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Abstract

In this thesis we have utilized Clifford algebra to examine connections between geometry
and two-dimensional magnetically interacting particles. We consider n particles in a plane in
R3, each generating a disk-shaped constant magnetic field, where the field is perpendicular
to the particle plane. Writing down the quantum mechanical Hamiltonian for the system,
we go on to investigate the diamagnetic contribution.

Splitting the diamagnetic term into a two-particle interaction and a three-particle in-
teraction, we show a number of results regarding the latter. This interaction turns out to
be repulsive (i.e. greater for particles close to each other) and related to the geometry of
triangles and their circumscribed circles.

Three particle positions form a triangle which has a circumscribed circle, i.e. the unique
circle passing through all three vertices. We prove, using Clifford algebra, that the three-
particle interaction is proportional to the squared inverse of the radius of this circle, for large
enough particle separation. Furthermore, we show that this interaction is a repulsion, as
mentioned above, among other results. Finally, we present and discuss some open questions
and ideas that could be interesting to study further.
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1 Introduction

Clifford algebra1 was developed in the 1870’s by English mathematician William Kingdon Clif-
ford [1, 2] as a unification of Hamilton’s quaternions [3] and Grassmann’s algebra [4, 5]. It
provides a rich mathematical framework for multilinear algebra and calculus on manifolds along
with wide applications in physics, engineering and more.

The mathematician Hermann Grassmann introduced the outer product (also called the wedge
product) defined on any vector space, in 1844. A vector can be thought of as a one-dimensional
subspace, i.e. a line, equipped with magnitude and orientation. In Clifford algebra, the outer
product is used to generalize this notion to subspaces of any dimension. The outer product
of two vectors is called a 2-blade, of three vectors a 3-blade etc. With this notation a k-
blade represents a linear k-dimensional subspace with magnitude and orientation. The general
elements of the Clifford algebra form a vector space and are called multivectors.

The outer product of two vectors2 a and b, denoted a ∧ b, is, as stated above, in a sense an
oriented two-dimensional subspace with a magnitude. It encodes an oriented parallelogram, with
sides a and b with an area equal to the magnitude of the blade. The outer product enables us
to write an expression for the triangle area as half the magnitude of the blade generated by two
of its sides. These kinds of geometric interpretations will become useful in later sections where
Clifford algebra is used to investigate relationships between geometry and particle interactions.

In quantum mechanics we are used to having two kinds of particles, fermions and bosons. In
three (or more) spatial dimensions, every particle falls into these categories. In two or one
dimensions on the other hand, it is possible to have particles that are neither bosons nor
fermions [6]. We will consider n of these (two-dimensional) anyons in a plane in Rn. Each
particle generates a disk-shaped constant magnetic field, where the field is perpendicular to
the particle plane. In the Hamiltonian of such a system of particles one finds a diamagnetic
term. This term is then split into a two-particle interaction and a three-particle interaction.
The latter turns out to be repulsive (i.e. larger for particles close to each other) and related to
the geometry of triangles and their circumscribed circles.

1.1 Purpose and contributions

The main purpose of this thesis is to collect and present results regarding the anyons mentioned
above, in the language of Clifford algebra. It also serves as an accessible introduction to Clifford
algebra and its application to geometry. The geometric connections and inequalities that we
present in Section 5 have been studied in [7] and [8].

We begin, in Section 2, by reviewing some basic geometry related to triangles. Then, in Section 3
we introduce the Clifford algebra of Rn and derive some results that will be needed in later
sections. In Section 4 we present the anyon-related physics that gives rise to the problems
investigated in Section 5. In Section 6 we discuss the results and further directions.

1Also called geometric algebra.
2We will not use any special notation for vectors, such as bold symbols, vector arrows or bars.
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2 Basic Geometry

Prior to analyzing the particle interactions in Sections 4 and 5 we shall lay out some geometric
properties of triangles and their circumscribed circles.

2.1 The circumscribed circle of a triangle

The circumscribed circle of a triangle (also called the circumcircle) is the unique circle that
passes through each of the three vertices of the triangle. The radius of this circle is referred to
as the circumradius or just the radius. Let the triangle vertices be vectors x, y and z in Rn.
Furthermore let r be the circumradius, d = 2r and A be the area of the triangle 4xyz. We
denote the sides of the triangle as a, b and c with opposite angles α, β and γ respectively as in
Figure 1.

r

A

a

b

c

γ

β

α

x

y

z

Figure 1: The triangle 4xyz with a circumcircle and diameter d = 2r. The side lengths of the
triangle are denoted a, b and c with opposite angles α, β, γ and area A.

The main result of this section is the following relation between the triangle area and the
circumradius.

Proposition 2.1. For a triangle with sides a, b, c and area A, the circumradius is given by

r =
abc

4A
. (1)

In order to prove this, we first need to review the central angle theorem which then gives us a
useful extended version of the law of sines.

