2.37)
= (x ⌞ (y ∧ z)) I2 by (2.35)
= −x ⌞ (y ∧ z) I2 = −1 in R3

= (x ⋅ z)y − (x ⋅ y)z by (2.24)

as was noted in Example 2.2.3.
In two dimensions, the same expression (2.39) gives a scalar rather than a vector

(cf. Example 2.2.2):

(x1e1 + y1e2) × (x2e1 + y2e2) = x1y2 − y1x2.

This is indeed a common definition of a two-dimensional “cross product”.

Example 2.2.9. The determinant or triple product of three vectors in R3 is often defined
as det(x,y,z) ∶= x ⋅ (y × z). In the language of duals, we find

x ⋅ (y × z) = x ⌞ (y × z) by (2.18)
= x ⌞ (y ∧ z)c by (2.39)
= (x ∧ y ∧ z)c by (2.36).

Notice that this expression is more symmetric and can be easily generalized to n vectors
in Rn for any n.

2.2.8 Sums and intersections of subspaces

In Section 2.2.6, the outer product was shown to be connected to linear subspaces. A
dual operation to the outer product, the meet product, is defined for two multivectors
by

(A ∨B)c =Ac ∧Bc. (2.40)

By (2.37), we find the explicit formula

A ∨B = (Ac ⌞B) I2. (2.41)

The following theorem is quoted from [1, Proposition 3.4 and Corollary 3.3]. For two
linear spaces V and W , define their direct sum V +W ∶= {v +w ∣ v ∈ V, w ∈W}.
Theorem 2.14. For two nonzero blades A and B, A ∧B and A ∨B are blades and

A ∧B =A +B if A ∩B = {0}, (2.42)
A ∨B =A ∩B if A +B = Rp,q. (2.43)

2.3 Linear transformations

In the previous section, we explored some of the algebraic and geometric properties of
vectors, blades and general multivectors. This section is dedicated to examining how
specific and general linear transformations can be represented, and how they act on the
new objects in the algebra.
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2.3.1 Projections

The projection of a multivector A onto a non-null blade B is defined

PB(A) = (A ⌞B)B−1. (2.44)

To support the claim that it is a projection, note that for canonical basis blades,

PY(X) = (X ⊆Y)X (2.45)

and that for two vectors, it reduces to the familiar formula

Pn(x) =
n ⋅ x

n2
n.

A full proof is given in [1, Section 3.3].

2.3.2 Reflections

In Example 2.1.4, we saw the first example of the geometric significance of the geometric
product. An explanation will now be given. Consider two vectors n and x. By (2.5),

nx = 2(n ⋅ x) − xn. (2.46)

We therefore find that the expression nxn−1 simplifies as

nxn−1 = 1

n2
nxn

= 1

n2
(2(n ⋅ x) − xn)n by (2.46)

= 2(n ⋅ x)
n2

n − x n2

n2 = 1. (2.47)

This is recognized as the formula for reflection perpendicular to n. The reflection along
n is given by −nxn−1.

2.3.3 Rotations

Having found a succinct formula for reflection, it can be put to good use in deriving a
general formula for rotations. Let û and v̂ be two unit vectors in R3. We shall construct
the rotation that takes û to v̂ and has the plane of rotation û ∧ v̂.

The angular bisector unit vector between û and v̂ is

n̂ ∶= û + v̂

∥û + v̂∥ .

The reflection x↦ n̂xn̂ must then take û to v̂, which can also be shown algebraically:

n̂ûn̂ = (û + v̂)û(û + v̂)
(û + v̂)2 = ûûû + v̂ûû + ûûv̂ + v̂ûv̂

(û + v̂)2

= û + 2v̂ + v̂ûv̂

(û + v̂)2 =

(û+v̂)2

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ûv̂ + 2 + v̂û) v̂

(û + v̂)2 = v̂.
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Performing a second reflection in v̂ leaves v̂ unchanged (v̂v̂v̂ = v̂), so because the compo-
sition of two reflections is a rotation (both reflection and rotation are orthogonal transfor-
mations, reflections have determinant −1 and rotations have determinant 1), the desired
rotation must be given by x ↦ v̂n̂xn̂v̂ =∶RxR†, where we have defined the rotor R and
its reverse R† (the reverse will be properly defined in Section 2.3.5)

R ∶= v̂n̂ = 1 + v̂û

∥û + v̂∥ and R† ∶= n̂v̂ = 1 + ûv̂

∥û + v̂∥ . (2.48)

There is another very elegant expression for rotors. Let θ be the angle between û and
v̂, i.e. û ⋅ v̂ = cos θ (and 0 ≤ θ < π). By (2.32) we then find that (û∧ v̂)2 = − sin2 θ. Defining
the magnitude of a blade B by

∥B∥ ∶=
√

∣B2∣, (2.49)

we can construct the unit pseudoscalar in û ∧ v̂

i ∶= û ∧ v̂

∥û ∧ v̂∥ ,

so that i2 = −1 (hence the suggestive name) and û∧ v̂ = i sin θ. Then, the rotor R can be
rewritten (using v̂û = v̂ ⋅ û + v̂ ∧ û by (2.10)) into the not so attractive form

R = 1 + cos θ − i sin θ√
2(1 + cos θ)

.

The aesthetics of this expression can be rescued by the change of variables ϕ ∶= θ/2 and the
double-angle formulae cos θ = cos2ϕ− sin2ϕ and sin θ = 2 sinϕ cosϕ. From these identities
follows that 1 + cos θ = 2 cos2ϕ, so

R = 2 cos2ϕ − 2i sinϕ cosϕ√
4 cos2ϕ

= cosϕ − i sinϕ.

Extending the standard definition of the exponential function to arbitrary multivectors,

eA ∶= exp(A) ∶=
∞

∑
k=0

Ak

k!
, (2.50)

gives as usual that exp(iφ) = cosφ+i sinφ, and so leads to the conclusion that the rotation
by θ in the plane with unit pseudoscalar i is given by the rotor

R = exp (− iθ
2
). (2.51)

2.3.4 Outermorphisms and linear algebra

Definition 2.7. A function F ∶ G(Rp,q)→ G(Rp,q) is an outermorphism if

• F is linear.

• F (1) = 1.

• For any k-vector B, F (B) is also a k-vector (F is grade-preserving).

• For all multivectors A and B, F (A ∧B) = F (A) ∧ F (B).
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The second condition of the definition is there only to exclude the trivial map ∀A F (A) =
0, since if there is any A for which F (A) ≠ 0, then F (A) = F (1 ∧A) = F (1) ∧ F (A) =
F (1)F (A) implies F (1) = 1.

Given any linear map f ∶ Rp,q → Rp,q, it can be uniquely extended to an outermorphism
f∧∶ G(Rp,q) → G(Rp,q) by simply defining f∧(x1 ∧ ⋅ ⋅ ⋅ ∧ xk) ∶= f(x1) ∧ ⋅ ⋅ ⋅ ∧ f(xk). As an
aside, the determinant of f can then be computed via

det f = f∧(I)c. (2.52)

Because of uniqueness, to prove that two outermorphisms are equal it suffices to prove
that they agree on a set of basis vectors (as opposed to basis blades).

2.3.5 Versors

One of the advantages of geometric algebra is that and many important linear transfor-
mations are represented by elements of the same algebra as the objects that they act on.
The objects are linear subspaces, represented by blades. The transformations in question
will be represented by versors, of which vectors and rotors are examples:

Definition 2.8. A versor is a multivector that can be written as the geometric product
of a number of non-null vectors:

V = x1x2 . . .xk. (2.53)

The so-called reverse will be used for constructing the inverse of a versor.

Definition 2.9. For a canonical basis blade X = ei1 . . .eik , the reverse is defined by

X† ∶= eik . . .ei1 (2.54)

or equivalently
X† ∶= (−1)(∣X∣2 )X, (2.55)

and the definition is extended linearly to the whole of G(Rp,q).
That (2.54) and (2.55) are equivalent is seen by noting that the number of swaps

needed to reverse a list of k elements is ∑k
i=1(i − 1) = k(k−1)

2 = (k
2
).

Lemma 2.15. For any multivectors A and B,

(AB)† = B†A†, (2.56)
(A ∧B)† = B† ∧A†. (2.57)

Proof. Both sides are bilinear, and (2.54) shows that both (2.56) and (2.57) hold for
canonical basis blades. ∎

Since x† = x for any vector x, we find that for a versor according to (2.53),

V† = xk . . .x2x1. (2.58)

This leads to the following:

Lemma 2.16. For any versor V, VV† =V†V is a nonzero scalar.

