
Staged Deployment in Mirage, an Integrated Software
Upgrade Testing and Distribution System∗

Olivier Crameri
EPFL, Lausanne, Switzerland
olivier.crameri@epfl.ch

Nikola Knežević
EPFL, Lausanne, Switzerland
nikola.knezevic@epfl.ch

Dejan Kostić
EPFL, Lausanne, Switzerland

dejan.kostic@epfl.ch
Ricardo Bianchini

Rutgers University, NJ, USA
ricardob@cs.rutgers.edu

Willy Zwaenepoel
EPFL, Lausanne, Switzerland
willy.zwaenepoel@epfl.ch

ABSTRACT
Despite major advances in the engineering of maintainable
and robust software over the years, upgrading software re-
mains a primitive and error-prone activity. In this paper,
we argue that several problems with upgrading software are
caused by a poor integration between upgrade deployment,
user-machine testing, and problem reporting. To support
this argument, we present a characterization of software up-
grades resulting from a survey we conducted of 50 system
administrators. Motivated by the survey results, we present
Mirage, a distributed framework for integrating upgrade de-
ployment, user-machine testing, and problem reporting into
the overall upgrade development process. Our evaluation fo-
cuses on the most novel aspect of Mirage, namely its staged
upgrade deployment based on the clustering of user ma-
chines according to their environments and configurations.
Our results suggest that Mirage’s staged deployment is ef-
fective for real upgrade problems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems; D.4.5 [Operating Systems]: Reliability; D.4.5
[Operating Systems]: Systems Programs and Utilities

General Terms
Management, Reliability

Keywords
Upgrade testing, Clustering of machines, Staged software
upgrade deployment

∗This research is supported in part by the Hasler Foundation
(grant 2103).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

1. INTRODUCTION
Software upgrades involve acquiring a new version of an

application, an improved software module or component, or
simply a “patch” to fix a bug, and integrating it into the
local system. Upgrades for Linux and Windows are released
almost every month, while upgrades of user-level utilities
and applications are frequent as well.
For software users, system administrators, and operators

(hereafter collectively called users, for conciseness), integrat-
ing upgrades is often an involved proposition. First, an up-
grade can affect multiple applications, and all of them may
need to be tested for correct behavior after the upgrade.
Second, the effects of buggy upgrades may need to be rolled
back. Third, upgrades are prone to a variety of incompat-
ibility and unexpected behavior problems, especially when
components or modules, rather than entire applications or
systems, are upgraded.
For software vendors, distributors, and open-source con-

tributors (hereafter collectively called vendors, for concise-
ness), it is difficult to deploy the upgrades with high confi-
dence that they will integrate properly into the users’ sys-
tems and that they will behave as users expect. The vendors
simply cannot anticipate and test their upgrades for all the
applications and configurations that may be affected by the
upgrades at the users’ machines. To lessen this problem,
vendors sometimes rely on “beta testing”. However, beta
testers seldom provide complete coverage of the environ-
ments and uses to which upgrades will be exposed. Another
approach to reduce integration problems is for vendors to
use package-management systems to deploy their upgrades.
Dependency enforcement in these systems, however, only
tries to enforce that the right packages are in place. They
do not provide any help with locally testing the upgrades
for correct behavior or reporting problems back to vendors.
When integration problems occur, vendors receive only

limited and often unstructured information to pinpoint and
correct the problems. Most of the time, the vendor at best
receives core dumps of applications that crash because of
the upgrade or often incomplete problem reports posted to
mailing lists or Web forums. Because of this limited infor-
mation, it may take several iterations of deployment, testing,
and debugging before an upgrade becomes useful to all of
its intended users. Furthermore, because reports may come
from any source, e.g., multiple beta testers or regular users
with similar installations, there is often much repetition in

the information received by the vendor, requiring significant
human resources to filter out.
Although much anecdotal evidence suggests a high fre-

quency of upgrade problems, there is surprisingly little in-
formation in the literature characterizing upgrades in de-
tail. To start bridging this gap in the literature, we per-
form a characterization of upgrades, using responses to a
survey that we conduct among 50 system administrators.
The results confirm that upgrades are done frequently, that
problems are quite common, that these problems can cause
severe disruption and that therefore upgrades are often de-
layed, and that users seldom fully report the problems to
the vendor. Additionally, and of particular importance to
this paper, many of the problems are caused by differences
between the environment at the vendor and at the users.
Broken dependencies, incompatibilities with legacy applica-
tions, and improper packaging issues are among this class of
problems. While other upgrade problems, such as bugs or re-
moved behaviors, can presumably be addressed by better de-
velopment and testing methods at the vendor, the problems
related to vendor-user environment differences necessitate a
novel approach that takes into account these differences.
Mirage is a framework that integrates upgrade deploy-

ment, user-machine testing, and problem reporting. In the
current state of the art, these three activities are loosely
linked in an ad-hoc manner. Mirage integrates them into a
structured and efficient upgrade development cycle that en-
compasses both vendors and users. Mirage deploys complex
upgrades in stages based on the clustering of the user ma-
chines according to their environments, tests the upgrades at
the users’ machines, and sends information back to vendors
regarding the success/failure of each user’s upgrade, includ-
ing, in case of failure, the context in which the upgrade fails.
A key goal of Mirage is to guarantee that upgrades be-

have properly before they are widely deployed. Clustering
machines as in Mirage helps achieve this goal, while simpli-
fying debugging at the vendor. We also identify a fundamen-
tal tradeoff between the number of upgrade problems at the
user machines and the speed of deployment. To address this
tradeoff, Mirage provides a few abstractions on top of which
different staged deployment protocols can be implemented.
We evaluate Mirage’s clustering algorithm with respect to

real upgrades and problems reported in our survey. The re-
sults demonstrate that our algorithm can cluster the users’
machines effectively. Our algorithm works best when used
in combination with vendor-provided information about the
importance of certain aspects of the application’s environ-
ment. Further, our simulations show that deploying up-
grades in stages significantly reduces the amount of test-
ing effort required of the users, while quickly deploying the
upgrade at a large fraction of machines. Although we oc-
casionally delay deploying certain upgrades, by increasing
the users’ confidence, they may actually apply the upgrades
sooner.
The rest of this paper is organized as follows. The next

section characterizes software upgrades in detail based on
our survey. Section 3 presents Mirage and its key concepts.
Section 4 evaluates our clustering algorithm in the context of
realistic upgrade problems, and analyzes the performance of
two staged deployment protocols using a simulator. Section
5 overviews the related work. Finally, Section 6 concludes
the paper.

0 5 10 15 20

More than once a week

Once a week

Once every couple of weeks

Once a month

Once per quarter

Once per semester

Once a year

Not even once a year

Up
gr

ad
e F

re
qu

en
cy

Number of respondents

0-2
2-5
5-10
more than 10

Experience

Figure 1: Upgrade frequencies.

2. CHARACTERIZING UPGRADES

2.1 Methodology
We conducted an online survey to estimate the frequency

of software upgrades, the reasons for the upgrades, the fre-
quency of software upgrade problems, the classes of prob-
lems that occur, and the frequency of the different classes.
We posted the survey (available at [33]) to the USENIX
SAGE mailing list, the Swiss network operators group, and
the EliteSecurity forum in Serbia; we received 50 responses.
The majority of the respondents to our survey (82%) have

more than five years of administration experience, and 78%
manage more than 20 machines. Our respondents were al-
lowed to specify multiple, non-disjoint choices of operating
systems, making it difficult to correlate upgrade problems
with an operating system version. In our survey, 48 of the
administrators manage a Linux system or some other UNIX-
like system, 29 administrators manage Windows desktops
and server platforms, while 12 respondents manage Mac OS
machines.

2.2 Survey Results
Frequency of software upgrades. As Figure 1 demon-
strates, upgrades are frequent. Specifically, 90% of admin-
istrators perform upgrades once a month or more often.

Reasons for upgrades. We asked respondents to rank
(from 1 to 5, 1 being most important) each of five possible
reasons: 1) bug fix, 2) security patch, 3) new feature, 4) user
request, and 5) other reason. Security fixes get the highest
priority (average rank 1.6), followed by bug fixes (average
rank 2.2) with user requests and new features trailing (av-
erage ranks of 3.3 and 3.5, respectively). Given that the
primary reason for performing an upgrade is a security fix,
it can be harmful if administrators delay upgrading.

Upgrade installation delays. Nevertheless, 70% of our
respondents report that they refrain from installing a soft-
ware upgrade, regardless of their experience level. This is
the case even though 70% of administrators have an upgrade
testing strategy (Figure 2 shows these results). An over-
whelming majority (86%) of administrators use the software
packaged with the operating system to install upgrades.

Upgrade failure frequency. We asked respondents to es-
timate this rate. As Figure 3 shows, 66% of them estimate
that between 5 and 10% of the upgrades that are applied
have problems. Given the potential damage and extra ef-
fort that a faulty upgrade can entail (discussed next), such
a failure rate is unacceptable. Over all the responses, the
average failure rate is 8.6% and the median is 5%.

20

25

30

35

40

N
um

be
r o

f r
es

po
nd

en
ts

No testing strategy

Have testing strategy

0

5

10

15

Refrain to install Does not refrain

N
um

be
r o

f r
es

po
nd

en
ts

Figure 2: Reluctance to upgrade.

0

5

10

15

20

25

1 5 10 20 25 30 40 50 60 80 90 100

% of upgrade failures

N
um

be
r o

f r
es

po
nd

en
ts

Figure 3: Perceived upgrade failure rate.