Proposition 2.2 (Central angle theorem). An inscribed angle in a circle, subtending an arc
on the circle, is half of the central angle subtending the same arc.

Proof. Consider Figure 2a and let the inscribed angle be θ with its vertex on the circumference
of the circle. Denote the central angle ψ with vertex on the center of the circle subtending the
same arc. Consider the special case in Figure 2b in which one side of the inscribed angle is the
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θ

ψ

(a) Central angle theorem with
inscribed angle, θ, and central
angle, ψ, subtending the same
arc.

r

r
ψθ

θ

φ

(b) Special case with one side
being the diameter and the sup-
plementary angle φ.

ψ1
ψ2

θ1
θ2

(c) Generalized central angle
theorem.

Figure 2

diameter. The angles are the same as denoted above. Noting that φ is the supplementary angle
to ψ we have the relation

φ = 180◦ − 2θ = 180◦ − ψ

=⇒ θ =
1

2
ψ.

This can be generalized by considering Figure 2c and by using the fact that

θ2 =
1

2
ψ2,

along with

θ1 + θ2 =
1

2
(ψ1 + ψ2) .

This ultimately yields

θ1 =
1

2
ψ1.

For the case in Figure 2a we use the results above by inserting a diameter which gives the
modfied situation seen in Figure 3. With the results concluded from Figure 2b we once again
get the relations θ1 = 1

2ψ1 and θ2 = 1
2ψ2 yielding

θ1 + θ2 =
1

2

(
ψ1 + ψ2︸ ︷︷ ︸

ψ

)
=

1

2
ψ ⇐⇒ θ =

1

2
ψ.

We are now ready to prove the law of sines.

Proposition 2.3 (Law of sines). a
sinα = b

sinβ = c
sin γ = d, where a,b and c are the side lengths

of the triangle with opposite angles α, β, γ and d is the diameter of the circumcircle see Figure 1.

Proof. Consider Figure 4 and let w denote the diametrically opposed point of z, on the cir-
cumcircle. Construct the triangle 4zwy and let the angle at w be δ. The angle ∠wyz is right
and δ = β by the central angle theorem (Proposition 2.2). Thus sinβ = b

d so that d = b
sinβ .

Proceeding analogously we obtain the corresponging equalities for a and c.
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θ1
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ψ1
ψ2

Figure 3: Central angle theorem with inscribed angle, θ = θ1+θ2, and central angle, ψ = ψ1+ψ2,
subtending the same arc.

y

w z

x

δ

β

d

b

Figure 4: The triangle 4xyz with its circumcircle as well as a right triangle constructed using
the point w diametrically opposed to z.

We are now ready to prove Proposition 2.1.

Proof. The area of a triangle is half of its base times its height

2A = ab sin γ = bc sinα = ca sinβ.

Summing over these yields

⇒ 6A

abc
=

1

c
sin γ +

1

a
sinα+

1

b
sinβ

= {law of sines (prop. 2.3)}

=
3

d
4A

abc
=

1

r
.

With this proof completed, we will proceed to introduce the basics of Clifford algebra. This
will enable us to solve the geometric problem of particle interaction algebraically.
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3 Clifford Algebra

In this section we introduce the Clifford algebra (sometimes referred to as the geometric algebra)
of Euclidian space. We prove some basic results which will be used in Section 5. For a more
general and thorough introduction to Clifford algebra, see for example [9], [10] or [11].

3.1 Definitions

For our purposes it will suffice to consider the Clifford algebra on Rn. Take an orthonormal
(ON) basis E = {e1, . . . , en} of Rn. Let BE be the set of lists of elements in E subject to the
reduction rules

eiei = e2i = 1

eiej = −ejei, i 6= j.

The set BE also includes the empty list.

Definition 3.1. The Clifford algebra Cl(Rn) of Rn is SpanR BE , i.e. formal sums of elements in
BE with coefficients in R, along with the geometric product. The geometric product is defined
by concatenation of elements in BE subject to the reduction rules above and extended linearily
to all of SpanR BE . Elements in the Clifford algebra are called multivectors. The empty list in
B is the identity of the geometric product. We will write Cl = Cl(Rn) when the dimension is
implied.

Example 3.2. Consider the geometric product of the elements e1e3e4 and e2e3. We then get

e1e3e4 e2e3︸︷︷︸
−e3e2

= −e1e3 e4e3︸︷︷︸
−e3e4

e2 = e1 e3e3︸︷︷︸
1

e4e2 = e1e4e2 = −e1e2e4.

Proposition 3.3. Cl(Rn) is independent on the choice of ON-basis E.

For a proof of this proposition we direct the reader to [9].

We introduce a multi-index notation for sets of indices A = {i1, i2, . . . , ik} where 1 ≤ i1 <
i2 < · · · < ik ≤ n. The elements of BE = {eA} are called basis blades, where {eA} is the
product ei1ei2 · · · eik . Furthermore, let the symmetric difference of the sets A and B be denoted,
A4B := A ∪B rA ∩B.