Proof. It is immediate from (2.53) and (2.58) that VV† =V†V = x2
1 . . .x

2
k. ∎
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Corollary 2.16.1. Any versor V has an inverse

V−1 = V†

VV† . (2.59)

A versor V encodes a linear transformation, known as the adjoint action of V:
AdV∶ G(Rp,q)→ G(Rp,q)

A↦VAV−1.
(2.60)

Comparing with (2.47) shows that the adjoint action is the composition of the reflections
perpendicular to the constituent vectors.

AdV(A) = x1 . . .xkAx−1k . . .x−11 .

The proof of the following important theorem is given in Appendix B.

Theorem 2.17. For any versor V, AdV is an outermorphism.

This means that, for example, rotating the constituent vectors of a blade is the same
as rotating the blade as a whole: R(x ∧ y)R† = (RxR†) ∧ (RyR†).

The following property is also important:

Theorem 2.18. For any versor V, AdV is an isometry. That is, for any vectors x and
y,

(VxV−1) ⋅ (VyV−1) = x ⋅ y. (2.61)

Proof. Because scalars commute, for all vectors x,

(VxV−1)2 =VxV−1VxV−1 =VxxV−1 = x2VV−1 = x2.

Therefore,

(VxV−1) ⋅ (VyV−1) = (VxV−1 +VyV−1)2 − (VxV−1)2 − (VyV−1)2
2

= (V(x + y)V−1)2 − (VxV−1)2 − (VyV−1)2
2

= (x + y)2 − x2 − y2

2
= x ⋅ y. ∎

Of some special concern will be versors for which V†V = 1 (equivalently, V−1 = V†),
called unitary versors. The rotor constructed in Section 2.3.3 is an example of a unitary
versor.

A variant of the adjoint action, the twisted adjoint action, turns out to be, in a sense,
more fundamental. We need the following new operation:

Definition 2.10. The grade involution is defined for canonical basis blades by

X∗ ∶= (−1)∣X∣X (2.62)

and extended linearly to the whole of G(Rp,q).
Clearly x∗ = −x for any vector x. It can also be proven by the usual methods that for

all multivectors A and B,
(AB)∗ =A∗B∗. (2.63)

Now, the twisted adjoint action is defined by

ÃdV(A) ∶=V∗AV−1. (2.64)

This is the composition of reflections along the constituent vectors (refer back to Sec-
tion 2.3.2):

ÃdV(A) = (−x1) . . . (−xk)Ax−1k . . .x−11 .
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2.4 Miscellaneous comments

2.4.1 Notation and conventions

The definitions and notation used in this thesis are consistent with [1]. However, it is
important to be aware that many texts use different conventions.

Regarding inner products, sometimes the symbols ⌞ and ⌟ are interchanged compared
to our usage, or written ⌊ and ⌋. The symbol ⋅ is also sometimes used in place of ⌞. More
often, however, this symbol is used for yet another inner product (known simply as the
inner product), defined by X ⋅Y ∶= (X ⊆ Y or Y ⊆ X)XY for canonical basis blades, or
in general A ⋅B = A ⌞B +A ⌟B −A ∗B. In this thesis, ⋅ is used exclusively between
vectors, where there is no distinction between the products.

Regarding the grade involution A∗, the reverse A† and the dual Ac, the notation
varies greatly. A† is often written Ã or A∼, while A∗ is commonly used in place of Ac.
There seems to be no standard notation for the grade involution, but similar operations
(like the “conjugate” in [6, Section 3.1.4]) are sometimes denoted A†.

2.4.2 Inverses

We have discussed the inverses of blades and versors, for which we have seen that the left
and right inverses are the same. In fact, this is true in general, and the proof (adapted
from [1, Example 6.2]) is simple yet subtle:

Theorem 2.19. If A and B are multivectors such that AB = 1, then BA = 1.

Proof. First, note that if B has a right inverse at all, it must be A, since if BC = 1,

C = 1C =ABC =A1 =A.

It is less obvious that there does in fact exist such a C. To show this, note that the
map defined by T (X) ∶= BX (for general multivectors X) is linear, and that if T (X) = 0,
then

0 =A0 =AT (X) =ABX = 1X =X.

In other words, T is a linear map with kernel {0} from G(Rp,q) to itself. By standard
linear algebra (the rank–nullity theorem), it must therefore be surjective, which means
that there is some C such that T (C) = 1, i.e. C is a right inverse of B. By the above, we
then find that C =A, so BA = 1. ∎

This reasoning is not peculiar to geometric algebra; the exact same proof also holds for
e.g. (finite-dimensional!) matrices. Not all multivectors are invertible; simple examples
are 0 and any blade B with B2 = 0. A more interesting example is the multivector

A ∶= 1 + e1
2

.

It is simple to check that A2 = A, i.e. A is idempotent. Any such element cannot be
invertible (unless it is equal to 1); if AB = 1 then

1 =AB =AAB =A.
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3 Conformal geometric algebra
In this section, conformal geometry is presented using the tools of geometric algebra. The
term “conformal geometry” has different connotations in different contexts; the usage here
is in the context of conformal geometric algebra (CGA). For a fuller treatment of CGA,
refer to for example [10], [9] (these use the notation n = e∞, n̄ = 2eo) or [7].

In Section 2.2.6, it was demonstrated that linear subspaces of Rp,q correspond to blades
in G(Rp,q). However, not all of geometry is linear algebra. There are many interesting
geometric entities that are not linear subspaces. The approach of this section is to map
points in Rn into a higher-dimensional space through a nonlinear embedding so as to
render a larger set of shapes representable as linear subspaces.

3.1 Projective geometry

Before we dive into conformal geometry, we shall consider a simpler embedding of the
same sort, that has the added advantage of being easily visualized. Consider the plane
R2. The interesting linear subspaces are simply lines through the origin and can be
represented as the outer null spaces of vectors. The idea of projective geometry is to
view R2 as embedded in R3 with z-coordinate 1. More precisely, define the projective or
homogeneous embedding

H∶ R2 → R3

H(x) ∶= x + e3.
(3.1)

The reason for the name “homogeneous” is that we shall consider x ∈ R2 to be represented
by X = λH(x) = λ(x + e3) for any λ. A point x is therefore represented by the linear
subspace

H(x) ∶=H(x) = {λH(x) ∣ λ ∈ R} . (3.2)

We may therefore in a slight abuse of notation define an inverse mapping

H−1∶ R3 → R2

H−1(X) ∶= Pe1e2(
X

e3 ⋅X
). (3.3)

The line through the two points x1 and x2 can be represented by the plane spanned by
H(x1) ∧H(x2). This is used in the following computational example.

Example 3.1.1. Let us algebraically find the intersection of two lines in the plane. Take
the four points

x1 ∶= 0 x2 ∶= e1 x3 ∶= e1 + e2 x4 ∶= 3e2.

These map to the vectors

X1 ∶= e3 X2 ∶= e1 + e3 X3 ∶= e1 + e2 + e3 X4 ∶= 3e2 + e3.

The line through x1 and x2 and the line through x3 and x4 are represented by the planes
spanned by

L1 ∶=X1 ∧X2 = −e1e3
L2 ∶=X3 ∧X4 = 3e1e2 + e1e3 − 2e2e3.
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These are linearly independent and therefore together span R3, so by (2.43) and (2.41)
their intersection is given by

P ∶= L1 ∨L2 = (Lc
1 ⌞L2)I2

= (−e1e3 e3e2e1) ⌞ (3e1e2 + e1e3 − 2e2e3)
−1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(e1e2e3)2

= −e2 ⌞ (3e1e2 + e1e3 − 2e2e3)
= −e2(3e1e2 − 2e2e3) using (2.16)
= 3e1 + 2e3.

Mapping back to R2 via (3.3) we find the intersection point

H−1(P) = 3

2
e1.

3.2 Stereographic projection

The construction of the conformal geometry consists of two steps, the first of which
is the inverse stereographic projection. Consider first the two-dimensional case: take
the unit circle S1 as a subset of R2 = Span{e1,e+} (the reason for this notation will
become clear in the general case) and the line R1 ∶= Span{e1} (clearly R1 is isomorphic
to R, but for generality it is best to think of it as the vector space R1). Given a unit
vector X = cos θ e1 + sin θ e+ ∈ S1, the stereographic projection, which shall be denoted
x = S−1(X), is defined as the intersection with R1 of the line through the points e+ and
X (see Figure 1).