Another reason for avoiding upgrades may be the dam-
age that a faulty upgrade can cause. An important fraction
of the administrators (48%) experience problems that pass
initial testing, with 18% reporting catastrophic upgrade fail-
ures.

Testing strategies. The majority of the testing strategies
our respondents use involve having a testing environment
(25 respondents). Six of the administrators report testing
the upgrade on a few machines, then moving on to a larger
fraction, before finally applying the upgrade to the entire
machine set. However, only 4 respondents use an identical
machine configuration in the testing environment. Two of
the respondents rely on reports of successful upgrades on the
Internet without an additional testing strategy. Although
70% of the respondents have an upgrade testing strategy,
only 18% of the administrators report that they do not have
upgrade problems because they use it.

Causes of failed upgrades. We asked the administrators
to assign a rank to each of the failure categories that we
provided, including an optional “other categories” field. Our
respondents identified broken dependencies, removed behav-
ior, and buggy upgrades as the most prevalent causes (aver-
age ranks of 2.5, 2.5 and 2.6, respectively). They deemed in-
compatibility with legacy configurations and improper pack-
aging to be less common (average ranks of 3.1 and 3.2, re-
spectively). We detail some of the reported problems in Sec-
tion 2.3. Here we conclude that no single cause of upgrade
failure is dominant.

Problem reporting. Only half of the respondents consis-
tently report upgrade problems to the vendor. When they
do so, the information they typically include is the versions
of the operating system and related software, type of hard-
ware, and any error messages.

2.3 Categories of Upgrade Problems
Here we describe the major categories of upgrade prob-

lems (in decreasing order of importance assigned by respon-
dents) and a few examples. We combined the reported prob-
lems with some that we found on Web forums.

Broken dependency. This category captures subtle de-
pendency issues that often cause severe disruption. Typi-
cally, application AX is compiled with a specific library LY

or depends on some application AY . Upgrading some other
application AZ that depends on LY (or AY) can upgrade
LY (or AY) as well, causing application AX to fail. For ex-
ample, when upgrading the MySQL DBMS from version 4
to 5, the PHP scripting language crashes if it was compiled
with MySQL support [24]. PHP still tries to use libraries
from the old version. Some of these broken dependency is-
sues could be caught by the package management system.
However, package-management systems cannot catch these
issues if the administrator upgrades some files manually.

Important feature was removed, or behavior was al-

tered. A significant number of upgrade problems is caused
by the removal of an important feature of the software. A
related problem is altered behavior of an application or a
changed API. An example of this category is an upgrade
of PHP4 to PHP5 that caused some scripts (.php pages) to
stop working due to a new Object Model [28]. The problems
in this category cannot be alleviated by improved packag-
ing, as it becomes almost impossible to search and upgrade
all cases of deprecated behavior across all user files.

Buggy upgrades. A natural category of the failed up-
grades captures the bugs in the upgrade itself. For ex-
ample, Firefox crashes when displaying some Web pages
with JavaScript on Ubuntu, after the 1.5.0.9 upgrade is
applied [12]. Some of the problematic upgrades our sur-
vey respondents reported have serious consequences, such
as wireless, RAID, and other driver upgrades that caused
the system to fail to boot.

Incompatibility with legacy configurations. Another
category of upgrades involves machine-specific data that cau-
ses an upgraded application to fail. This kind of data in-
cludes environment variables and configuration files. For
example, the upgrade of Apache from 1.3.24 to 1.3.26 caused
Apache configurations that included an access control list to
fail [3]. The contents of the included file had to be moved
to the main configuration file for Apache to start working
again. Again it is difficult for upgrade packaging to handle
all possible configurations at user machines.

Improper packaging. This category of upgrade problems
occurs when the creator of the new package (that contains
the upgrade) does not correctly upgrade all application com-
ponents. Typically, this includes an omission of some appli-
cation file, as it was the case with SlimServer 6.5.1. Here,
the database was not automatically upgraded during the up-
grade process, and the server consequently would not start
due to a changed database format. Issues like this one can
be addressed by a more careful packaging procedure.

Minor problems. The final category comprises problems
that are not obvious bugs but represent an annoyance. Of-
ten, the problem arises when a cached file is overwritten in-
stead of upgraded. Some of these seemingly minor problems
can have serious consequences. For example, one adminis-
trator was unable to log into the Zertificon application due
to an administrator password that was overwritten.

2.4 Discussion
We did not seek to perform a comprehensive, statistically

rigorous survey of upgrade management in the field. Our
main goals were to motivate Mirage, while collecting a sam-
pling of data on real upgrades and their problems. These
restricted goals allowed to focus on a group of administra-
tors, mostly from USENIX SAGE, that volunteered infor-
mation about their practical experiences. Admittedly, this
approach may have been affected by self-selection, bias, and
coverage problems. Nevertheless, our survey does provide
plenty of information on real upgrades and is broader than
the few comparable works in the literature [4, 30], which
focused solely on security upgrades and have their own lim-
itations. In fact, these other works confirm some of our
observations: Beattie et al. [4] state that the initial security
upgrade failure rate is even higher than that reported by our
respondents for all upgrades. An inspection of 350,000 ma-
chines by Secunia [30] finds 28% of all major applications to
be lacking the latest security upgrades, which is in line with
the high fraction of our respondents who delay upgrades.

3. MIRAGE

3.1 Overview
Many approaches are available to reduce the burden of

upgrades. For instance, improved development and testing
methods at the vendor may reduce the number of buggy
upgrades. As can be seen, however, from the results of the
survey, several of the frequently occurring categories of up-
grade problems are due to differences between the develop-
ment and testing environment at the vendor and the many
different environments at user machines. Broken dependen-
cies and incompatibility with legacy configurations clearly
fall into this category, whereas improper packaging may also
result from environmental differences.
The goal of the Mirage project is to reduce the upgrade

problems associated with such environmental differences be-
tween vendors and users. To do so, the Mirage frame-
work provides three components that cooperate in a struc-
tured manner: staged deployment, user-machine testing,
and problem reporting (see Figure 4).
To correct problems with environmental differences be-

tween vendor and users, an upgrade would need to be tested
in all possible user environments. In-house vendor testing
of all possible user environments is infeasible, because the
vendor cannot possibly anticipate all possible uses and en-
vironments. Indiscriminate testing at all user sites is also
undesirable, because the problematic upgrades may incon-
venience a large number of users. The current practice of
beta-testers tries to reduce this inconvenience, but provides
only limited coverage.
To address these issues, Mirage provides staged deploy-

ment. Machines are clustered based on their environments
such that machines in the same cluster are likely to behave
the same with respect to an upgrade. Within clusters, one
or a few machines test the upgrades first, before other ma-
chines are allowed to download and test the upgrade. Fi-
nally, staged deployment allows control over the order in
which upgrades are deployed to clusters.
With staged deployment, the vendor does not need to an-

ticipate all possible user environments, but at the same time
indiscriminate user-machine testing is avoided. With clus-
tering, the representatives can provide better coverage than

Upgrade
deployment

(vendor)

User-
machine
testing
(user)

Reporting
(repository)

Figure 4: High-level overview of Mirage.

current beta-testing. As the survey shows, users are typi-
cally willing to wait to install upgrades, so the extra delay
potentially introduced by staging is acceptable, especially in
light of the reduction in inconvenience.
In addition to staged deployment, Mirage provides a user-

machine testing facility that tries, as much as possible, to
automate the upgrade testing in the local environment and
to improve its coverage. Such testing may, however, never
be fully automated or completely conclusive, but we do not
rely on that.
Finally, to improve over the ad-hoc reporting seen in the

survey, Mirage provides a structured reporting facility, al-
lowing users to deposit the results of their testing in a repos-
itory accessible to the vendor.
Our current Mirage implementation is geared towards Li-

nux, but the framework is also applicable to Windows.

3.2 Deployment Subsystem
Mirage provides a small number of abstractions to support

staged deployment. Upon these basic abstractions, vendors
can build different deployment protocols to reach different
objectives. Objectives may include reducing upgrade over-
head (which we define as the number of machines that test
a faulty upgrade), reducing upgrade latency (the delay be-
tween the upgrade being available at the vendor and it be-
ing applied at the user), reducing the number of redundant
problem reports, front-loading the problem debugging effort,
or combinations thereof.