Proposition 3.4. For basis blades eA, eB the geometric product behaves like

eAeB = ±eA4B.

Proof. This follows from the anticommutativity of the geometric product (each commutation
of distinct basis vectors yields a factor −1) on E and the fact that e2i = 1.

Definition 3.5. For a proposition P , let (P ) evaluate as 1 if P is true and 0 if it is false. We
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define

eA ∧ eB := (A ∩B = ∅)eAeB outer product

eA ∗ eB := (A = B)eAeB scalar product

eA x eB := (A ⊆ B)eAeB left inner product

eA y eB := (A ⊇ B)eAeB right inner product

〈eA〉k := (|A| = k)eA projection on grade k

eA
? := (−1)|A|eA grade involution

eA
† := (−1)(

|A|
2 )eA = eikeik−1

· · · ei1 reversion

and extend linearly to the rest of Cl.

Note that this definition of the scalar product coincides with the usual one on vectors. Moreover
the above definition of reversion of a basis blade is equivalent to reversing the order of its
constituent basis vectors

(ei1ei2 · · · eik)† = eikeik−1
· · · ei1 ,

since every commutation yields a factor of −1 and every basis vector needs to commute with
every other basis vector in the basis blade exactly once. The number of possible pairs of basis
vectors in the basis blade is

(
k
2

)
, which gives the right sign.

The outer product is of special interest for us and two of its properties are presented next.

Proposition 3.6. The outer product is associative.

Proof. Since the outer product is linear by definition, it suffices to prove associativity on basis
blades. Let eA, eB, eC ∈ BE .

eA ∧ (eB ∧ eC) = (B ∩ C = ∅)eA ∧ (eBeC)

= (B ∩ C = ∅)(A ∩ (B4C) = ∅)eAeBeC

= (B ∩ C = ∅)(A ∩B = ∅)(A ∩ C = ∅)eAeBeC

= (A ∩B = ∅)(C ∩ (A4B) = ∅)eAeBeC

= (eA ∧ eB) ∧ eC .

Proposition 3.7. For v, w ∈ Rn we have

v ∧ w = −w ∧ v.

Proof. This follows from anticommutativity on the basis, linearity and the fact that ei ∧ ei =
0.

3.2 The scalar product and vectors

Proposition 3.8. For v ∈ Rn and x ∈ Cl we have

vx = v x x+ v ∧ x
xv = x y v + x ∧ v.
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Proof. Noting that eieA = (i ∈ A)eieA + (i /∈ A)eieA the proposition follows from linearity.

Proposition 3.9. For v, w ∈ Rn we have

v x w = v ∗ w = v y w.

Proof. This follows immediately from the definitions above and linearity.

Corollary 3.10. vw = v ∗ w + v ∧ w

Proposition 3.11. For v, w ∈ Rn we have vw = wv + 2v ∧ w

Proof. The proposition follows from the anticommutativity of the outer product on vectors and
the commutativity of the scalar product, since that yields wv = v ∗ w − v ∧ w.

Proposition 3.12. For any two multivectors x and y, the scalar product can be written as

x ∗ y = 〈xy〉0,

where 〈·〉0 is projection on grade zero (i.e. the scalars) as in Definition 3.5.

Corollary 3.13. 〈xy〉0 = 〈yx〉0.

3.3 Blades

Let outer products of k vectors v1 ∧ v2 ∧ · · · ∧ vk be called k-blades and denote the set of all
blades by B = {a1 ∧ a2 ∧ . . . ∧ ak | ai ∈ Rn}. The blades can be interpreted geometrically with
the following results.

Proposition 3.14. The vectors {v1, . . . , vk} are linearly independent if and only if

v1 ∧ · · · ∧ vk 6= 0.

For a proof of this, please refer to [9], for example.

Corollary 3.15. Let B = v1 ∧ · · · ∧ vk 6= 0 and v ∈ Rn. Then

v ∧B = 0 ⇐⇒ v ∈ Span{v1, . . . , vk}.

This allows us to associate a k-blade a1∧· · ·∧ak with a k-dimensional subspace Span{a1, . . . , ak}
together with an orientation and magnitude. Blades are a geometric generalization of vectors
in the sense that a vector is represented exactly by a one-dimensional subspace along with a
length and a sign. For example a 2-blade a ∧ b of vectors a and b can be visualized as directed
parallelogram with its area equal to its magnitude. By the same token the 3-blade a ∧ b ∧ c
of vectors a, b and c can be visualized as a parallelepiped, this is seen in figure 5. Moreover,
arbitrary multivectors are, by definition, linear combinations of basis blades with the geometric
interpretation of being linear combinations of orthogonal subspaces.

Proposition 3.16. Any k-blade can be written as a scalar times a geometric product of k basis
vectors.
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a

b

(a) A 2-blade a ∧ b with magnitude and orien-
tation.

a

b

c

(b) A 3-blade a ∧ b ∧ c with magnitude and
orientation.