S1

R1

e+

x0

X

θ

Figure 1: Stereographic projection S−1∶ S1 → R1.

By a little trigonometry, it can be found that

S−1(cos θ e1 + sin θ e+) =
cos θ

1 − sin θ
e1. (3.4)

In fact, Equation (3.4) generalizes straightforwardly to the case of arbitrary dimension:

S−1∶ Sn → Rn

S−1(X) ∶= Pe1...en(X)
1 − e+ ⋅X

(3.5)

(in two dimensions, we have Pe1(X) = cos θ e1 and e+ ⋅X = sin θ). This equation can also
be inverted to give the stereographic embedding, which shall be the more interesting map
for our purposes:

S ∶ Rn → Sn ⊂ Rn+1

S(x) ∶= 2

x2 + 1
x + x2 − 1

x2 + 1
e+.

(3.6)
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3.3 Conformal embedding

The second step needed complete the construction of the conformal geometry is homoge-
nization; making it so that X and λX map back to the same point, just as for projective
geometry. This is achieved in a rather spectacular way, as follows. Add a new basis
vector e− such that e2− = −1 and consider the map Rn → Rn+1,1 given by x ↦ S(x) + e−
(essentially H ○S where H is the projective embedding (3.1)). Since S(x) is a unit vector,
it will be the case that (S(x)+e−)2 = 0 (a null vector; refer back to Section 2.1.1), which
will turn out to be a highly useful algebraic property.

We are now ready to define the conformal embedding in its standard form. For
convenience, the expression S(x) + e− is multiplied by (x2 + 1)/2, and a slight change of
basis is made:

Definition 3.1 (Conformal geometry). Given any Euclidean space Rn = Span{e1, . . . ,en},
construct the space Rn+1,1 by adding two basis vectors e+ and e−, both orthogonal to Rn

and to each other, such that
e2+ = 1, e2− = −1. (3.7)

Define two new vectors

e∞ ∶= e− + e+ and eo ∶=
e− − e+

2
. (3.8)

The null cone in Rn+1,1 is

Kn+1 ∶= {X ∈ Rn+1,1 ∣ X2 = 0} . (3.9)

The conformal embedding is defined by

C∶ Rn → Kn+1 ⊂ Rn+1,1

C(x) ∶= x2 + 1

2
(S(x) + e−)

= x + x2 − 1

2
e+ +

x2 + 1

2
e−

= x + x2

2
e∞ + eo. (3.10)

Also define, for any subset S ⊆ Rn,

C(S) ∶= {λC(x) ∣ x ∈ S, λ ∈ R} . (3.11)

The last of the expressions (3.10) for C(x) is the most convenient one. Importantly,
the two new vectors e∞ and eo satisfy

e2∞ = 0, e2o = 0, e∞ ⋅ eo = −1. (3.12)

The reason for their names is that C(0) = eo (o for “origin”) and that, in a sense, C(∞)∝
e∞. Precisely speaking,

lim
∣x∣→∞

2

x2
C(x) = e∞.

The fact that the point at infinity is an element in the algebra means that the set of
points that can be represented is not Rn, but its one-point compactification Rn ∪ {∞}.

In what follows, the case n = 3 shall be of chief interest. Most of the properties dis-
cussed extend straightforwardly to Rn for any n. Moreover, the stereographic embedding
can also be generalized to be of type Rp,q → Rp+1,q+1, but we will not go down that path
here.
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3.4 Geometric entities

Here, a subset of the geometric entities in R3 that can be represented as linear subspaces
of R4,1 are presented. These are in the simplest view arbitrary points, point pairs, circles
and spheres. A number of other objects can be viewed as special cases of these: Planes
and lines are spheres and circles with infinite radius, spheres and circles may have zero
or imaginary radius and lines at infinity may be represented. The treatment is largely
based on [7, Section 4.3], from which a number of results are quoted without proof. The
focus will be mainly on those aspects that will be directly applied to the common curves
problem in Section 4.

A blade B ∈ G(R4,1) represents a geometric entity in R3, called its geometric outer
null space:

C−1(B) = {x ∈ R3 ∣ C(x) ∧B = 0} . (3.13)

It will often be useful to think of a geometric entity as having an outer-product repre-
sentation B and a corresponding inner-product representation Bc (since X⌞Bc = 0 ⇐⇒
X ∧B = 0 by (2.36)).

Clearly, C−1(λB) = C−1(B) for nonzero λ, so we will often ignore scalar multipliers.
In that spirit, we shall use the notation A∝ B to signify “A = λB for a nonzero λ ∈ R”.

3.4.1 Points

The properties of conformal embeddings of points deserve some more attention. We have
the following coordinate systems:

X = xe1 + ye2 + ze3 + se+ + te− (3.14)
= xe1 + ye2 + ze3 + ue∞ + veo, (3.15)

and the following coordinate transformations:

s = u − v/2 u = t + s
2

t = u + v/2 v = t − s.
(3.16)

The coordinates can be found by inner products with the basis vectors; the formulae for
u and v deserve special attention:

x = e1 ⋅X

y = e2 ⋅X

z = e3 ⋅X

s = e+ ⋅X

t = −e− ⋅X
u = −eo ⋅X
v = −e∞ ⋅X.

(3.17)

Given any conformal point X = λC(x), (3.10) shows that λ = v = −e∞ ⋅X. Hence,
C(x) and the Euclidean point x can be recovered using

C(x) = X

−X ⋅ e∞
(3.18)

and x = Pe1e2e3(C(x)). (3.19)

It is therefore warranted, though a slight abuse of notation, to define an inverse mapping
C−1∶ Kn+1 → Rn

C−1(X) ∶= Pe1e2e3(
X

−e∞ ⋅X
) (3.20)
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such that C−1(λC(x)) = x for any x ∈ Rn.
Consider now the scalar product C(x) ⋅ C(y):

C(x) ⋅ C(y) = (x + x2

2
e∞ + eo) ⋅ (y +

y2

2
e∞ + eo) by (3.10)

= x ⋅ y − x2

2
− y2

2
by (3.12)

= −(x − y)2
2

,

which encodes the distance between x and y. The homogeneous version of this formula
(that is, for X = λ1 C(x) and Y = λ2 C(y)) is obtained using (3.18):

− (x − y)2
2

= X ⋅Y

(−e∞ ⋅X)(−e∞ ⋅Y) . (3.21)

Note also that since X2 =Y2 = 0, it is the case that (X+Y)2 = −(X−Y)2 = 2X ⋅Y, so a
better-looking expression can be obtained:

(x − y)2 = (X −Y)2
(−e∞ ⋅X)(−e∞ ⋅Y) . (3.22)

3.4.2 Spheres

Theorem 3.1. A sphere Σ ⊂ R3 of radius ρ ≥ 0 centred on m ∈ R3 can be written

Σ = C−1(S) where S is the 4-blade such that Sc = C(m) − ρ
2

2
e∞. (3.23)

Proof. That x ∈ C−1(S) is equivalent to that

0 = C(x) ⌞ Sc = C(x) ⋅ Sc by (2.18)

= C(x) ⋅ C(m) − ρ
2

2
C(x) ⋅ e∞

= −(x −m)2
2

+ ρ
2

2
by (3.21), (3.10) and (3.12)

or (x −m)2 = ρ2, which describes the sphere. ∎

It is also shown in [7] that an outer-product representation is

Σ = C−1(C(x1) ∧ C(x2) ∧ C(x3) ∧ C(x4)) (3.24)

where x1, x2, x3 and x4 are four distinct points on the sphere.
Given any representation S such that Σ = C−1(S), information about Σ can be ex-

tracted as follows: We know from (3.23) that Sc is of the form λ(C(m) − ρ2

2 e∞). By
(3.10) and (3.12) we find that λ = −e∞ ⋅ Sc and that (Sc)2 = λρ2, which leads to an
expression for the radius:

ρ2 = (Sc)2
(−e∞ ⋅ Sc)2 =

S2

(S ∧ e∞)2 (3.25)

where the last equality follows from (2.36), that e∞ ∧S = S∧ e∞ (because S is a 4-blade;
four anticommuting swaps), and the fact that the pseudoscalar I ∶= e1e2e3e+e− commutes
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with everything (for vectors: four anticommuting swaps and one commuting one). By
(3.23), (3.10) and (3.12), the centre can be extracted via the same formula as for points
(which can in fact be viewed as spheres of radius 0):

m = Pe1e2e3(
Sc

−e∞ ⋅ Sc
). (3.26)