3.2.1 Abstractions
The three basic deployment abstractions provided by Mi-

rage are: clusters of deployment, representatives, and dis-
tance between vendor and clusters. (1) User machines are
clustered into groups that are likely to behave similarly with
respect to upgrades of a particular application. (2) Each
cluster has at least one representative machine. The repre-
sentative tests the upgrade before any of the non-representa-
tive machines in its cluster do, playing a role similar to to-
day’s beta-testers. (3) In addition, a measure of distance
may be defined between the vendor and a cluster, indicat-
ing the degree of difference between the vendor’s environ-
ment and that of the machines in the cluster. Intuitively,
if a machine is more dissimilar from the vendor’s machine,

the likelihood of a problem with the upgrade is higher. The
vendor can take this additional information into account in
guiding the deployment protocol. These three abstractions,
and in particular the underlying clustering algorithm, are
the main focus of this paper.
Clustering is done per application, but has to be evalu-

ated in the context of a particular upgrade. The quality of
the clustering is critical for many of the potential vendor
objectives. For example, the upgrade overhead is directly
related to the quality of the clustering. To see this rela-
tionship, consider the following types of clustering assuming
that user-machine testing detects an upgrade problem if and
only if there is one.
In an ideal clustering, all machines in a cluster behave

identically with respect to an upgrade and differently from
machines in other clusters. If the upgrade behaves correctly
at one machine in a cluster, it behaves correctly at all ma-
chines in that cluster. Further, all machines at which the
upgrade behave correctly are in the same cluster. If the
upgrade exhibits a problem, it exhibits that same problem
everywhere in the cluster. Moreover, all machines that ex-
hibit that problem are in the same cluster. If other machines
exhibit a different problem, they are in a different cluster.
Thus, upgrade overhead is limited to the number of repre-
sentatives, which is minimal, as is the number of reports
sent to the upgrade result repository.
While ideal, this form of clustering is difficult to achieve in

practice. For this reason, we consider the following slightly
less ambitious goal. In a sound clustering, all machines in
a cluster behave identically with respect to an upgrade, as
with ideal clustering, but there may be multiple clusters
with the same behavior. In other words, multiple clusters
may exhibit correct behavior or the same incorrect behavior.
The upgrade overhead is no longer minimal, but as long as
the the number of clusters with problems remains small rel-
ative to the total number of machines, there is considerable
improvement.
Clustering becomes considerably worse, if machines within

the same cluster behave differently with respect to an up-
grade. In this imperfect clustering, if an upgrade problem
does not manifest itself at the representative, non-representa-
tives are bothered with testing incorrect upgrades. This
problem can be marginally improved by having a few rather
than one representative. If the upgrade fails at the repre-
sentative but works correctly at some other machines, then
upgrades to those machines are needlessly delayed.

3.2.2 Protocols
Using these basic abstractions and a particular clustering

algorithm, the vendor may implement different deployment
protocols to optimize different criteria. In terms of struc-
ture, a protocol is defined by the degree of deployment par-
allelism it embodies and, when certain phases are sequential,
the particular sequential orders it imposes.
In any staged deployment protocol, the upgrade is tested

on the representative(s) of a cluster before it goes to non-
representatives of that cluster. That constraint leaves open
many variations in terms of parallelism and ordering.
A vendor may wait for all representatives of all clusters

to successfully test an upgrade before it sends it to any non-
representatives. Within this basic paradigm, it can send the
upgrade in parallel to all or some representatives or sequen-
tially one at the time to each of them. The same applies

��������	

�����
��������	

���������

��������

���������
���

	

�

������

������

����������
�

���
���

���

���

Figure 5: Mirage deployment: clusters of machines,

cluster representatives and non-representatives, and

cluster ordering. Some interactions of a deployment pro-

tocol are also shown.

applies to the non-representatives: the upgrade may be sent
to all or some clusters in parallel, or sequentially to one at
a time.
An alternative approach is for the vendor to send the up-

grade to the non-representatives of a cluster as soon as test-
ing finishes successfully on the representatives of that clus-
ter. This approach again leaves open the choice of sending
the upgrades to the representatives of a cluster sequentially
or in parallel.
When deployment should proceed one cluster after the

other, the protocol needs to define the exact ordering of
cluster deployments. To support this ordering, the vendor
can use Mirage’s distance metric. Going from smaller to
larger distances may reduce the average upgrade latency,
whereas going in the inverse order may allow the vendor to
front-load its problem debugging effort.
Different upgrades may be treated differently. In fact, the

vendor’s objective for each upgrade typically depends on
the characteristics of the upgrade. If the upgrade is a major
new release, the vendor may decide to go slowly. If the
upgrade is urgent and the vendor has high confidence in its
correctness, it may bypass the entire cluster infrastructure,
and distribute the upgrade to all users at once. Figure 5
depicts the key Mirage deployment abstractions and a few
interactions of a generic deployment protocol.
Mirage does not advocate any specific protocol. In Sec-

tion 4.3 we evaluate two specific protocols to illustrate some
of the possibilities, but many other variations exist.

3.2.3 Clustering Machines
For upgrade deployment, Mirage seeks to cluster together

user machines that are likely to behave similarly with re-
spect to an upgrade. Since many of the most common up-
grade problems result from differences in environment at the
vendor and at the user machine, Mirage clusters machines
with similar environments. Thus, before clustering, Mirage
needs to identify the environmental resources on which the
application to be upgraded depends. These resources typi-
cally include the operating system, various runtime libraries,
executables, environment variables, and configuration files
that each application uses (the environmental resources on
a Windows-based system would include the registry as well).
Next, we detail the steps taken to collect and fingerprint

(derive a compact representation) the set of environmental
resources. After that, we describe our clustering algorithm.

Identifying environmental resources. We instrument,
both at the vendor and at the user machines, the process cre-
ation, read, write, file descriptor-related and socket-related
system calls. For environment variables, we intercept calls
to the getenv() function in libc. Using this instrumen-
tation, we create a log of all external resources accessed.
This log may include data files in addition to environmen-
tal resources. Clustering becomes ineffective if data files are
considered as environmental resources.
We use a four-part heuristic to identify environmental re-

sources among the files accessed by the application in a col-
lection of traces, combined with an API that allows the ven-
dor to explicitly include or exclude sets of files. The heuristic
identifies as environmental resources: (1) all files accessed in
the longest common prefix of the sequence of files accessed
in the traces, (2) all files accessed read-only in all execu-
tion traces, (3) all files of certain types (such as libraries)
accessed in any single trace, and (4) all files named in the
package of the application to be upgraded. In our current
implementation, we concentrate on files and environment
variables. We plan to address machine hardware properties,
network protocols, and other aspects of the environment in
our future work.
The first part of the heuristic is based on the observa-

tion that the execution of applications typically starts with
a single-threaded initialization phase in which the applica-
tion loads libraries, reads configuration files and environ-
ment variables, etc. Most often, no data files are read in
this initialization phase, and hence all files accessed in this
phase are considered environmental resources. To find the
end of the initialization phase, we compute the longest com-
mon sequence of files from the beginning that are accessed
in every trace.
The second and third parts of the heuristic deal with

applications that access environmental resources after the
initialization phase, for example, applications that use late
binding or load extensions at runtime. To identify those en-
vironmental resources, our heuristic considers all files opened
read-only after the initialization sequence. To separate envi-
ronmental resources from read-only data files, we only clas-
sify as environmental resources those files that are opened
in every execution or those files that are of a few vendor-
specified types, such as libraries.
The final part of our heuristic includes all files bundled in

the package of the application to be upgraded.
The heuristic may erroneously designate certain files as

environmental resources. For instance, the initialization pha-
se may access a log or some initial data files, or sample
data files may also be included in a package. Conversely,
certain environmental resources are accessed in read-write
mode and therefore not included by the heuristics, typically
because the files contain both (mutable) data and configu-
ration information. To address these issues, a simple API
provided by Mirage allows the vendor to include or exclude
files or directories. By default, we exclude some system-wide
directories, such as /tmp and /var.
As we show in Section 4.1, our heuristic combined with a

very small number of vendor-provided API directives allows
Mirage to correctly identify the environmental resources of
popular applications with no false positives and no false neg-
atives.

Resource fingerprinting. To produce inputs to the clus-
tering algorithm, we need a concise representation (a finger-

print) for each environmental resource at the vendor and at
the user machines. Depending on its type, we have three
different ways of fingerprinting a resource. First, for com-
mon types such as libraries, Mirage provides a parser that
produces the fingerprint. Second, the vendor may provide
parsers for certain application-specific resources, like config-
uration files. Third, if neither Mirage nor the vendor pro-
vides a parser for a resource, the fingerprint is a sequence of
hashes of chunks of the file that are content-delineated using
Rabin fingerprinting. In general, we expect that for many
applications the vast majority of the resources are handled
by parsers, and we resort to Rabin fingerprinting only in
rare circumstances.
A resource’s fingerprint contains a hierarchical set of keys

and their values (items for short). The items produced by
the parsers have a common structure but a meaning that is
dependent on the resource type. Each parser is responsible
for determining the granularity of the items that are pro-
duced. Indeed, producing fine-grained items might be useful
for some types of resources (such as configuration files) and
useless for others (such as executables). In addition, some
resources may contain user-specific data (such as user names
and IP addresses) and other information (such as comments)
that are irrelevant in clustering machines; it is up to each
parser to extract the useful information from the resource
and discard the rest.
The parsers for the most common resource types produce

items in the following formats:

• Executables: Executablename.FILE HASH

• Shared libraries: LibraryName.Version#.HASH

• Text files: Filename.Line#.LINE HASH

• Config files: Filename.SectionName.KEY.HASH

• Binary files: Filename.CHUNK HASH

In contrast, the content-based fingerprinting creates items
of the form: Filename.CHUNK HASH. Clearly, these fin-
gerprints are more coarsely grained than what is possible
with parsers. In fact, using this method, all the irrelevant
data contained in the environmental resources are finger-
printed together with the relevant information. We leverage
the publicly available Rabin fingerprint implementation [23],
and use the default 4 KB average chunk size.
Once the vendor produces its list of items for the envi-

ronmental resources on the reference machine, it sends it to
the user machines. Each user machine compares the list of
items from the vendor to its own list and produces a new list
with the set of items that differ from those of the vendor.
The new list contains both items present on the reference
machine but not on the user machine and vice-versa. This
new list is sent back to the vendor, triggering the clustering
algorithm.