Figure 5

Proof. Consider a k-blade B = a1∧· · ·∧ak. Take an ON-basis {ε1, . . . , εk} of Span{a1, . . . , ak},
e.g. by Gram-Schmidt. The blade can thus be written as B = αε1 ∧ · · · ∧ εk, where α ∈ R fixes
the sign (i.e. orientation) and magnitude. Since {εi}i is ON, εi ∧ εj = εiεj by Proposition 3.9.
Thus B = αεi · · · εk.

Proposition 3.17. For any blade B ∈ B, B2 ∈ R.

Proof. By prop. 3.16, we can write B = βei1 · · · eik where β ∈ R. Then

B2 = β2ei1 · · · eikei1 · · · eik .

Repeatedly swapping places using the anticommutativity property of the geometric product,
the square becomes

B2 = ±β2e2i1 · · · e
2
ik

= ±β2.

This proposition implies that every non-zero blade B is invertible with B−1 = 1
B2B.

Proposition 3.18. For a 2-blade B = a ∧ b, the area of the parallellogram spanned by a and
b is given by the magnitude

√
B†B =

√
BB† =: |B|2 of B.

Proof. By a change of basis, we can write

a = a1e1

b = b1e1 + b2e2,

which makes the area of the parallellogram to be |a1b1|. On the other hand,

B = a ∧ b = a1b2e1e2 =⇒ BB† = a21b
2
2e1e2e2e1 = a21b

2
2.

Hence
√
BB† = |a1b2| and we are done.

3.4 Summary

We defined the geometric product on ON basis vectors as juxtaposition, subject to two rules:
eiei = 1 and eiej = −ejei if i 6= j. This was used this to define the Clifford algebra on Euclidean
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space as linear combinations of the lists or words of basis vectors together with the geometric
product. We went on to define important operations and products and we also presented a
number of propositions, some extra notation and interpretations. In the following sections, we
will utilize the framework developed here to investigate links between geometry and the physics
of a certain kind of particle.
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4 Particle Interactions

In this section, we consider a system of two-dimensional particles (called anyons, see [12, 13,
14, 7]). We will investigate the quantum mechanical Hamiltonian of the system and show that
it gives rise to a term with surprising geometric connections that we will investigate later using
Clifford algebra.

Consider n particles at positions x1, x2, . . . xn ∈ Span{e1, e2} ⊂ R3. Denote the disk in
Span{e1, e2} of radius R centered at p as DR(p). Let each particle generate a constant magnetic
field parallel to e3, in the disk Span{e1, e2} of radius R as seen in Figure 6.

B = const.

B = 0

R

Figure 6: Each particle generates a constant magnetic field in a disk around it.

While this specific form of magnetic interaction might seem arbitrary it is actually well mo-
tivated from physics, see [12, 13]. It is also mathematically studied from the perspective of
effective mean-field theory in [7].

Define the indicator function for a set M by 1M (x) := (x ∈ M), where the proposition in
parenthesis takes on value 1 if true and 0 otherwise, as in Section 3. The magnetic field around
particle i can then be written

B(x) = C1DR(xi)(x)e3 = C1DR(0)(x− xi)e3

and we will normalize it so that C = 1.

4.1 The vector potential of B

In order to investigate the quantum mechanical Hamiltonian, the electromagnetic vector poten-
tial is needed. We will start by introducing further notation in order to write down the vector
potential, A.

Let I2 = e1e2. For a vector x ∈ Span{e1, e2}, define x⊥ = xI2 with the geometric interpretation
of x being rotated by a right angle. To realize this, note that it is linear and acts on the e1, e2
by sending them to e1I2 = e2 and e2I2 = −e1. We will also write x−⊥, when x 6= 0, meaning
1
x2
x⊥. The following lemma is geometrically evident.

Lemma 4.1. x⊥ ∗ y⊥ = x ∗ y for any x, y ∈ Span{e1, e2}.

Define the following regularization

x−1R :=
1

|x|2R
x, (2)

where
|x|R := max{|x|, R},

10



for x ∈ Rn.

We are now ready to introduce the magnetic vector potential corresponding to the magnetic
field B above.

Proposition 4.2. A(x) = (x− p)−⊥R := (x−p)⊥
|x−p|2R

=⇒ ∇×A ∝ 1DR(p)e3

Proof. It is enough to show that ∇× x−⊥R ∝ 1DR(0)(x)e3. We shall write

x = x1e1 + x2e2, x1, x2 ∈ R

∇ = e1
∂

∂x1
+ e2

∂

∂x2
.

The scalar coordinates x1, x2 in this proof are not to be confused with the vector positions xi
above. Now split into two cases. Case 1: |x| ≤ R.

∇× x−⊥R = (e1
∂

∂x1
+ e2

∂

∂x2
)× x1e2 − x2e1

R2

=
1

R2
(1 + 1)e3 =

2

R2
e3.