There is another interesting formula for the centre of a sphere, with the connotation
of reflecting the point at infinity e∞ in the sphere:

Theorem 3.2. If Σ = C−1(S) is a sphere with centre m, then

C(m)∝ Se∞S. (3.27)

Proof. First recall that the pseudoscalar I commutes with everything. Therefore,

Se∞S = ScIe∞S
cI by (2.35)

= I2Sce∞S
c

= −Sce∞S
c I2 = −1

∝ (C(m) − ρ
2

2
e∞)e∞(C(m) − ρ

2

2
e∞) by (3.23)

= C(m)e∞ C(m) e2∞ = 0

= (m + m2

2
e∞ + eo)e∞(m + m2

2
e∞ + eo) by (3.10)

= (m + eo)e∞(m + eo) e2∞ = 0

= me∞m +me∞eo + eoe∞m + eoe∞eo

= −m2e∞ + (e∞eo + eoe∞)m + eoe∞eo anticommutation
= −m2e∞ − 2m − 2eo 2(e∞ ⋅ eo) = −2 and eoe∞eo = −2eo

= −2C(m) by (3.10). ∎

3.4.3 Planes

Theorem 3.3. A plane Π ⊂ R3 with unit normal n̂ and orthogonal distance d from the
origin can be written

Π = C−1(P) where P is the 4-blade such that Pc = n̂ + de∞. (3.28)

Proof. That x ∈ C−1(P) is equivalent to that

0 = C(x) ⋅Pc

= C(x) ⋅ n̂ + d C(x) ⋅ e∞
= x ⋅ n̂ − d by (3.10) and (3.12),

or x ⋅ n̂ = d, which describes the plane. ∎

It is also shown in [7] that an outer-product representation is

Π = C−1(C(x1) ∧ C(x2) ∧ C(x3) ∧ e∞) (3.29)

where x1, x2 and x3 are three distinct points in the plane.
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A plane can alternatively be specified by a unit normal vector n̂ and a point x in the
plane. The proper choice of d for equation (3.28) can, following [8], be found from any
X = λC(x):

(n̂ + de∞) ⋅X = 0 Ô⇒ d = − X ⋅ n̂

X ⋅ e∞
. (3.30)

Substituting back into (3.28) gives an inner-product representation

Pc = n̂ − X ⋅ n̂

X ⋅ e∞
e∞ ∝ −(X ⋅ e∞)n̂ + (X ⋅ n̂)e∞ =X ⌞ (n̂ ∧ e∞) (3.31)

where the last step follows from (2.24).
For a vector x ∈ R3 and an inner-product representation Pc = λ(n̂ + de∞) of a plane

Π = C−1(P), we find as above that the signed distance from the plane is encoded by the
scalar product:

Pc
⋅ C(x) = λ(n̂ ⋅ x − d). (3.32)

We will be interested in knowing on which side of the plane x is, that is, we wish to know
the sign of n̂ ⋅ x − d. If d is taken to be positive, we could evaluate ∣λ∣ = ∥Pe1e2e3(Pc)∥
and then normalize Pc, making sure that the e∞ component is positive. However, it is
simpler to note that eo ⋅Pc = −λd, and so it is sufficient to check the sign of

C(x) ⋅Pc

−eo ⋅Pc
= n̂ ⋅ x − d

d
. (3.33)

3.4.4 Circles

Suppose that a circle is described as the intersection of two spheres: Γ = Σ1 ∩Σ2, where
Σ1 = C−1(S1) and Σ2 = C−1(S2). Since S1 and S2 are linearly independent (as Σ1 and Σ2

are distinct) and both are 4-blades, they must together span R4,1. Therefore, by (2.43),
their intersection must be represented by their meet product:

Γ = C−1(C) where C = S1 ∨ S2. (3.34)

Alternatively, they can be represented as the intersection of a sphere and a plane: C =
S ∨P. It is also shown in [7] that

Γ = C−1(C(x1) ∧ C(x2) ∧ C(x3)) (3.35)

where x1, x2 and x3 are three distinct points on the circle.
Given any outer-product representation C of a circle Γ, the radius can be found by

an interesting conjuring trick, outlined in [7]:

Theorem 3.4. If Γ = C−1(C) is a circle, its radius ρ can be found by

ρ2 = − C2

(C ∧ e∞)2 . (3.36)

Note the sign difference from the corresponding formula (3.25) for spheres.

Proof. First, an outer-product representation of the circle’s plane Π is obtained simply
by P =C∧ e∞ (just compare (3.35) to (3.29)). Now, let Pn and Sn be normalized repre-
sentation of Π and the sphere Σ with the same centre m and radius ρ as Γ respectively:

Pc
n = −(M ⋅ e∞)n̂ + (M ⋅ n̂)e∞ by (3.31)

Sc
n =M − ρ

2

2
e∞ by (3.23)
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where M ∶= C(m) for brevity. Then we know that Pc = λPc
n for some nonzero λ, so

Cc = λ(Sn ∨Pn)c = λ(Sc
n ∧Pc

n). Using (3.10), the expression for Pc
n simplifies further:

Pc
n = n̂ + (m ⋅ n̂)e∞. Now, apply the Lagrange identity (2.32) to find that (Cc)2 =

λ2((Sc
n ⋅P

c
n)2 − (Sc

n)2(Pc
n)2). It is straightforward to find

Sc
n ⋅P

c
n = 0

(Sc
n)2 = ρ2

(Pc
n)2 = 1.

Therefore, (Cc)2 = −λ2ρ2 and (Pc)2 = λ2, so we find the formula

ρ2 = −(Cc)2
(Pc)2 = −C

2

P2
. ∎

The centre of a circle can be extracted in the same way as for a sphere:

Theorem 3.5. If Γ = C−1(C) is a circle with centre m, then

C(m)∝Ce∞C. (3.37)

A proof similar to that of Theorem 3.2 seem intractable. The proof is deferred to
Section 3.6, where it becomes easy.

3.4.5 Point pairs

The outer product of two conformal points can be rather simply analysed. Let A ∶= C(a)
and B ∶= C(b) with a ≠ b, Then X ∧A ∧B = 0 if and only if X = αA + βB for scalars α
and β. If X is a conformal point then X2 = 0, which means

0 =X2 = α2A2

0̄

+2αβA ⋅B + β2 B2

0̄

= −αβ(a − b)2 by (3.21).

Since a ≠ b (and they live in an Euclidean space), this is true only if α = 0 or β = 0, that
is x = b or x = a. In summary, we have the point pair

C−1(C(a) ∧ C(b)) = {a,b}. (3.38)

This is the zero-dimensional analogue of circles (1D) and spheres (2D).

3.5 Conformal transformations

An essential feature of CGA is that conformal transformations in R3 become versor trans-
formations in R4,1. A conformal transformation is a function f ∶R3 → R3 that preserves
the (oriented) angles between curves. Formally (a similar definition is given in [9, Sec-
tion 10.3]): For all points x ∈ R3 and all tangent vectors a and b at x, the cosine of the
angle θ between a and b is locally preserved:

(a ⋅ ∇f(x)) ⋅ (b ⋅ ∇f(x))
∥a ⋅ ∇f(x)∥∥b ⋅ ∇f(x)∥ = a ⋅ b

∥a∥∥b∥ (3.39)

The simplest conformal transformations to represent in conformal geometric algebra
are the versor transformations laid out in Section 2.3. In particular, the twisted adjoint
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action (2.64) commutes with the conformal embedding (ÃdV ○ C = C ○ÃdV) because for
n ∈ R3,

−nC(x)n−1 = −nxn−1 − x2

2
ne∞n

−1 − neon
−1

= −nxn−1 + x2

2
e∞ + eo

= C(−nxn−1),

i.e. reflections along vectors are the same in Euclidean and conformal space. The most im-
portant case is that of rotations. For a rotor, R∗ =R (it has only even-grade components)
and R−1 =R†, so

C(RxR†) =RC(x)R†. (3.40)

Translations in R3 are represented as follows. Given a vector a ∈ R3, define the rotor

Ta ∶= exp(e∞a
2

) = 1 + e∞a

2
(3.41)

(the series expansion of the exponential terminates as (e∞a)2 = −e2∞a2 = 0).