Clustering algorithm. The algorithm is divided into two
phases. In the first phase, clustering is performed with re-
spect to the resources for which there are parsers. Because
for these resources we have precise information about the
relevant aspects of the environment, two machines are as-
signed to the same cluster if and only if their sets of items
that differ from the vendor are the same. We refer to the
clusters produced in this first phase as “original clusters”.
In the second phase, the environmental resources for which

the vendor does not provide a parser are taken into account.
In this phase, we need to decide whether to split the original

clusters based on these resources. Since content-based fin-
gerprints do not leverage semantic information about the re-
sources, they are imprecise representations of the resources’
contents. To cope with this imprecision, we use a diameter-
based algorithm that is a variation of the QT (Quality Thres-
hold) clustering algorithm [15] (we dismissed the traditional
k-means algorithm because it is non-deterministic) on each
of the original clusters.
Considering the user machines of only one original clus-

ter at a time, the diameter-based algorithm starts with one
machine per cluster. It then iteratively adds machines to
clusters while trying to achieve the smallest average inter-
machine distance, without exceeding the vendor-defined clus-
ter diameter d. The distance metric is the Manhattan dis-
tance between two machines, defined as the number of dif-
ferent items associated with the resources for which there
are no parsers. When the algorithm cannot merge any ad-
ditional clusters, it moves on to the next original cluster.
After the final set of clusters is produced, we also explicitly
split clusters that contain machines with different sets of
applications with overlapping environmental resources. The
final clusters are labeled with their set of differing items.

Discussion. At this point, it should be clear that it is
advantageous for the vendor to provide parsers for as many
environmental resources as possible. Doing so allows the
vendor to cluster machines more accurately. In addition,
using parsers, the vendor can exercise greater control over
the clustering process. For example, the vendor can specify
which items it believes to be less important. The vendor
can create bigger clusters by removing those items from the
set of differing items of each machine. It is also possible
to discard only a suffix of some of the hierarchical items.
For example, assume that many machines have version 2.4
of libc, but a significant portion of them have a different
library hash. This discrepancy probably means that there
are machines that have version 2.4 of libc compiled with
different flags. In deploying a non-critical upgrade to the
graphical interface of Firefox, the vendor might decide to
discard this information, thus putting all machines using
version 2.4 of libc in one bigger cluster.
Relative to performance and scalability, the user-side fin-

gerprinting and comparison processes are efficient and dis-
tributed, regardless of how many parsers are provided. How-
ever, producing as many parsers as possible has advantages
in terms of the vendor’s computational effort. The first
phase of the clustering algorithm runs efficiently in time that
is proportional to the number of user machines. In contrast,
the second phase performs a number of comparisons that is
quadratic in the number of machines in each original cluster,
and each comparison takes time proportional to the number
of items associated with resources for which there are no
parsers. Thus, the second phase can become computation-
ally intensive if there are many such resources. The running
time of the QT algorithm is also quadratic in the number
of machines in each original cluster. In our future work,
we plan to develop an efficient incremental reclustering ap-
proach, since a relevant change in a machine’s environment
can change that machine’s cluster.

3.3 User-machine Testing Subsystem
Our infrastructure for upgrade testing traces the behavior

of each application before an upgrade, and compares it to
the behavior after the upgrade. The upgrade is performed

in an isolated environment to facilitate rollback in case of
problems. Our current approach relies on a problem-free
upgrade not changing the I/O behavior of the application.
Many upgrades, for instance, those that fix bugs or eliminate
security vulnerabilities fall into this category. We discuss
upgrades that do change I/O behavior in Section 3.5.
Our testing infrastructure has three interacting subsys-

tems: dependence, trace-collection, and upgrade-validation.
The dependence subsystem provides triggers for trace col-
lection, as well as application dependence information that
drives upgrade validation. The trace collection subsystem
feeds the upgrade-validation subsystem with input and out-
put information. The upgrade-validation subsystem tests
each upgrade for correctness.
Next, we detail each of the subsystems in turn.

Dependence subsystem. When an upgrade is received,
Mirage needs to determine the applications that can be af-
fected by it. To do so, Mirage relies on the dependency infor-
mation also used by our clustering algorithm (Section 3.2.3).

Tracing subsystem. Our trace-collection subsystem inter-
cepts system calls to record the data used as inputs and out-
puts. The contents of files read need not be recorded, since,
as discussed below, the validation subsystem re-executes the
read from the same file system state. To collect the inputs
and outputs, trace collection extends the same calls instru-
mented by the dependence subsystem, but also saves in-
formation about the parameters and environment variables
that are passed to the applications.
Given the sizes of modern disks, we do not expect storage

requirements to be an important issue in practice. Never-
theless, Mirage limits storage (and time) overheads by not
explicitly logging the content of input files and triggers trace
collection only when necessary.

Validation subsystem. When an upgrade is received and
applied locally, the system can determine which files were
changed and, by inspecting the dependency information,
which applications are affected by the upgrade.
To test an upgrade, during idle periods at the user ma-

chine, the upgrade-validation subsystem applies it to each
affected application, feeds the upgraded application with its
traced inputs, and compares the outputs to the traced out-
puts. Testing is performed for every set of inputs and out-
puts collected for each application. The test may fail be-
cause the upgrade does not integrate properly with an ap-
plication, makes it crash when run with the traced inputs, or
produces different outputs (upgrades of applications without
traces can only be checked automatically for integration and
crashing problems).
Performing upgrades first in an isolated environment, e.g.,

a virtual machine, allows for checking the (upgraded) appli-
cations’ behavior before the upgrade is actually integrated
into the production system, thereby simplifying rollback.
To ensure that the upgraded applications behave the same
in isolation as they would in the production system, the
two environments are built from the same file system state.
For this reason reads of files do not have to be explicitly
recorded. We currently use a version of User-Mode Linux
(UML) [34] as our virtual machine. We modify it to boot
directly from the host’s file system using copy-on-write.
The applications upgraded in the virtual machine are star-

ted and fed the recorded inputs by the UML kernel. To allow
for non-determinism in the trace replay, Mirage maps the

recorded file inputs to the appropriate file operations, even
if they are executed in a different order than in the trace. To
avoid producing side-effects on remote systems even though
the upgraded application is running in a virtual machine,
Mirage silently drops the network outputs produced by the
upgraded application, i.e., each write to a network socket
succeeds but no data is actually sent out. Obviously, Mi-
rage records these dropped outputs locally for comparison
with the traced outputs. When outputs do differ, the user of
the machine is asked to determine whether the observed be-
havior is acceptable for the application. This decision can be
based on the differences between expected and actual out-
puts. Upon testing failure, the user can discard the upgrade
by simply throwing away the virtual machine state. As part
of our future work, we intend to investigate ways to provide
a comparison context that simplifies the user’s decision.

3.4 Reporting Subsystem
After the success or failure of an upgrade is determined,

the reporting component provides feedback to the vendor.
Using the information about the context in which the prob-
lems are found in the field, the vendor can more easily pin-
point the reasons for misbehavior and fix its upgrades.
The collection of success/failure reports from all machines

and clusters is transferred to an Upgrade Report Repository
(URR) that can be queried by the vendor. The URR stores
the following: (1) information about the cluster of deploy-
ment; (2) succinct success/failure results of upgrade tests;
and (3) report images that allow the vendor to reproduce the
upgrade problems. The storage that makes up this reposi-
tory can be distributed or centralized. For example, sensi-
tive or proprietary information about an installation may re-
quire local storage at the installation (and an explicit access
permission by others) for privacy concerns. For security rea-
sons, result reporting should use encryption and verifiable
metadata to avoid snooping and attacks.
Our current implementation always co-locates the URR

with the vendor. Further, each of our report images cur-
rently contains the entire upgraded virtual machine state,
including recorded inputs and outputs used during replay.

3.5 Discussion and Current Limitations
Although the presentation above focuses on vendors and

individual users, Mirage can benefit the administrators of
large systems as well. In fact, a large system with uniform
machine configurations is represented as a single machine in
Mirage’s deployment protocol. Even when system adminis-
trators are required to certify all upgrades manually before
deploying them, Mirage can help them by keeping track of
the applications that need to be tested, automatically test-
ing each of them, and reporting unexpected behavior. Fur-
thermore, by increasing the administrators’ confidence in
the upgrades, Mirage encourages administrators to apply
upgrades sooner. In addition, by automating the reporting
of failed upgrades, Mirage makes it easier for vendors to fix
the problems with their upgrades.
Despite its many potential benefits, the current implemen-

tation of Mirage has some limitations.

Deployment. The information that the vendor stores about
the similarities between the user machines could be used by
an attacker to quickly identify the targets of a known vulner-
ability. Although items contain hashes of the environmental
resources’ contents, the file names are currently stored in

the clear. Computing a cryptographic hash of file names
would not help, as the attacker could install the application
and check for identical hashes of vulnerable files. However,
we could enhance the security and privacy of our “original”,
parser-aided clustering, by letting each machine determine
the cluster it belongs to locally based just on the compar-
ison with the vendor’s set of files and fingerprints and by
communicating a single cryptographic hash of its items to
the vendor. To enable staging, the vendor could transmit
only the list of clusters’ hashes to each machine. If neces-
sary, machines could use some of the anonymity-preserving
techniques [6] to communicate with the vendor. During de-
ployment, the vendor could publicly advertise the cluster
being tested currently and use only the number of nodes
that belong to each cluster to determine when it is appro-
priate to move to the next stage.