Case 2: |x| > R.

∇× x−⊥R = (e1
∂

∂x1
+ e2

∂

∂x2
)× x1e2 − x2e1

x21 + x22

=

(
∂

∂x1

x1
x21 + x22

+
∂

∂x2

x2
x21 + x22

)
e3

=

(
x21 + x22 − 2x21 + x21 + x22 − 2x22

(x21 + x22)
2

)
e3 = 0.

Thus ∇× x−⊥R = 2
R2 1DR(0)(x)e3.

Since we are primarily interested in the vector potential, we will renormalize everything so that
A = x−⊥R .

R

Figure 7: Visualization of the vector potential A, increasing linearly inside the radius R and as
the inverse of the distance outside.

11



4.2 The Hamiltonian

The quantum Hamiltonian for a point charge at x in a magnetic field can be written as

Ĥ =
1

2m
(p̂− qA(x, t))2 + qφ(x, t),

where q is the charge, x is the position of the charge, p̂ is the usual momentum operator, A
is the vector potential and φ the scalar potential. Discarding the qφ term (i.e. assuming no
external electric field) and expanding the square we obtain

p̂2 − qp̂ ∗A− qA ∗ p̂+ q2A2.

The first term is just the kinetic energy and the second two are paramagnetic. The last term,
q2A2, which is a diamagnetic contribution, is what we shall examine closer.

In our case, we have n charged particles. Thus, the corresponding diamagnetic term will be a
sum of squares of the vector potentials felt by each particle. Each particle is affected by the
vector potential from every other particle, and we will denote the total vector potential felt by
the j:th particle as Aj(xj). Hence, the A-quadratic term of our system becomes

∑
j

Aj(xj) ∗Aj(xj) =
∑
j

∑
k 6=j

∑
l 6=j

(xj − xk)−⊥R ∗ (xj − xl)−⊥R (3)

=
∑
j

∑
k 6=j

∑
l 6=j

(xj − xk)−1R ∗ (xj − xl)−1R (4)

=
∑
j

∑
k 6=j
|xj − xk|−2R +

∑
j

∑
k 6=j

∑
l 6=j,k

(xj − xk)−1R ∗ (xj − xl)−1R . (5)

The first term is a two-particle interaction and represents a kind of repulsive force between pairs
of particles, since it is positive and (mostly) decreases as their separation increases. Note that
for the second term of (5), we can look at every choice of three particles independently. Let us
therefore restrict ourselves to n = 3 and denote the particle positions as x, y and z. The second
term of (5) then becomes

2
(
(x− y)−1R ∗ (x− z)−1R + (y − z)−1R ∗ (y − x)−1R + (z − x)−1R ∗ (z − y)−1R

)
.

4.3 The tree-particle interaction, vR

In light of the three-particle interaction that emerged from the diamagnetic contribution above,
define

vR(x, y, z) :=
∑

cyclic in x,y,z

(x− y)−1R ∗ (x− z)−1R . (6)

Later on, we will see that the three-particle interaction is, in many ways, analagous to the
two-particle repulsion. Three particles at x, y, z naturally form a triangle with sides x−y, y− z
and z − x. In the next section, we will, for example, show that when all sides of this triangle
are larger than R, then vR(x, y, z) is proportional to the squared inverse of the circumradius of
this triangle. It will also be shown that the three-particle interaction is a purely repulsive term.
This fact is not evident merely from inspection even though the sum of the interactions, A2, is of
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course positive. Note that, unlike in classical physics, the particles affect each other magnetically
even when they are not in each other’s magnetic fields. This effect, of seeing magnetic fields
remotely via the vector potential, is known as the Ehrenberg-Siday-Aharonov-Bohm effect [15,
16]
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5 Results

In this section we will use the tools presented in previous sections to investigate triangles in
particle interactions with applications of Clifford algebra. The connection between the potential
vR and the circumradius will be shown as well as inequalities involving vR in regard to the
magnetic field radius R.

We will now examine the potential

vR(x, y, z) :=
∑

cyclic in x,y,z

(x− y)−1R ∗ (x− z)−1R , (7)

which we defined in Section 4. Even though we originally defined vR(x, y, z) for x, y, z ∈ R3, we
will now let x, y, z be in Rn for generality. Note that vR is

vR(x, y, z) =
∑

cyclic in x,y,z

(x− y)

|x− y|2R
∗ (x− z)
|y − z|2R

, (8)

by definition, see Section 4. We will see that this potential is, when the particles are separated
enough, positive and decreasing with distance and therefore purely repulsive.

5.1 The connection between vR and the circumradius

Proposition 5.1. Let x, y, z ∈ Rn and R ∈ R+. If the distance between every pair of points
x, y and z is greater than R then

|x− y|2 · |y − z|2 · |z − x|2vR(x, y, z) = 2|B|2 = 2B†B.

where we have defined the 2-blade B := (x− y) ∧ (x− z).