Theorem 3.6. For all x ∈ R3,

Ta C(x)T†
a = C(x + a). (3.42)

Proof. Since X↦ TaXT†
a is linear, evaluate it for the three terms in C(x) separately:

TaxT
†
a = (1 + e∞a

2
)x(1 + ae∞

2
)

= x + e∞ax + xae∞
2

+ e∞axae∞
4

= x + ax + xa

2
e∞ anticommutation, e2∞ = 0

= x + (a ⋅ x)e∞ by (2.5),

Tae∞T
†
a = (1 + e∞a

2
)e∞(1 + ae∞

2
) = e∞ anticommutation, e2∞ = 0,

TaeoT
†
a = (1 + e∞a

2
)eo(1 + ae∞

2
)

= eo +
e∞aeo + eoae∞

2
+ e∞aeoae∞

4

= eo −
e∞eo + eoe∞

2
a − e∞eoe∞

4
a2 anticommutation

= eo + a + e∞
2

a2 by (3.12) and e∞eoe∞ = −2e∞

= C(a) by (3.10).

Then

Ta C(x)T†
a = TaxT

†
a +

x2

2
Tae∞T

†
a +TaeoT

†
a

= [x + (a ⋅ x)e∞] + [x
2

2
e∞] + [a + a2

2
e∞ + eo]

= (x + a) + x2 + 2(x ⋅ a) + a2

2
e∞ + eo

= C(x + a). ∎
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By similar methods, it can be shown that the reflection in a plane given byPc = n̂+de∞
is given by

PC(x)P = C(reflP(x)). (3.43)

and that a dilation (scaling) x↦ sx is given by

C(sx) = sDs C(x)D†
s where Ds ∶=

(1 + s) + (1 − s)e∞ ∧ eo
2
√
s

(3.44)

(note that e∞ ∧ eo = e+e−).
Perhaps less familiar is the inversion x↦ x−1 = x/x2. This inversion can be shown, by

similarly straightforward methods to those above, to correspond to a reflection along e+:

− e+ C(x)e+ = x2 C(x−1)∝ C(x−1). (3.45)

3.6 Transforming geometric entities

A great advantage of expressing conformal transformations as versors is that it allows
them to act not only on points, but on all the geometric entities of Section 3.4:

Theorem 3.7. If V is a versor and A is a blade, then AdV(A) = AdV(A). Concretely,
if X ∈ R4,1, then X ∧A = 0 if and only if (VXV−1) ∧ (VAV−1) = 0.

Proof. By Theorem 2.17, (VXV−1) ∧ (VAV−1) = V(X ∧A)V−1. Since V is invertible
this is zero if and only if X ∧A is. ∎

This means that, for example, if C−1(C) is a circle and Ta represents a translation,
then C−1(TaCT†

a) is the translated circle. This fact allows for a simple and interesting
proof of the formula (3.37) for the centre of a circle.

Proof of Theorem 3.5. First, we verify that the formula correctly gives the centre of the
unit circle in the xy-plane, centred on the origin. The unit sphere is given by Sc = eo− e∞

2 =
−e+ by (3.23) and the xy-plane is given by its normal Pc = e3. The unit circle can then
be computed as Cc

0 = Sc ∧Pc = e3e+. Therefore,

C0e∞C0 = −Cc
0e∞C

c
0 = −e3e+(e− + e+)e3e+ = e− − e+ = 2e0 = 2C(0).

To prove that the formula holds for any circle Γ = C−1(C) with centre m, note that
the unit circle can be transformed into Γ by scaling it to the same radius, rotating it into
the correct plane, and then translating it to the correct position. Symbolically then, by
Theorem 3.7 (assuming a normalization on C)

C = TmRDρ C0 D†
ρR

†T†
m.

Then, because translations, rotations and dilations leave e∞ (the point at infinity) un-
changed, and because rotations and dilations leave eo (the origin) unchanged (for dila-
tions, there is a scalar factor by (3.44); Dse∞D

†
s = 1

se∞ and D†
se∞Ds =D1/se∞D

†
1/s

= se∞,
and analogously for eo),

Ce∞C = TmRDρ C0 D†
ρR

†T†
m e∞ TmRDρ C0 D†

ρR
†T†

m

= ρ TmRDρ C0 e∞ C0 D†
ρR

†T†
m

= ρ TmRDρ 2eo D†
ρR

†T†
m

= 2TmeoT
†
m

= 2C(m). ∎
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This method of proving something algebraically for a special case and then reasoning
using transformations to establish the general case is referred to in [10] as using the
covariance of the conformal model.

The transformations of geometric entities that will be significant in Section 4 are
rotations and inversions of spheres, planes, circles and lines. In particular, that spheres
and circles that contain the origin map to planes and lines will be the basis of Section 4.5.
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4 Cryo-electron microscopy and the common curves
problem

Cryo-electron microscopy is an imaging technique where samples of molecules to be stud-
ied are rapidly frozen so that they become immersed in amorphous ice, before being
analysed using electron microscopy. It is an example of single particle analysis in that
the specimens are identical and spaced so far apart that single molecules can be distin-
guished.

4.1 Electron microscopy imaging of thin specimens

A detailed survey of electron microscopy is given in [11]. A much simplified model is as
follows. Consider a incident plane wave of electrons travelling in the positive z direction.
Their stationary wave function ψ∶ R3 → C obeys the Schrödinger equation

− h̵2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x) (4.1)

where E is the electron energy and V ∶ R3 → R is the potential energy as function of
position (V (x) = −eU(x) where −e is the electron charge and U is the electrostatic
potential). Assume that V (xe1 + ye2 + ze3) is zero except for in the interval −L < z < 0,
where a molecule is present. The goal is then to determine V .

For z ≤ −L, the electrons are described by the incident plane wave ψ(x) = Ceik0(z+L)
where k0 ∶=

√
2mE
h̵ . In the region −L < z < 0, let us make an ansatz of the form

ψ(x) = Ceiϕ(x) (4.2)

for a constant C ∈ R and assume that the potential varies slowly enough that the elec-
tron can be locally described as a plane wave. Informally, this means that for a small
displacement dz,

ψ(x + dz e3) = ψ(x)eik(x)dz = Cei(ϕ(x)+k(x)dz). (4.3)

Formally, the above amounts to approximating ∇2ψ(x) ≈ ∂2zψ(x) and ∂2zϕ(x) ≈ 0 in the
Schrödinger equation (4.1); then

− 2m(E − V (x))
h̵2

ψ(x) = ∇2ψ(x) ≈ ∂2zψ(x) = [−(∂zϕ(x))
2 + i

≈0
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
∂2zϕ(x)]ψ(x) (4.4)

In the standard terminology of [11, Section 4], we have made the WKB approximation
and the projection approximation. Either way, we find the differential equation

∂zϕ(x) = k(x) ∶=
√

2m(E − V (x))
h̵

. (4.5)

Supposing that ϕ(x)∣z=−L = 0, the solution at z = 0 is

ϕ(x, y,0) = ∫
0

−L
k(x, y, z)dz (4.6)

If a detector is placed at the plane z = 0 this phase shift can be measured.
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Since the potential was assumed to be zero outside −L < z < 0, defining

f(x, y, z) ∶=
√

2mE

h̵
− k(x, y, z) (4.7)

γ(x, y) ∶=
√

2mE

h̵
L − ϕ(x, y,0) (4.8)

lets us rewrite (4.6) into

γ(x, y) = ∫
0

−L
f(x, y, z)dz = ∫

∞

−∞
f(x, y, z)dz , (4.9)

which will be useful because of the following theorem:

Theorem 4.1 (Fourier slice theorem, specialized variant). Let f ∶ R3 → R and γ∶ R2 → R
be related as in (4.9), and let f̂ ∶ R3 → C and γ̂∶ R2 → C be their respective Fourier
transforms:

f̂(k) ∶= ∫
R3
f(x)e−ik⋅x dx ,

γ̂(κ) ∶= ∫
R2
γ(ξ)e−iκ⋅ξ dξ .

Then
γ̂ = f̂ ∣R2

(4.10)

where f̂ ∣R2
is the restriction of f̂ to R2, that is, f̂ ∣R2

(x, y) ∶= f̂(x, y,0).

Proof. Just expand definitions:

γ̂(κ) = ∫
R2
∫

∞

−∞
f(ξ + ze3)dz e−iκ⋅ξ dξ = ∫

R3
f(x)e−iκ⋅ξ dx = ∫

R3
f(x)e−iκ⋅x dx = f̂(κ). ∎

The theorem says that projecting f onto the xy-plane and then taking the Fourier
transform is the same as first taking the Fourier transform and then slicing it (restricting
it to R2), hence the name.