User-Machine testing. Our current user-machine testing
implementation has a number of limitations, many of them
in common with other testing methods based on I/O com-
parison during replay. Among others, it does not guarantee
correctness, but only identical behavior on test inputs; it
compares the content of I/O only, not the performance of
the application; and it has difficulty in dealing with certain
forms of non-determinism. One limitation specific to our
approach is that, while it handles many types of upgrades,
it cannot be used for upgrades of operating system drivers,
because we isolate the applications during validation.
Some problem-free upgrades change the I/O behavior of

applications. In particular, upgrades that introduce new fea-
tures may lead to different I/O and consequently fail testing.
Mirage can be used to handle those upgrades by producing
traces of the affected applications’ runs at the representa-
tives, after they have approved the upgrade. These traces
can be sent to the other members of the cluster to allow them
to test the new features locally without human intervention.
Therefore, Mirage can be used to handle major version up-
grades, and not just “dot releases” or small patches.
We emphasize that flawless user-machine testing is not

mandatory for the effectiveness of our infrastructure. In
fact, we believe that it is unlikely that one could ever achieve
perfect, fully-automatic user-machine testing. Consequently,
a human (administrator, operator, beta tester, or user) may
have to be involved in some cases. Staged deployment seeks
to reduce the effort required of humans as much as possible.
Further, our user-machine testing component can be eas-

ily replaced by a component with similar functionality, with-
out affecting the deployment and reporting subsystems at
all. For example, to improve the quality of user-machine
testing, we can incorporate a number of existing “white-box”
upgrade-testing techniques based on source code analysis,
e.g., [35]. Evaluating the effectiveness of our user-machine
testing approach is important, but is beyond the scope of
this paper.

Problem reporting. Our current implementation of prob-
lem reporting does not address privacy or security issues.
However, for these purposes, we can leverage the same tech-
niques currently used by commercial software vendors, such
as by Microsoft’s Online Crash Analysis [21]. Furthermore,
our reporting infrastructure can be easily replaced without
affecting the user-machine testing and deployment compo-
nents at all. Again, an evaluation of problem reporting ap-
proaches is beyond the scope of this paper.

App. Files total Env. resources False positives False negatives Required vendor rules

firefox 907 839 1 23 7
apache 400 251 133 0 2
php 215 206 0 0 0
mysql 286 250 0 33 1

Table 1: Effectiveness of the heuristic in identifying environmental resources.

4. EVALUATION
We address the following three questions:

1. Can we accurately identify the environmental resources
on which an application depends?

2. Can we cluster machines into meaningful clusters such
that members of a cluster behave similarly or identi-
cally with respect to an upgrade?

3. Can we use staged deployment to significantly reduce
upgrade overhead with little or no impact on deploy-
ment latency?

4.1 Identifying Environmental Resources
We study a desktop application (Firefox) and three server

applications (Apache, PHP, and MySQL). To determine false
positives (files the heuristic erroneously flags as environmen-
tal resources) and false negatives (environmental resources
the heuristic missed), we manually inspect the set of files
produced by the heuristic, as well as their contents.
Table 1 shows, for each application, the number of files ac-

cessed in the traces, the number of environmental resources,
the number of false positives and false negatives generated
by the heuristic, and the number of vendor-specified rules
necessary to obtain a perfect classification of the files.
The heuristic by itself is able to correctly classify a large

fraction of the environmental resources. Combining the heu-
ristic with a small number of vendor-specified rules correctly
identifies all environmental resources, without false positives
or false negatives.
For PHP, the heuristic correctly identifies all environmen-

tal resources, without false positives or false negatives.
For Apache, the heuristic erroneously classifies the access

log and some HTML files from the root document directory
as environmental resources – the log because it is accessed
during initialization, and the HTML files because they are
accessed read-only in each run.
For MySQL, the heuristic erroneously omitted the direc-

tory in which the mysql database is stored, because by de-
fault it excludes files from /var. These files, however, also
contain configuration data and are part of the environmental
resources of MySQL.
For Firefox, not all extension, theme, and font files are

included properly by the heuristic, because Firefox loads
them whenever they are needed (i.e., after the initialization
phase). We had to specify the important file types so they
are correctly classified.
As can be seen from the table, the number of files mis-

classified can vary significantly from one application to the
other. The number of rules, however, stays very small be-
cause each of these rules recognizes one special case of mis-
classification under which a variable number of files may
fall. For this reason, the number of rules required to obtain
a perfect classification gives a better appreciation of the ef-
fectiveness of the heuristic in terms of its ability to classify
files automatically.

Defining the rules is an easy matter of invoking the regu-
lar expression-based Mirage API. In general, however, some
files and directories are located at different places on differ-
ent machines. In this case, the vendor can easily provide a
script to automatically extract the correct location of files
and directories from relevant configuration files or environ-
ment variables and generate the regular expressions locally
on each machine.

4.2 Clustering
As mentioned in Section 3.2.3, a clustering is evaluated

relative to a particular upgrade and a set of problems. We
start by introducing metrics that quantify the “goodness” of
clustering. The first metric captures the number of unneces-
sarily created clusters (C), while the second metric captures
the number of wrongly-placed machines (w), i.e., machines
that behave differently than the rest of their clusters.
If there are p different problems, an ideal clustering creates

p + 1 clusters (a cluster for every problem, and a cluster
containing all other machines), has no unnecessary clusters
(C = 0), and has no misplaced machines (w = 0). A sound
clustering has C ≥ 0 and w = 0. With a sound clustering,
therefore, multiple clusters may exhibit correct behavior or
the same incorrect behavior. A clustering that is imperfect
has w > 0 and potentially C > 0.
Unfortunately, an ideal clustering is typically not achiev-

able in practice. Since a particular problem may affect only
a subset of environments, there may be multiple clusters
with machines that do not experience the problem. In con-
trast, sound clustering is achievable and useful in limiting
the upgrade overhead, so it is the type of clustering that we
seek to obtain.
We have reproduced a number of machine environments

that exhibit real, non-trivial upgrade problems with two ap-
plications: MySQL and Firefox.

4.2.1 MySQL
Table 2 describes the machine configurations used in the

MySQL experiment. On some of these configurations, the
upgrade to a new version is successful. Other configura-
tions (the ones with php4 in their names) are known to
exhibit broken-dependency problems with PHP [24] after a
MySQL upgrade. Still others (the ones with userconfig in
their name) exhibit legacy-configuration problems with the
my.cnf MySQL configuration file.
Figure 6 shows the results of our clustering algorithm

when we use application-specific parsers for all environmen-
tal resources. Entries in boldface denote machines that ex-
perience the PHP problem when upgrading MySQL, whereas
the entries in bold-italics denote machines that experience
the my.cnf problem.
As we see from Figure 6, the machines that experience the

MySQL upgrade problems are not clustered together with
machines experiencing other problems or machines behaving

Machine Name Description

fc5-ms4 Fedora Core 5
fc5-ms4/php4 Fedora Core 5 with PHP 4.4.6
fc5-ms4/php4/ap139 Fedora Core 5 with PHP 4.4.6 and Apache 1.3.9
fc5-ms4/php4-comments Fedora Core 5, PHP 4.4.6 (comments in /etc/mysql/my.cnf altered)
ubt-ms4, ubt-ms4(2) Ubuntu 6.06 (Dapper Drake) (two identical machines)
ubt-ms4/php4 Ubuntu 6.06 with PHP 4.4.6
ubt-ms4/php4/ap139 Ubuntu 6.06 with PHP 4.4.6, and Apache 1.3.9 (compiled with PHP support)
ubt-ms4/withconfig Ubuntu 6.06 (added config. file /etc/mysql/my.cnf)
ubt-ms4/userconfig Ubuntu 6.06 (added a user config file $HOME/.my.cnf)
ubt-ms4/confdirective-added Ubuntu 6.06 (added a config. directive to /etc/mysql/my.cnf)
ubt-ms4/confdirective-deleted Ubuntu 6.06 (deleted a config. directive from /etc/mysql/my.cnf)
ubt-ms4/comment-added Ubuntu 6.06 (added some comments to /etc/mysql/my.cnf)
ubt-ms4/comment-deleted Ubuntu 6.06 (deleted some comments from /etc/mysql/my.cnf)
ubt-ms4/libc-upg Ubuntu 6.06 (upgraded to a new version of libc)
ubt-ms4/libc-upg/withconfig Ubuntu 6.06 (added config. file /etc/mysql/my.cnf, libc upgraded)
ubt-ms4/libc-upg/userconfig Ubuntu 6.06 (added a user config. file $HOME/.my.cnf, libc upgraded)
ubt-ms4/libc-upg/confdirective-added Ubuntu 6.06 (added a config. directive to /etc/mysql/my.cnf, libc upgraded)
ubt-ms4/libc-upg/confdirective-deleted Ubuntu 6.06 (deleted a config. directive from /etc/mysql/my.cnf, libc upgraded)
ubt-ms4/libc-upg/comment-added Ubuntu 6.06 (added comments to /etc/mysql/my.cnf, libc upgraded)
ubt-ms4/libc-upg/comment-deleted Ubuntu 6.06 (deleted comments from /etc/mysql/my.cnf, libc upgraded)

Table 2: Sample Linux configurations used in our experiments. All machines have MySQL 4.1.22.