Proof. We will start with the left-hand side and manipulate it using propositions from Section 3.
The first step is to rewrite it in terms of the geometric product, using Proposition 3.12.

LHS = (x− y) ∗ (x− z)|y − z|2 + cycl.

=
(
(x− y) ∗ (x− z)

)(
(y − z) ∗ (y − z)

)
+ cycl.

= 〈(x− y)(x− z)(y − z)(y − z)
+ (y − z)(y − x)(z − x)(z − x)

+ (z − x)(z − y)(x− y)(x− y)〉0.

By Corollary 3.13, we can reorder the factors inside the scalar projection, in a certain way.
Using this to factor out (x− y)(x− z) from the left, we obtain

LHS = 〈(x− y)(x− z)
[
(y − z)(y − z) + (z − x)(y − z)− (z − y)(x− y)

]
〉0.

In order to factor out another factor, (y−z), we will use Propsition 3.11 to rewrite (z−x)(y−z) =
(y − z)(z − x) + 2(z − x) ∧ (y − z). This then gives

LHS = 〈(x− y)(x− z)(y − z)

0︷ ︸︸ ︷[
(y − z) + (z − x) + (x− y)

]
+ 2(x− y)(x− z) · (z − x) ∧ (y − z)〉0

= 〈(x− y)(x− z) · (z − x) ∧ (y − z)〉0.
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If we decompose the geometric product in this expression, using Proposition 3.9, it becomes

LHS = 2〈(x− y) ∧ (x− z)︸ ︷︷ ︸
B

· (z − x) ∧ (y − z)︸ ︷︷ ︸
−B

〉0 + 2〈(x− y) ∗ (x− z) · (z − x) ∧ (y − z)〉0︸ ︷︷ ︸
0

= 2|B|2.

In the last step, we used the fact that a scalar times a 2-blade is still a 2-blade, which is sent
to zero under projection on the scalars.

Consider the triangle of which x, y, z are the vertices and denote its circumradius r. Identifying
|B| as twice the area of the triangle, Proposition 5.1 together with Proposition 2.1 gives us

vR(x, y, z) =
1

2r2
. (9)

This results in the corollary

Corollary 5.2.
1

2
r−2 =

∑
cyclic in x,y,z

(x− y)−1 ∗ (x− z)−1.

Recall the two-particle repulsion in equation (5) in Section 4. The circumradius is a natural
generalization of the distance between two particles to three particles. In this sense, the two-
and three-particle interactions have an analogous behavior. Indeed, were you to take a guess
about the behavior of the three-particle interaction based on the two-particle interaction, 1

r2

is an intuitive choice. Excluding the circumradius however, the next guess could be a total
pairwise separation

ρ2 := |x− y|2 + |y − z|2 + |z − x|2.

The following result suggests a strong connection between r and ρ.

Proposition 5.3.
1

2
ρ2 =

∑
cyclic in x,y,z

(x− y) ∗ (x− z).

Proof. Rewriting this we have that

ρ2 = |x− y|2 + |y − z|2 + |z − x|2

=
∑

cyclic in x,y,z

(x− y) ∗ (x− y)

=
∑

cyclic in x,y,z

(
x2 + y2 − 2x ∗ y

)
= 2x2 + 2y2 + 2z2 − 2x ∗ y − 2y ∗ z − 2z ∗ x
= 2

([
x2 − x ∗ y − x ∗ z + y ∗ z

]
+ y2 + z2 − 2y ∗ z

)
= 2

(
(x− y) ∗ (x− z) +

[
y2 − y ∗ x− y ∗ z + x ∗ z

]
+ z2 − y ∗ z − x ∗ z + x ∗ y

)
= 2 ((x− y) ∗ (x− z) + (y − x) ∗ (y − z) + (z − x) ∗ (z − y)) .

Note the similarity if this result with Corollary 5.2. In light of this, it is natural to examine the
scale invariant and dimensionless quantity ρ2vR.
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5.2 Inequalities involving vR

The main result of this section is the following characterisation of vR.

Theorem 5.4. For any R ≥ 0 and x, y, z ∈ Rn we have that

0 ≤ vR(x, y, z) ≤ C

ρ2
,

where C is a constant.

We will divide the proofs into several parts.

Proposition 5.5. In the case when all sides of the triangle 4xyz are greater than R, we have
that

0 ≤ ρ2vR(x, y, z) ≤ 9

2
.

Proof. By Proposition 5.1, vR = 1
2r2

. This means that we need to show

0 ≤ ρ2

r2
≤ 9.

By denoting the sides of 4xyz by a, b, c we get

ρ2 = a2 + b2 + c2,

and by the law of sines (2.3) we get

ρ2 = d2 sin2(α) + d2 sin2(β) + d2 sin2(γ)

= 4r2
(
sin2(α) + sin2(β) + sin2(γ)

)
⇒ ρ2

r2
= 4

(
sin2(α) + sin2(β) + sin2(γ)

)
. (10)

This gives rise to the optimization problem of finding the maximum of

f(α, β, γ) := sin2(α) + sin2(β) + sin2(γ),

under the constraint that
g(α, β, γ) := α+ β + γ = π.