4.2 Single particle analysis

If a number of identical molecules with random orientation are imaged in the way de-
scribed above (that is, functions γ̂1, . . . , γ̂n are collected), Theorem 4.1 amounts to values
of f̂ being known on n planes that go through the origin, but the orientation of the
planes being unknown. If a more accurate model of the physics is used, the analysis is
similar, but a generalization of Theorem 4.1 states that instead of being restricted to
planes, f̂ is restricted to hemispheres that are halves of Ewald spheres (see for example
[12, Theorem 3.1] and [13]). The mathematical problem thus obtained will now be made
precise.

Let us first fix some notation in order to be able to state the problem succinctly. For
convenience, we shall omit the hats on f̂ and γ̂ to indicate Fourier transforms. From the
point of view of the mathematical problem, it is not so important that they are in fact

39



Fourier transforms. Refer to the following definitions:

k ∈ R a positive constant (4.11)

D ∶= {x ∈ R3 ∣ e3 ⋅ x = 0, ∥x∥ < k} the disk of radius k (4.12)

T ∶ D → R3

T (x) ∶= (k −
√
k2 − x2)e3 + x the lifting map (4.13)

H ∶= T (D) the canonical hemisphere (4.14)

R1, . . . ,Rn ∈ SO(3) unknown rotations (4.15)

Hi ∶= Ri(H) unknown hemispheres (4.16)

αij ∶= Hi ∩Hj the common curves (4.17)

f ∶ R3 → C the target function (4.18)

γ1, . . . , γn∶ D → C the data (4.19)

g1, . . . , gn∶ H → C
gi ∶= γi ○ T −1 the lifted data. (4.20)

The problem can then be stated as follows: There is a function f ∶ R3 → C, which is related
to the quantum-mechanical potential of the molecule’s three-dimensional structure as
indicated in the previous section. The ultimate objective is to approximate f . The
data are functions γ1, . . . , γn∶ D → C, each corresponding to the Fourier transform of the
recorded images. It is known by the generalization of the Fourier slice theorem mentioned
in the previous section that for all i ∈ {1, . . . , n},

gi = f ○Ri∣H (4.21)

where Ri∣H ∶ H → R3 is the restriction of Ri∶ R3 → R3 to H. In other words, values of
f are known on the n hemispheres H1, . . . ,Hn, but the orientations of the hemispheres
relative to each other are not known.

4.3 The common curves problem

Clearly, the data does not contain enough information to determine f exactly. However,
if all the rotations Ri could be determined, then the values of f would be known on the
subset ⋃ni=1Hi ⊂ R3, whence values of f could be interpolated.

We obtain the common curves problem by the following observation: Since any two
hemispheres Hi and Hj intersect in a circular arc αij (see Figure 2), the relative rotation
Ri ○R−1

j can be found by some numerical method that tries different rotations and max-
imizes the correlation between the two sets of function values on αij (that is, between
gi ○R−1

i ∣αij
and gj ○R−1

j ∣αij
).

Ideally, all rotations can be determined by fixing for example R1 = id and executing
the numerical method n − 1 times with j = 1. However, there is redundant information
available by executing the numerical method (n

2
) = n(n−1)

2 times so as to find approxima-
tions of Ri ○R−1

j for all pairs (i, j) with 1 ≤ i < j ≤ n. Then, the problem remains of how
to decide on best estimates of Ri from the redundant information.
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Figure 2: Hemispheres Hi and their intersections αij.

There are thus three quite separate parts to this approach: First, find the common
curves. Second, use the common curves to determine the unknown rotations. Third,
approximate f by suitably interpolating between the known values on ⋃ni=1Hi ⊂ R3.
In the following sections, the problem will be rewritten in a form that potentially has
practical advantages when applied to the first two of these parts.

The motivation for attempting to reformulate the problem is that the limiting case
k →∞, i.e. when the hemispheres become planes, has already been studied, for example
in [14]. Therefore, it would be desirable to find a transformation that reduces the problem
to a linear one.

4.4 Reformulation in conformal geometric algebra

In this section, the common curves problem is translated into conformal geometric algebra
in as straightforward a manner as possible. In essence, all parts of the problem are
transformed verbatim via the map C, as constructed in Definition 3.1. First, the rotations
are shown to extend naturally into the conformal space by (4.23). Then, the central
equation (4.21) is translated into (4.28). The remaining sections make the resulting
linear subspaces explicit as blades in G(R4,1).

A note on units of measurement is now in order. The conformal embedding (3.10)
is, as it stands, dimensionally inconsistent. The reason for this is that the stereographic
embedding (3.5) was defined in terms of the unit circle. Let us therefore assume that
units have been chosen, so that k = kdim/k0 is a dimensionless quantity with kdim being
the corresponding dimensional quantity.

4.4.1 Expressing the unknown rotations

As discussed in Section 2.3.3, a rotation Ri ∈ SO(3) can be expressed as a rotorRi ∈ G(R3)
via

Ri(x) =RixR
†
i (4.22)

and R†
i =R−1

i . The composition Ri ○Rj of two rotations is represented by the geometric
product RiRj of the corresponding rotors. A crucial feature of the present problem is
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that the same rotor as in Euclidean geometry can be used to represent the rotation in
conformal geometry, as stated in (3.40). In other words,

C ○Ri = R̃i ○ C (4.23)

where R̃i∶ R4,1 → R4,1 is the linear extension of Ri to R4,1 that leaves e+ and e− unchanged.

4.4.2 Translating the data maps

We now turn to the problem of converting the functions gi into the conformal represen-
tation. Recall from (4.21) that

gi ∶ H → C
gi = f ○Ri∣H .

(4.24)

This motivates the very natural definition

g̃i ∶ C(H)→ C
g̃i ∶= gi ○ C−1,

(4.25)

which says that to find the image value associated with X = λC(x) we simply take the
image value associated with x. We find that this definition plays nicely with the structure
of the problem:

g̃i = gi ○ C−1

= f ○Ri∣H ○ C−1 by (4.24)

= f ○ C−1 ○R̃i∣C(H) rotations commute with C by (4.23) (4.26)

Defining f̃ analogously to g̃;
f̃ ∶= f ○ C−1, (4.27)

the central equation (4.21) is translated into its analogue

g̃i = f̃ ○ R̃i∣C(H). (4.28)

In summary, the following diagram commutes:

H R3

C

C(H) K4

Ri

gi

C

f

C

R̃i

g̃i f̃

Figure 3: Commutative diagram for the transformed functions f̃ and g̃i.

4.4.3 Expressing the hemispheres

To describe the hemisphereH and its rotated cousinsH1, . . . ,Hn, let us start by describing
the corresponding spheres Σ (set Σ0 ∶= Σ and H0 ∶= H for compactness of notation)
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and Σ1, . . . ,Σn. The centre of Σi is kn̂i ∶= kRie3R
†
i . Equation (3.23) simplifies, since

m2 = ρ2 = k2, to yield the representation

Σi = C−1(Si) where Sc
i ∶= kn̂i + eo. (4.29)

To describe the hemispheres Hi, consider the plane Πi that cuts the sphere in half. Its
unit normal is n̂i and its orthogonal distance from the origin is k, so by (3.28) it can be
written

Πi = C−1(Pi) where Pc
i ∶= n̂i + ke∞. (4.30)

The half-space of R3 that is on the same side of Πi as the origin cannot be expressed as
a blade in R4,1. However, the condition (n̂i ⋅ x ≤ k) can be expressed according to (3.33):

C(x) ⋅Pc
i

−eo ⋅Pc
i

≤ 0. (4.31)

We therefore arrive at a (necessarily slightly clumsy) expression for the hemisphere Hi:

Hi = {x ∈ R3 ∣ Sc
i ⋅ C(x) = 0,

C(x) ⋅Pc
i

−eo ⋅Pc
i

≤ 0} . (4.32)

4.4.4 Making the hemisphere representation homogeneous

In order to completely transform the problem into a problem of linear subspaces in the
new domain we would like to replace C(x) by X = λC(x) where the value of λ ∈ R is
unimportant. In doing so, we can explicitly describe the corresponding region C(Hi).
The first condition of (4.32) translates directly to X ⋅ Sc

i = 0. The translation of the
second criterion is complicated by the fact that λ can be negative. We can substitute
using (3.18) to get

X ⋅Pc
i

(−eo ⋅Pc
i )(−e∞ ⋅X) ≤ 0 (4.33)

This gives the homogeneous representation

C(Hi) = {X ∈ R4,1 ∣ X2 = 0, X ⋅ Sc
i = 0,

X ⋅Pc
i

(−eo ⋅Pc
i )(−e∞ ⋅X) ≤ 0} . (4.34)

This is the intersection with the four-dimensional null cone of a four-dimensional hyper-
plane Si (that contains the origin in R4,1), bounded by the four-dimensional hyperplane
Pi (that also contains the origin in R4,1).