correctly, thus satisfying our main clustering goal (w = 0).
During deployment, problems would be observed in only two
clusters.
The results also show that the algorithm creates separate

clusters for the different distributions, versions of libc, de-
pendent applications, and differences in the configuration
files. Although these differences have no bearing on the be-
havior of this particular upgrade, another upgrade could be
problematic in one of these different environments. Thus,
the algorithm must conservatively cluster these machines
separately. Overall, this clustering created 12 additional
clusters (C = 12) with respect to this upgrade.
We now examine the results of the clustering algorithm

without using any MySQL-specific parsers; the initial phase
of the algorithm relies on Mirage-supplied parsers only. As
described in Section 3.2.3, the Mirage-supplied parsers deal
with executables, shared libraries, and system-wide config-
uration files. Therefore, we have to execute the second
phase of the clustering algorithm, which uses the QT algo-
rithm for the resources that are fingerprinted with content-
delineation. We show the final clustering results obtained
with a diameter value of 3 in Figure 7.
The figure shows that, even without the application-speci-

fic parsers, our clustering algorithm correctly clusters the
machines with the PHP-related problem. However, we see
that clusters 4 and 6 both contain a machine that experi-
ences a problem along with machines that do not. This clus-
tering is thus not sound (w = 2) for an upgrade that triggers
the my.cnf problem. This happens because the number of
differences between the machines in this cluster is smaller
than the diameter value. Specifically, the differences in this
case are in the hash of the my.cnf file. Since the file is
rather small and our Rabin fingerprinting takes hashes at
the granularity of 4KB, only one hash is different. Using
a diameter value of 0 would have separated the machines
in this cluster, but it would also have separated machines
that have benign differences (the machines with -comment

in the name). In a real-world scenario with thousands of
machines, this choice of the diameter could result in a large
number of clusters that would slow down the deployment.
This example shows that picking an adequate diameter value
is difficult and that clustering might be imperfect, regard-
less of the diameter value chosen, when some parsers are
missing.
The vendor can decide to vary the size of the result-

ing clusters depending on the upgrade that is to be de-
ployed. For instance, in our setup we have 5 different types
of changes to the MySQL configuration file my.cnf. If the
vendor is providing a parser for this file and wants to deploy
an upgrade that is unlikely to be affected by any of those
changes, it can choose to ignore the corresponding items.
The resulting merge of clusters 4,5,6 and clusters 9,10,11
in Figure 6 can speed up the staged deployment. This re-
grouping of clusters still correctly separates the problematic
configurations from other, “good” clusters. Such an effect
cannot easily be achieved if the vendor does not provide a
parser. Without a parser, creating larger clusters can only
be done by increasing the diameter, which does not give any
guarantee over how machines are going to be re-clustered.

4.2.2 Firefox
Table 3 describes the machine configurations used in the

Firefox experiment. The three first configurations are fresh
installations of version 1.5.0.7 of Firefox, with the third one
having Java and JavaScript disabled. The other three con-
figurations have been upgraded from version 1.0.4, and the
last one has Java and JavaScript turned off. The latter three
configurations exhibit a legacy-configuration problem when
upgraded to Firefox 2.0. In particular, two preference files
that existed in version 1.0.x (and were upgraded to 1.5.x)
cause erratic behavior when Firefox is upgraded to version
2.0 [11].
Figure 8 shows results obtained using application-specific

parsers for Firefox’s configuration files, in addition to Mi-

��������	
�����	�������

��������	
	�

��������	
	���������
�

�	������

�����������	���������	
����

�����������	�����	
�����������

�����������	�����	
��������

�

�����������	�����

�������

����������

��������	
	�

��������	
	���	���

��������	
	���	����

�����������	�����	
�����	��������

�����������	�����	
�����	�����������

��������	
��������������

��������	
�����	����������!

����������������

������������	
����

��������	
�����������

��������	
��������

�"

��

��

��

��

��

Figure 6: Clustering obtained by using parsers for all

environmental resources. Entries in boldface experience

the PHP problem with a MySQL upgrade, whereas en-

tries in bold-italics will exhibit the my.cnf problem.

rage’s supplied parsers. The clustering is sound (w = 0,
C = 2) for this upgrade; there are two extra clusters with
the two machines with Java and JavaScript disabled.
Figure 9 shows two clustering results using only Mirage-

supplied parsers. On the left, a diameter value of 4 is used.
The problematic configurations are all in one cluster, and
all the other ones in another cluster. For the upgrade we
are considering, this clustering is ideal, with w = 0 and
C = 0. On the right, a diameter value of 6 is used. This
clustering is imperfect, as the problematic configurations are
clustered with other machines (w = 3). These results show
that picking the right clustering diameter is difficult and
that a small difference potentially has a non-trivial impact.
The comparison between the clustering results in Fig-

ures 8 and 9(left) might suggest that it is sometimes better
for the vendor not to provide parsers for its applications.
However, this conclusion is incorrect. The reason is that,
when the vendor is about to deploy an upgrade, it does
not know if or where problems may occur. Thus, it would
be improper to assume, as done in Figure 9(left), that ma-
chines with features turned off always behave the same as
their counterparts with those features turned on. Firefox’s
configuration files contain many irrelevant parameters (such

��������	
	���	��

��������	
	�

��������	
	�

��������	
	����������
�

�������	

�����������
�����������������������

�����������
������������

�����������
���������������������

�����������
�����������������

��������	
��������������

�����������
���������������

�

�����������
���

���������������������������

����������������

�������������������������

���������������������

����������������

�������������������

������

���������

��������	
	���	���

�

�

!

Figure 7: Clustering obtained by using only parsers

supplied by Mirage and a diameter value of 3 for the

remaining environmental resources. Entries in boldface

experience the PHP problem, whereas entries in bold-

italics will exhibit the my.cnf problem.

as timestamps and window coordinates) as well as relevant
configuration settings (such as Java settings). Since diam-
eter clustering only considers the number of differences, it
is unable to make a distinction between relevant and irrele-
vant differences. If the vendor supplies the required parsers,
it can discard the irrelevant differences to guarantee sound
clustering.

4.3 Deployment Protocols
We still need to evaluate the impact of staged deployment

on upgrade overhead and latency. Toward this end, out of
the space of possible staged deployment protocols described
in Section 3, in this section we evaluate two: one that seeks
to front-load most of the vendor’s debugging effort while re-
ducing the upgrade overhead (i.e., the number of machines
testing a faulty upgrade); and one that seeks to reduce up-
grade overhead without disregarding the upgrade latency
(i.e., the time elapsed until the upgrade is successfully ap-
plied and running on a machine). For both protocols, we
assume that the representatives are always online and ready
to fully test an upgrade, perhaps as a result of a financial
arrangement with the vendor.

Front-loading the debugging effort while reducing

the upgrade overhead. The first protocol (called Front-
Loading, for short) is divided into two phases. In the first
phase, the vendor starts by notifying all representatives of
all clusters in parallel that an upgrade is available. The

Machine Name Description

firefox15-fresh, firefox15-fresh(2) Firefox v.1.5.0.7 freshly installed (two identical machines)
firefox15-fresh-nojava Firefox v.1.5.0.7 freshly installed, Java and JavaScript disabled
firefox15-from10, firefox15-from10(2) Firefox v.1.5.0.7, upgraded from v.1.0.4 (two identical machines)
firefox15-from10-nojava Firefox v.1.5.0.7, upgraded from v.1.0.4, Java and JavaScript disabled

Table 3: Configurations used in our experiments with Firefox. All machines run the same Linux distribution.

���������	���
�

���������	���
���
�

���������	���
��

���������	���
����

���������	���
�	�������

���������	���
��	�������

Figure 8: Firefox clustering obtained by using parsers

for all environmental resources. Entries in boldface ex-

perience problems when upgrading to version 2.0.

���������	���
�

���������	���
���

���������	���
�	������

���������	���
��

���������	���
����

���������	���
��	������

�

���������	���
�

���������	���
���

���������	���
�	������

���������	���
��

���������	���
����

���������	���
��	������

�

Figure 9: Firefox clustering results obtained by using

only Mirage-supplied parsers. On the left, results with a

diameter value of 4. On the right, results with a diameter

value of 6. Entries in boldface experience problems when

upgrading to version 2.0.

representatives then download and test the upgrade using
Mirage’s user-machine testing subsystem (or another appro-
priate testing approach). Any problems during this phase
are reported back to the vendor using Mirage’s reporting
subsystem. Once the problems are fixed by the vendor,
all representatives are again concurrently notified about the
corrected upgrade and can download, test, and report on
it. This process is repeated until no more problems are re-
ported by the representatives, ending the first phase of the
protocol. No non-representatives test before the end of this
phase.
During the second phase, the vendor proceeds by han-

dling one cluster at a time, sequentially, starting from the
cluster that is most dissimilar to the vendor’s environment
and proceeding (in reverse order of similarity) toward the
cluster that is most similar to it. Ideally, no new problem
should be discovered in this phase. However, because of
imperfect testing or clustering, some problems may still be
encountered. The vendor starts this phase by simultane-
ously notifying the non-representative machines of the first
cluster in the order. The non-representatives of this clus-
ter then download the upgrade, test it, and report their
results. It is possible that the upgrade succeeds at some
non-representative machines but fail at others. When this
occurs, the non-representative machines that passed testing
are allowed to integrate the upgrade, but are later notified

of a new upgrade fixing the problems with the original up-
grade. The machines that failed testing do not integrate
the upgrade and are later notified of a (hopefully) corrected
version of the upgrade. When there are no more failures
and a large fraction (according to a vendor-defined thresh-
old) of the non-representatives have passed upgrade testing
successfully, the process is repeated for the next cluster in
the order. The reason we only wait for a (large) fraction
of the non-representative machines to report success is that
some machines may stay offline for long periods of time; it
would be impractical to wait for all these machines to pass
testing before moving to the next cluster. When these “late
arrivals” come back online, they are notified, download, test,
and report on all the upgrades they missed.
This protocol front-loads the debugging effort in two ways:

(1) it collects reports from all representatives of all clusters
right from the start, getting a broad picture of all the prob-
lems that can be expected; and (2) in its second phase, it
proceeds in the reverse order of cluster distance from the
vendor, as farther clusters are more likely to experience
problems. These two characteristics also allow the proto-
col to reduce the upgrade overhead.