Using Lagrange multiplicators: L(α, β, γ) = f(α, β, γ)− λ(g(α, β, γ)− π),

∇L = 0

⇔ 2 sin(α) cos(α) = 2 sin(β) cos(β) = 2 sin(γ) cos(γ)

⇔ sin(2α) = sin(2β) = sin(2γ).

With the constraint (g = π) we obtain the following three solutions:

α = β = γ = 0, α = β =
π

2
, γ = 0 and α = β = γ =

π

3
. (11)

Substituting these solutions into equation (10) gives

ρ2

r2
= 0,

ρ2

r2
= 8 and

ρ2

r2
= 9, (12)

respectively. Finally

0 ≤ ρ2

r2
≤ 9, (13)

with equality if and only if the triangle is equilateral.
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Proposition 5.6. In the case when all sides of 4xyz are smaller than R, then

0 ≤ ρ2vR ≤
9

2
.

Proof. We have that

vR(x, y, z) =
∑

cyclic in x,y,z

(x− y)−1R ∗ (x− z)−1R

=
∑

cyclic in x,y,z

(x− y)

|x− y|2R
∗ (x− z)
|y − z|2R

=
1

R4

 ∑
cyclic in x,y,z

(x− y) ∗ (x− z)


︸ ︷︷ ︸

1
2
ρ2

=⇒ ρ2vR(x, y, z) =
1

2

ρ4

R4
= {ρ2 = a2 + b2 + c2 ≤ 3R2} ≤ 9

2
.

By the definition of ρ, we get ρ2vR ≥ 0.

We pause to illuminate an interesting point. In the proof of Proposition 5.6, we see that vR ∝ ρ2
when the particle separation is small. Moreover, Proposition 5.1 tells us that vR ∝ r−2 when
the particle separation is large. Thus, vR is, in a sense, an interpolation between ρ2 and r−2 as
the positions x, y, z move apart.

We will now treat the rest of the cases of Theorem 5.4.

Proposition 5.7. If one side of 4xyz is greater than R and two are smaller than R, then

0 ≤ ρ2vR ≤ 12.

Proof. Let, without loss of generality,

|x− y| ≥ R and |y − z|, |z − x| ≤ R,

We will do the proof in two steps. Firstly, we will show that

0 ≤ |x− y|2R · |y − z|2R · |z − x|2R · vR(x, y, z) ≤ 2R2|x− y|2. (14)

Then we will show that

2R2|x− y|2 ≤ |x− y|2R · |y − z|2R · |z − x|2R ·
12

ρ2
. (15)

Combining these inequalities gives the desired result.

The left-hand side of (14) can be rewritten and estimated as

LHS = |y − z|2R · (x− y) · (x− z) + |z − x|2R · (y − x) · (y − z) + |x− y|2R · (z − x) · (z − y)

= R2 · (x− y) · (x− z) +R2 · (y − x) · (y − z)︸ ︷︷ ︸
−(x−y)·(y−z)

+|x− y|2 · (z − x) · (z − y)

= R2(x− y) [(x− z)− (y − z)] + |x− y|2 · (z − x) · (z − y)

= R2|x− y|2 + |x− y|2 · (z − x) · (z − y)

= |x− y|2
[
R2 +R2

]
≤ 2R2|x− y|2.
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Similarly we get a lower bound on the left-hand side of (14) by

LHS = R2|x− y|2 + |x− y|2 · (z − x) · (z − y)

= |x− y|2
[
R2 −R2

]
≥ 0.

For the right-hand side of expression (15) we have

RHS = 12
|x− y|2R · |y − z|2R · |z − x|2R
|x− y|2 + |y − z|2 + |z − x|2

≥ 12
|x− y|2 ·R2 ·R2

|x− y|2 +R2 +R2
,

and using that |x− y| ≤ |y − z|+ |z − x| ≤ 2R in the denominator we arrive at

RHS ≥ 12
|x− y|2 ·R4

4R2 + 2R2

≥ 2R2|x− y|2.

Thus, we are done.

Proposition 5.8. If one side of 4xyz is smaller than R and two lengths are greater than R,
then

0 ≤ ρ2vR ≤ 24.

Proof. Let, without loss of generality,

|x− y| ≤ R and |y − z|, |z − x| ≥ R.

As in the last proof, we will prove two inequalities

0 ≤ |x− y|2R · |y − z|2R · |z − x|2R · vR(x, y, z) ≤ 4R2|x− z|2, (16)

and

4R2|x− z|2 ≤ |x− y|2R · |y − z|2R · |z − x|2R ·
24

ρ2
. (17)

Combining these then gives the desired result.