4.4.5 The intersection of two hemispheres

To describe the intersection αij ∶= Hi ∩Hj, consider first the intersection Σi ∩ Σj of the
corresponding spheres. This is a circle, given by the inner-product representation

Cc
ij ∶= (Si ∨ Sj)c = Sc

i ∧ Sc
j = (kn̂i + eo) ∧ (kn̂j + eo)

= k2(n̂i ∧ n̂j) + k(n̂i − n̂j)eo.
(4.35)

We describe C(αij) naively as C(Hi) ∩ C(Hj), using the above:

C(αij) = {X ∈ R4,1 ∣ X2 = 0, X ⌞Cc
ij = 0,

X ⋅Pc
i

(−eo ⋅Pc
i )(−e∞ ⋅X) ≤ 0,

X ⋅Pc
j

(−eo ⋅Pc
j)(−e∞ ⋅X) ≤ 0}. (4.36)
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This is the intersection of two 4D hyperplanes (i.e. a 3D hyperplane), bounded by two
4D hyperplanes, all intersected with the null cone.

4.5 Reformulation by inversion

The reformulation given in the preceding section in a sense reduces the original common
curves problem to a linear one, because the original hemispheres and circular arcs are
represented by hyperplanes through the origin. In actuality, however, the intersection
of these hyperplanes with the null cone are not linear spaces. Moreover, the mapping
C−1 from the transformed space to the original space is not injective. From the point of
view of concrete implementation, this amounts to the copying of data; the value of g at a
single point x ∈ H is copied to every point on the line C(x). It may therefore be argued
that little is gained from explicitly transforming the problem into conformal geometric
algebra.

However, there are a number of related concepts that can be applied to construct more
practical transformations that do not increase the dimensionality of the problem. During
the preparation of this thesis, three such transformations were discovered, which shall
be called stereographic projection, inversion and cutting hyperplanes. They all share the
property of sending spheres through the origin to planes and circles through the origin
to lines. In fact, a main result of this section is that they are all equivalent. While their
application to the problem at hand was inspired by conformal geometric algebra, they do
not require geometric algebra for their formulation.

4.5.1 Stereographic projection

A natural candidate for a map that could transform circles on the hemisphere into lines
in the plane is a translated and scaled version of the stereographic projection described
in Section 3.2. Let

Π ∶= {(x, y, k) ∈ R3 ∣ (x, y) ∈ R2} (4.37)

and define the projection P ∶ H → Π where by

P (x, y, z) ∶= S−1(x, y, k − z) + ke3 =
k

k − (k − z)(x, y) + ke3 =
k

z
(x, y, z). (4.38)

where e+ has been replaced by e3 and the unit circle has been replaced by one of radius
k in (3.4).

Figure 4: The modified stereographic projection (4.38).
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4.5.2 Inversion

An inversion in the origin is a map

x↦ R2

x2
x (4.39)

where R is the radius of the sphere that is invariant under the transformation. If such
an inversion is applied to points on the hemisphere H, the formula simplifies: Because
x2 + y2 + (k − z)2 = k2 on H, (4.39) becomes

(x, y, z)↦ R2

x2 + y2 + z2 (x, y, z) =
R2

k2 − (k − z)2 + z2 (x, y, z) =
R2

2kz
(x, y, z). (4.40)

Comparison with (4.38) shows that the modified stereographic projection is precisely
the inversion in the sphere of radius R =

√
2k. These considerations also give new light

to the ordinary stereographic projection (3.4) as an inversion in the circle of radius
√

2
centred on e+; see Figure 5.

S1

R1

e+

x0

X

θ

√
2

Figure 5: The common stereographic projection (3.4) as an inversion.

4.5.3 Hyperplane cutting

It was discovered empirically using Wolfram Mathematica that a transformation with
similar properties to those above can be extracted from the general reformulation con-
structed in Section 4.4 as follows: Take the intersection of C(H) with the hyperplane
given by u = u0 for some constant u0 (refer back to (3.15) for the definition of the u
coordinate), then project onto R3.

In symbols, this means that a point x ∈H is first mapped onto λC(x) = λ(x + x2

2 e∞ + eo).
Then, a particular λ is chosen (depending on x) so that u = u0. Since u = λx2

2 this means
λ = 2u0

x2 . Finally, the result is projected onto R3. The resulting map is

x↦ 2u0
x2

x, (4.41)

which is an inversion in the sphere of radius
√

2u0. If u0 = k2, it corresponds precisely to
the stereographic projection (4.38).
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4.5.4 The transformed problem

We have now seen that the three methods of transforming the data described above are
all equivalent up to a dilation in the origin. We shall therefore henceforth focus on the
stereographic projection (4.38). Figure 6 sums up the application of this transformation
to the problem at hand.

(a) Circle intersection.
(b) Circular arc intersection.

Figure 6: Transformed hemispheres P (Hi), P (Hj) and their intersections P (αij).

We shall now examine the image processing practicalities arising from this transfor-
mation. To this end, let us first explicitly write down the transformation T∶ D → R2 ∖D
of two-dimensional images. Reusing the notation (3.1) (but including k this time);

H∶ R2 → Π

H(x) ∶= x + ke3
(4.42)

we find
T =H−1 ○P ○ T ∶ x↦ k

k −
√
k2 − x2

x. (4.43)

Transforming D through this map means that the data γi∶ D → C are transformed into
γi ○ T−1∶ R2 ∖D → C. The inverse can be found to be

T−1(x) = 2k2

x2 + k2 x. (4.44)

Figure 7 shows two images transformed in this way (corresponding to Figure 6a).
The problem of finding the rotation that makes the data agree on the intersection cor-
responding hemispheres has now been reduced to that of identifying common lines in
the two-dimensional transformed images. The task of a numerical method is to find a
triple (d, θ,ϕ) (note that like SO(3), the search space is three-dimensional), which can
be translated into the two points x,y ∈ R2 and the two direction vectors û and v̂, so that
the values on L agree with those on L′; that is, for all λ ∈ R,

(γi ○ T−1)(x + λû) = (γj ○ T−1)(y + λv̂) (4.45)

whenever x + λû and y + λv̂ lie outside of the disk D.

46



L

D

x

d

û

x

y

k
θ

L′

D

y

d

v̂

x

y

k

ϕ

Figure 7: An identified common line between two images on R2 ∖D.

4.5.5 Extracting rotations from common lines

Suppose that, given the two images shown in Figure 7, the numerical method has found
x,y ∈ R2 and the direction vectors û and v̂. The problem is now to map the solution
back into SO(3); to find the rotation R ∈ SO(3) that transforms the line L′ to the
line L, when the images are viewed as lying in the plane Π = H(R2). Note that the
handedness of (x, û) is different from that of (y, v̂). This can be seen by geometric
intuition considering Figure 6, or by noting that if the handedness were the same, the
solution would be a rotation in the xy-plane, which is evidently not the case if there is a
unique common line.

To solve the problem, let us view the rotation as a rotor R ∈ G(R3) (if only to
emphasize the fact that rotation is a linear transformation). Defining

p ∶=H(x) = x + ke3 (4.46)
q ∶=H(y) = y + ke3, (4.47)

the fact that R transforms L into L′ is algebraically

∀λ ∈ R p + λû =R(q + λv̂)R†. (4.48)

From this we find that RqR† = p and Rv̂R† = û. Now, rotations respect cross products;
this can be easily proven:

R(a × b)R† =R(a ∧ b)cR† by (2.39)
= (R(a ∧ b)R†)c I = e1e2e3 commutes with everything
= ((RaR†) ∧ (RbR†))c outermorphism (Theorem 2.17)
= (RaR†) × (RbR†) by (2.39).

Thus, R(q × v̂)R† = p × û. Since {q, v̂,q × v̂} is a basis of R3 for which the rotated basis
vectors are known, the rotation is completely specified.