Reducing upgrade overhead with better upgrade la-

tency. In our second staged protocol (called Balanced, for
short), deployment starts with the cluster that most closely
resembles the vendor’s installation, progresses sequentially
to the next cluster that most closely resembles the vendor,
and so on. The similarity between clusters and the vendor is
evaluated by a distance function accounting for the number
of differences in the environmental resources of machines be-
longing to the clusters. Each time the protocol progresses to
a new cluster, the representatives of that cluster are notified
about it in parallel and can then download, test, and re-
port on it. This process is repeated until the upgrade passes
testing successfully at all the representatives of the cluster.
At this point, the non-representative machines of the cluster
are notified and go through the same process. As in Front-
Loading, non-representatives that pass testing successfully
can integrate the upgrade, but may later receive a new up-
grade. When all (or a significant fraction of) the machines
in a cluster have successfully tested an upgrade, deployment
progresses to the next cluster.
This protocol promotes low upgrade overhead by testing

upgrades at the representatives of each cluster before al-
lowing the much larger number of non-representatives to
test them. Interestingly, it also promotes low latency for
a large set of machines, as compared to our first protocol,
in two ways: (1) by allowing many non-representatives to
successfully pass testing before problems with all clusters
are debugged by the vendor; and (2) by ordering clusters so
that clusters that are more likely to pass testing receive the
upgrades first. However, debugging at the vendor is more
spread out in time, as compared to the first protocol.

4.3.1 Evaluation Methodology
The evaluation is based on an event-driven simulator of

different deployment protocols and clustering schemes. The
main simulator inputs are the number of clusters, the clus-
ters’ sizes, the clustering quality, the number of represen-
tatives per cluster, in which clusters the upgrade problems
appear, and the times to download, test, and fix an upgrade.
Because our goal here is not to present an extensive set of
results for a large number of simulator inputs, we select a
particular scenario and discuss the corresponding results.
The behaviors that we observe with this example scenario
are representative of those of the other scenarios we consid-
ered.
Our example scenario has 100,000 simulated machines

running Mirage. The times to download and test an up-
grade are 5 and 10 time units, respectively. The time to
fix each upgrade problem at the vendor is set at 500 time
units. We choose the ratio between upgrade download and
test vs. debugging time to mimic the ratio between the ex-
pected times in the field; download and test taking a few
tens of minutes, with debugging (entire cycle at the vendor)
taking at least one day. In all cases, we cluster machines
into 20 clusters.
We consider two main categories of upgrade problems:

prevalent (a large number of machines are affected by the
problem) and non-prevalent (a smaller number of similar
machines are affected). The results we show are for a case
of one prevalent problem affecting 15% of machines (re-
sembling the upgrade failure results reported in the liter-
ature [4]) and two non-prevalent problems in two different
clusters.
We use two different clusterings. The first is sound with

respect to the problems we defined; it has 16 more clusters
than ideal clustering, with no misplaced machines. We cre-
ate the second, imperfect, clustering by injecting a single
misplaced machine in one of the clusters from the sound
clustering setup. This machine is not a representative in
the affected cluster. We assume that user-machine testing
correctly identifies a problem if there is one, with no false
positives. Hence, we assign one representative per cluster.
Given the lack of large-scale machine characterizations

that we would require in this scenario, we assume that all
clusters have the same size and study per-cluster, rather
than per-machine, upgrade latencies. In the cases we con-
sider, the vast majority of machines behave the same within
a cluster. Hence, this setup enables us to discuss the quali-
tative features of our staged deployment protocols.
We compare our two protocols, FrontLoading and Bal-

anced, against baselines called “NoStaging” and “Random-
Staging”. The NoStaging protocol places all machines into
a single cluster and treats them all as representatives to
promote deployment speed at the possible cost of a high up-
grade overhead. For this reason, NoStaging should be used
for simple and urgent upgrades, such as security patches.
The RandomStaging protocol resembles Balanced, but the
order of deployment to clusters is random. Although Ran-
domStaging may not have any real use in practice, it does
allow us to isolate the benefit of staged deployment from that
of intelligent machine clustering. To evaluate this protocol,
we create a scenario in which the problems are uniformly
distributed across the deployment order.
Since we do not have an underlying set of machine en-

vironments, we consider two deployment scenarios for the

Balanced protocol: 1) “best-case”, in which the representa-
tives discover problems at the latest possible time, produc-
ing the most favorable latency; and 2) “worst-case”, with
the problems being encountered early on, resulting in the
worst latency. We compare the protocols in terms of their
latencies and upgrade overheads.

4.3.2 Deployment Results
Most importantly, we expect our staged protocols to have

significantly lower upgrade overhead than NoStaging. This
benefit should come with little or no penalty in terms of
upgrade latency.

Sound clustering. Our protocols indeed exhibit much
lower upgrade overhead than NoStaging. With NoStaging,
all machines that exhibit problems (m, in total) fail testing,
whereas many fewer do so with the other three protocols
thanks to their staged deployment (presumably, m >> p,
i.e., the number of problematic machines is much greater
than the number of problems, p). The main reason for this
result is that staging forces the deployment to halt at the
first cluster that exhibits a problem, sparing other machines
from experiencing the same problem. Since the clustering
is sound with no misplaced machines and we assume that
user-machine testing finds the problem if one exists, the rep-
resentative of each cluster with a problem experiences it.
Hence, the total number of test failures is p for Balanced and
RandomStaging. As expected, Balanced has lower overhead
than FrontLoading. With FrontLoading, representatives of
all clusters with machines exhibiting the prevalent problem
(p+Cp in total, where Cp is the number of additional clus-
ters with problematic machines) fail testing.
Figure 10 shows the CDF of the upgrade latency, con-

firming our intuition about the protocols we consider. In
NoStaging, 75% of the machines pass the upgrade test right
away (at the cost of the high upgrade overhead we just dis-
cussed). In the best-case scenario, Balanced quickly applies
the upgrade successfully at a large fraction of machines, sig-
nificantly sooner than FrontLoading. Since FrontLoading
has an initial parallel testing and debugging phase, most
successful upgrades are delayed by several debugging times
at the vendor (500 time units each). Nevertheless, the last
cluster applies the upgrade sooner under FrontLoading than
the other staged protocols, especially when the number of
clusters is large, since FrontLoading’s second phase does not
have an extra step of testing at representatives. Random-
Staging’s latency lies between that of the best-case and the
worst-case scenarios for Balanced. We also see that ad-
ditional clusters (when C > 0) slow down the sequential
phases of the staged protocols.

Imperfect clustering. Figure 11 shows the CDF of the
per-cluster latency when we position the misplaced machine
(a problematic machine that behaves differently from the
rest of its cluster) in the first or the last cluster in the order.
We see that FrontLoading can be further slowed down if

the misplaced machine is in the first cluster. Arguably, this
is in agreement with this protocol’s main strategy. With its
best-case scenario, Balanced is similarly slowed down in this
case when the entire first cluster tests the upgrade and we
encounter the misplaced machine. When the misplaced ma-
chine is in the last cluster in the order, this protocol is only
marginally affected. Since it tests on all machines, NoStag-
ing is not affected by the presence of the misplaced machine.
Overall, the main trends among the protocols remain and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Fr
ac

tio
n

of
 c

lu
st

er
s

Time (units)

NoStaging
Balanced (best)
RandomStaging

FrontLoading
Balanced (worst)

Figure 10: CDF of the per-cluster upgrade latency un-

der sound clustering.

the upgrade overhead is simply augmented by one extra ma-
chine that fails testing for all protocols.

5. RELATED WORK

5.1 Characterizing Upgrades
As far as we know, only two other works characterized

upgrades. Beattie et al. [4] tried to determine when it is
best to apply security patches. They built mathematical
models of the factors affecting when to patch, and collected
empirical data to validate the model. Relative to Mirage, the
paper focused solely on security patches and did not consider
the benefits of user-machine testing or staged deployment.

The study by Gkantsidis et al. [13] focused on the Win-
dows environment and on the networking aspects of deploy-
ing upgrades. Most importantly, the study did not consider
several important issues, including upgrade installation and
testing, upgrade problems, and problem reporting. Our sur-
vey addressed all of these issues.