The left-hand side of (16) becomes

LHS = |y − z|2R · (x− y) · (x− z) + |z − x|2R · (y − x) · (y − z) + |x− y|2R · (z − x) · (z − y)

= |y − z|2(x− y) ∗ (x− z) + |z − x|2(y − x) ∗ (y − z) +R2(z − x) ∗ (z − y).

The first two terms of this expression,

|y − z|2(x− y) ∗ (x− z) + |z − x|2(y − x) ∗ (y − z), (18)

are almost the same as the expression analyzed in Proposition 5.1. With that result in mind,
(18) becomes

〈(x− y)(x− z)
[
(y − z)(y − z) + (z − x)(y − z)

]
〉0 = −|x− y|2(x− z) ∗ (y − z) + 2|B|2.
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Thus, the positivity of the left-hand side of (16) is obtained by

LHS = |y − z|2(x− y) ∗ (x− z) + |z − x|2(y − x) ∗ (y − z) +R2(z − x) ∗ (z − y)

= −|x− y|2(x− z) ∗ (y − z) + 2|B|2 +R2(z − x) ∗ (z − y)

= (x− z) ∗ (y − z)
[
−|x− y|2 +R2

]
+2|B|2 ≥ 0.

To get the upper bound in (16), we will use

|B| = |(x− y) ∧ (x− z)| ≤ |x− y||x− z|,

and the triangle inequality

|y − z| ≤ |y − x|+ |x− z| ≤ R+ |x− z| ≤ 2|x− z|.

These estimates then imply, for the left-hand side of (16), that

LHS ≤ (x− z) ∗ (y − z)︸ ︷︷ ︸
≤|x−z||y−z|≤2|x−z|2

[
−|x− y|2 +R2︸ ︷︷ ︸

≤R2

]
+2|B|2 ≤ 4R2|x− z|2.

To show (17), we estimate the right-hand side as

R.H.S. ≥ 24
R2|y − z|2 · |z − x|2

R2 + |y − z|2 + |z − x|2

≥ 24
R2|y − z|2 · |z − x|2

R2 + |y − z|2 + (2|y − z|)2

≥ 24
R2|y − z|2 · |z − x|2

|y − z|2 + |y − z|2 + 4|y − z|2

≥ 4R2 · |z − x|2

This concludes our proof of Theorem 5.4.
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6 Conclusions and Further Directions

The purpose of this thesis has been to examine the relationship between geometry and two-
dimensional magnetically interacting particles using Clifford algebra.

The main results of this thesis are Proposition 5.1 and Theorem 5.4. The former provided us
with a strong geometric interpretation of the three-particle interaction that emerged in Section 4.
The latter says that the three-particle interaction vR is positive and decreasing with distance,
when the particles are separated enough. This implies that this potential is in fact repulsive,
just as its two-particle counterpart. In the case where the particles are very close to each other,
vR is proportional to the sum of the pairwise distances squared (which we defined as ρ2). The
potential vR is thus like an interpolation between ρ2 and r−2 as the particles move apart.

In conclusion we have successfully used Clifford algebra to investigate connections between
particle interactions and geometry. There is no doubt about the benifits of using Clifford
algebra in mathematics and physics.

6.1 Further directions

We will now go through some open questions and ideas we have had when working on this
thesis.

Firstly, we shall present a multivector X with interesting properties. We defined B = (x− y)∧
(x−z) which is easily seen to be invariant under cyclic permutation so that B = (y−z)∧(y−x) =
(z − x) ∧ (z − y). Furthermore, we found that 1

2ρ
2 =

∑
cycl.(x− y) ∗ (x− z). If we define

X :=
∑
cycl.

(x− y)(x− z)

and apply Proposition 3.9 we obtain

X =
∑
cycl.

[(x− y) ∗ (x− z) + (x− y) ∧ (x− z)]

X =
1

2
ρ2 + 3B.

Then we get

XX† =
1

4
ρ4 + 9BB† ∈ R,

since B† = −B. This is certainly an intrigueing connection when one considers for example
Propositions 5.1 and 5.5. Is there a geometric interpretation of X? Can X be used to prove
anything? There are things to explore here.

An obvious direction to go is that of generalisation to n-particle interactions. Given n particles,
can we find an analogue of vR that is related to a radius of some sphere associated to those par-
ticles? Clifford algebra could be an excellent tool here, especially a domain known as conformal
split. Introduced in [17], it is a procedure where euclidean space Rn is extended to a higher
dimensional space Rn+1,1 with a mixed signature. Points in Rn are then related to points in a
supspace of Rn+1,1 called the horosphere. It turns out that spheres in Rn become hyperplanes
in the horosphere.
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Another potential point of interest could be
∑

cycl. ρ
2
R := |x− y|2R or something similar. There

could be some such quantity which is to ρ what vR is to r. Maybe that quantity has an
interpolating behaviour similar to that of vR but opposite, i.e. it is related to r for small
triangles and to ρ for large triangles.
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