In fact, the rotor may be explicitly calculated by a formula from [15, Section 10.3.2]

R∝ 1 +
3

∑
i=1

f ibi (4.49)
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where (b1,b2,b3) = (q, v̂,q × v̂) and (f1, f2, f3) = (p, û,p × û) and where {f i} denotes the
reciprocal basis such that f i ⋅ fj = (i = j): f1 = f2×f3

(f1∧f2∧f3)c
et cetera. The rotor must be

normalized so that R†R = 1.

4.5.6 Discussion

The mapping T developed in Section 4.5.4 has the property of mapping data close to the
origin very far away. This leads to a data set that, while planar, in principle has infinite
extent. In the limiting case k → ∞ without applying T, the hemispheres Hi become
planes through the origin and the common curves αij become lines through the origin.
In contrast, if T is applied, the limiting behaviour is the exact opposite; the planes and
lines recede infinitely far from the origin.

However, it is not clear to what degree this is a problem in practice. The data γi are,
after all, pixelated, i.e. there is a positive pixel size ε. The disk D might therefore more
accurately be modelled as the annulus ε < ∥x∥ < k, which by T is sent to another annulus
k < ∥x∥ < kε

k−
√
k2−ε2

≈ 2k2

ε which, if properly scaled, could conceivably be a well-behaved
search space.

Furthermore, let us not forget that the solution to the common curves problem con-
sists of more than merely identifying the common curves between two hemispheres. For
example, there is the problem of finding the best fit for the orientations of all hemispheres
given the relative orientations of pairs. Solving that problem in terms of the transformed
planes could well prove to have advantages over working with the hemispheres directly.

4.6 Conclusion

We have developed two methods for transforming the common curves problem into one
of planes and lines rather than spheres and circles. The first approach is to translate it
directly into conformal geometric algebra. This is certainly elegant, but it requires copying
the original data multiple times into the new space, which is likely to be computationally
infeasible. The method of “cutting hyperplanes” was devised to solve this, but turns out
to be equivalent to the simpler transformation of inversion, alternatively stereographic
projection. This method appears on the surface to be a simplification of the problem,
but the practical concerns described in Section 4.5.6 could limit its usefulness. Which
of these approaches to select, if any, will depend on its performance on actual data, and
that must be left to experts in the field.

4.7 Further work

In this thesis, three superficially different transformation methods were devised and sub-
sequently found to be equivalent. This might lead one to ask the question: Is it at all
possible to transform the problem into one of planes and lines in a way that is not equiv-
alent to the inversion (4.39)? In particular, can the issue of sending data infinitely far
away be avoided? Intuition seems to suggest not, but it would be worthwhile to formulate
and examine this question rigorously.

It is known that the functions f and γ are Fourier transforms of real-valued functions;
therefore f(−x) = f(x) where z ↦ z denotes complex conjugation, and similarly for γ.
Thus, in fact the values of f are known on hourglass-shaped pairs of hemispheres. This
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could potentially be exploited, for example to make it possible to deal only with full
circles rather than circular arcs.

This thesis did not treat the problem of reconstructing the orientations of all hemi-
spheres given the relative orientation of all pairs of hemispheres (with some uncertainty).
Problems such as this can benefit from a geometric algebra treatment. In particular,
Perwass shows [7, Equation (4.15)] that a good approximation for the mean rotor of a
set of n rotors is given by

RM ∝
n

∑
i=1

Ri (4.50)

(where RM must be normalized so that R†
MRM = 1), which could indeed be directly

applicable since the rotor Rij ∶=RiR−1
j can be approximated as RikRkj for every k.

Starting from the transformed images of Figure 7, one may perform a further inversion
in the circle ∂D, described by the map I∶ R2 ∖D → D with I(x) ∶= k2

x2 x. This has the
effect of transforming the common lines into circles through the origin, whereas they were
ellipses in the original image. The compound map is given by

I ○ T∶ D →D

x↦ k(k −
√
k2 − x2)
x2

x.
(4.51)

It would be worth considering whether transforming ellipses into circles in this way could
simplify the problem by allowing for existing knowledge about circles to be applied.
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A Basic geometry in Rp,q

In this appendix, some basic concepts that are familiar in the Euclidean space Rn are
shown to generalize straightforwardly into any Rp,q.

Lemma A.1. For any vector n ≠ 0, the set Π ∶= {x ∈ Rp,q ∣ n ⋅ x = 0} is a (p + q − 1)-
dimensional hyperplane.

Proof. The lemma is assumed to be known to hold in Rp+q (the Euclidean space). Write
n in the standard basis:

n = n1e1 + ⋅ ⋅ ⋅ + npep
+ np+1ep+1 + ⋅ ⋅ ⋅ + np+qep+q.

Define a new vector
n′ ∶= n1e1 + ⋅ ⋅ ⋅ + npep

− np+1ep+1 − ⋅ ⋅ ⋅ − np+qep+q.
(A.1)

Then n ⋅ x = n′ ○ x, where ○ stands for the Euclidean scalar product. This immediately
proves the lemma. ∎

Remark. This theorem is true for the entire space Rp,q, but may not be true for subspaces.
For example, take V ∶= Span{n} ⊂ R1,1 where n ∶= e1 + e2. Then dimV = 1 but Π ∶=
{x ∈ V ∣ n ⋅ x = 0} = V since n2 = 0. Therefore dim Π is not 0, but 1.

Theorem A.2. Every linear subspace of Rp,q has an orthogonal basis.

Proof. Let V be a linear subspace of Rp,q. Proceed by induction on dimV . The base
case dimV = 0 is trivial, so assume that every subspace W with dimW < dimV has an
orthogonal basis.

If ∀x ∈ V x2 = 0, then any basis for V is orthogonal, since ∀x,y ∈ V ,

x ⋅ y = (x + y)2 − x2 − y2

2
= 0.

Assume therefore that ∃x ∈ V x2 ≠ 0 and let x be such a vector. DefineW ∶= {y ∈ V ∣ x ⋅ y = 0}.
Clearly, x ∉W which means that dimW < dimV , and so W has an orthogonal basis B.
By Lemma A.1, dimW can be no less than dimV −1. Therefore, it must be the case that
dimW = dimV − 1, which shows that B ∪ {x} is an orthogonal basis of V . ∎
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B Proof of Theorem 2.17
The proof will be done in a series of steps. That AdV is linear and AdV(1) = 1 are
immediate. We thus need to prove that AdV is grade-preserving and that AdV(A∧B) =
AdV(A) ∧AdV(B) for all A and B.

First, note that if x is a vector, then AdV(x) is a vector as well (since we saw that AdV

is a composition of reflections). We will use this to prove the wedge product property,
but we need the following determinant-like expansion of a blade into geometric products:

Lemma B.1 (Equation (3.1) in [1]). If x1, . . . ,xk are vectors, then

x1 ∧ ⋅ ⋅ ⋅ ∧ xk =
1

k!
∑
π∈Sk

sign(π)xπ(1) . . .xπ(k) (B.1)

where Sk is the symmetric group of order k (the set of permutations of (1, . . . , k)).

Proof. Both sides are clearly linear in all xi, and the left side is clearly alternating (that
is, swapping two of the vectors multiplies it by −1). That the right side is also alternating
can be seen by noting that swapping two vectors amounts to replacing π with π ○σ where
σ ∈ Sk is the swap, and then using sign(π ○ σ) = − sign(π).

Now, because both sides are linear and alternating, it suffices to consider an ordered
orthogonal basis {b1, . . . ,bk} of Span{x1, . . . ,xk} (such a basis exists by Theorem A.2).
Then, b1∧ ⋅ ⋅ ⋅ ∧bk = b1 . . .bk and sign(π)bπ(1) . . .bπ(k) = b1 . . .bk for every π by anticom-
mutation. Since there are k! terms (∣Sk∣ = k!), the two sides are equal. ∎

Using (B.1), we now find

AdV(x1 ∧ ⋅ ⋅ ⋅ ∧ xk) =V(x1 ∧ ⋅ ⋅ ⋅ ∧ xk)V−1

= 1

k!
∑
π∈Sk

Vxπ(1) . . .xπ(k)V
−1

= 1

k!
∑
π∈Sk

Vxπ(1)V
−1 . . .Vxπ(k)V

−1

= (Vx1V
−1) ∧ ⋅ ⋅ ⋅ ∧ (VxkV

−1)

because V−1V = 1 and all VxiV−1 are vectors. This proves that gr AdV(A) = grA and
AdV(A ∧ B) = AdV(A) ∧ AdV(B) for arbitrary blades. By linearity, the same results
follow for k-vectors and general multivectors.
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