5.2 Deployment Subsystem
Upgrade deployment. As far as we know, no previous
work has considered staged upgrade deployment. In fact,
the two previous works on large-scale upgrade deployment
focused solely on (1) deploying upgrades as quickly as possi-
ble to all users while reducing the load on the vendor’s site
[13]; and (2) creating a deployment infrastructure that can
be tailored by explicit contracts between vendors and users
[31]. In contrast to (1), Mirage recognizes the tradeoff be-
tween the speed of deployment and the likelihood of testing
problems at the user machines. In contrast to (2), Mirage
does not consider contracts, since they are rare in practice,
especially in the open-source community.
Commercial upgrade (patch) management systems and

tools, e.g., [17, 27], deploy upgrades within enterprises. They
typically concentrate on discovering machines on the enter-
prise’s network, assessing which upgrades are needed, and
applying the patches while minimizing the number of re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

Fr
ac

tio
n

of
 c

lu
st

er
s

Time (units)

NoStaging
Balanced-best (last)
Balanced-best (first)

FrontLoading (last)
FrontLoading (first)

Figure 11: CDF of the upgrade latency under imperfect

clustering. The position of the misplaced machine (its

cluster in the deployment order) is shown in parenthesis

after protocol names.

boots. Some providers, such as [27], manually collect up-
grades from vendors and test them locally before sending
them to their customer enterprises. Relative to Mirage,
these upgrade-management systems do not help individual
users and have no automatic support for testing upgrades
after they are applied to the machines in the enterprise.
Nevertheless, the providers that manually test upgrades do
produce a primitive form of staging for enterprises. How-
ever, they are unlike representatives (or beta testers), since
they have no relationship to the vendor. In fact, their ex-
istence does not change the fact that vendors deploy their
upgrades to the entire world as a single huge cluster.

Clustering machines. The Pastiche [8] peer-to-peer bac-
kup system builds a structured overlay by replacing the
proximity metric with a measure of similarity between sets
of neighbors’ files. Although Pastiche does not explicitly
cluster machines, one could envisage Pastiche being used to
perform distributed clustering based on the list of environ-
mental resources at each machine.
Others have considered surviving Internet catastrophes by

backing up data on dissimilar hosts. This problem roughly
corresponds to the problem of recovering from a globally-
deployed problematic upgrade. In Phoenix [16], Junqueira
et al. observe that backups should be done on hosts that
do not share the same potential vulnerabilities. Interest-
ingly, the clustering of dissimilar hosts in Phoenix has the
opposite goal to our clusters, which cluster similar hosts.
Furthermore, Mirage clusters machines based on different
characteristics than Phoenix.

Integrating deployment, testing, and reporting. At
a high-level, the most similar work to Mirage is a position
paper by Cook and Orso [7], which also proposes to inte-
grate upgrade deployment, user-machine testing (via white-
box approaches), and problem reporting back to developers.
However, they did not consider staged deployment or any
type of clustering. Furthermore, they did not attempt to
characterize upgrades or evaluate their proposed system.

5.3 User-machine Testing Subsystem
Dependency tracking. When installing new software,
e.g., an upgraded application, package-management systems
(such as RedHat’s yum) provide a convenient way to find
and install all the required packages. However, unlike Mi-
rage, package-management systems do not address upgrade
testing or reporting activities. Mirage prevents a larger set
of upgrade problems while helping vendors debug their up-
grades based on feedback from their users’ machines. Nev-
ertheless, Mirage can benefit from the detailed version infor-
mation provided by package-management systems to iden-
tify the source of installation problems.
The Vesta [14] software configuration management tool

tracks file dependencies to reduce the build time. Unlike
Mirage, dependency tracking is done at the file-system level
by monitoring accesses to the Vesta repository. Mirage can
track dependencies in any live system, while Vesta works
only for source files and build processes.
BackTracker [18] and PASS [22] use system call intercep-

tion to track dependencies for security and file provenance
purposes, respectively. Mirage does so to determine when
to re-start tracing and what applications to test when a new
upgrade is received.
The Strider project at Microsoft Research produced the

Patch Impact Analyzer [9]. This tool dynamically deter-
mines application dependency information, performs pre-
upgrade impact analysis, and checks whether DLLs are load-
ed after a patch is applied. This tool was rolled into the
Application Compatibility Toolkit, enabling users to test
compatibility with a version of Windows, and in particular
with the one the user is running. In contrast, Mirage is more
general, as it relies on external output to determine whether
an upgraded application works properly.

Replay and comparison. Previous works [25, 26] have
considered validating operator actions (including software
upgrades) by replaying requests and checking replies in a
custom, isolated extension of Internet services. Mirage uses
an off-the-shelf virtual machine to test upgrades to any type
of software (not just servers), instead of a custom environ-
ment. Agrawal and Seshan [1] also mention the use of virtual
machines for upgrading distributed applications, but leave
other aspects of the approach for future work. For a dis-
tributed application, the main concern has typically been to
perform the upgrade while the application continues to ex-
ecute [2]. We have not considered distributed applications
so far.
Other work has considered application tracing and deter-

ministic replay for debugging purposes, e.g. [10, 29, 32].
These systems are substantially more complex than Mirage,
as they have to checkpoint internal states and replay the
details of an execution exactly.
Relative to approaches in comparing descriptions of com-

ponent and other behavior [5, 19, 20, 35], Mirage does not
rely on any description, specification, or additional effort at
development time for user-machine testing. Furthermore, it
treats applications as black boxes for which users may not
have source codes. Nevertheless, Mirage can be retargeted
to use white-box approaches for user-machine testing with-
out affecting its deployment component at all.

5.4 Reporting Subsystem
Today, software vendors routinely include software crash

reporting facilities in their products. For example, when an

application crashes in Microsoft Windows, it is possible to
send an error report back to Microsoft [21]. This report may
not include enough information to be easily reproduced, re-
quiring significant human labor in debugging. Perhaps most
importantly, no reports are transferred when an upgrade
causes unexpected/unacceptable behavior without crashing
or when the upgrade causes other applications (that share
resources with the upgraded application) to misbehave. In
contrast, the Mirage reports are sent whenever an upgrade
fails testing, due to crashing or not.

6. CONCLUSION
We introduce Mirage, a distributed framework that inte-

grates deployment, user-machine testing, and problem re-
porting into the development cycle of software upgrades.
The design of Mirage is motivated by a survey of system
administrators that points to a high incidence of problem-
atic upgrades, and to the difference between vendor and
user environments as one of the principal causes of upgrade
problems. We describe in detail two key innovations in Mi-
rage: the clustering of user machines according to their en-
vironments and the staged deployment of upgrades to these
clusters.
Our evaluation demonstrates that our clustering algorithm

achieves its goal of separating machines with dissimilar envi-
ronments in different clusters, while not creating an imprac-
tically large number of clusters. The algorithm performs
substantially better when the vendor provides parsers for all
of the environmental resources of the application. A simula-
tion study of two staged deployment protocols demonstrates
that staging significantly reduces upgrade overhead, while
still achieving low deployment latency. Furthermore, a suit-
able choice of protocol allows a vendor to achieve different
objectives.

Acknowledgments
We would like to thank George Candea, Christopher Iu, and
Steven Dropsho for their useful comments. In addition, we
thank our shepherd Rich Draves and our anonymous review-
ers who provided excellent feedback. Olivier Crameri was
awarded an SOSP student travel scholarship, supported by
Infosys, to present this paper at the conference.

7. REFERENCES
[1] M. Agrawal and S. Seshan. Development Tools for

Distributed Applications. In Proceedings of the 9th
Workshop on Hot Topics in Operating Systems, May 2003.

[2] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and
Simulation: How to Upgrade Distributed Systems. In
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems, May 2003.

[3] ASF Bugzilla Bug 10073 upgrade from 1.3.24 to 1.3.26
breaks include directive.
http://issues.apache.org/bugzilla/show bug.cgi?id=10073.

[4] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and
A. Shostack. Timing the Application of Security Patches
for Optimal Uptime. In Proceedings of the 16th Systems
Administration Conference, 2002.

[5] P. Brada. Metadata Support for Safe Component Upgrades.
In Proceedings of the 26th International Computer
Software and Applications Conference, August 2002.

[6] D. Chaum. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Communications of the ACM,
4(2), February 1981.

[7] J. Cook and A. Orso. MonDe: Safe Updating through
Monitored Deployment of New Component Versions. In
Proceedings of the 6th Workshop on Program Analysis for
Software Tools and Engineering (PASTE), September 2005.

[8] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making Backup Cheap and Easy. In Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation, December 2002.

[9] J. Dunagan, R. Roussev, B. Daniels, A. Johson,
C. Verbowski, and Y.-M. Wang. Towards a Self-Managing
Software Patching Process Using Black-Box
Persistent-State Manifests. In Proceedings of the
International Conference on Autonomic Computing, May
2004.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. SIGOPS Oper. Syst.
Rev., 36(SI):211–224, 2002.

[11] Fixing A Troubled Firefox 2.0 Upgrade.
http://softwaregadgets.gridspace.net/2006/10/30/fixing-a-
troubled-firefox-20-upgrade/.

[12] Firefox crashes after 1.5.0.9 update.
http://www.ubuntuforums.org/showthread.php?t=331274.

[13] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and
M. Vojnovic. Planet Scale Software Updates. In Proceedings
of SIGCOMM, September 2006.

[14] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta
Software Configuration Management System. Compaq
Systems Research Center, 2002.

[15] L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring
Expression Data: Identification and Analysis of
Coexpressed Genes. In Genome Research, pages 1106–1115,
1999.

[16] F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and
G. M. Voelker. Surviving Internet Catastrophes. In
Proceedings of the USENIX 2005 Annual Technical
Conference, April 2005.

[17] Kaseya Patch Management.
http://www.kaseya.com/products/patch-management.php.

[18] S. King and P. Chen. Backtracking Intrusions. In
Proceedings of the 19th SOSP, October 2003.

[19] L. Mariani and M. Pezze. Behavior Capture and Test:
Automated Analysis of Component Integration. In
Proceedings of the International Conference on
Engineering of Complex Computer Systems, June 2005.

[20] S. McCamant and M. D. Ernst. Predicting Problems
Caused by Component Upgrades. In Proceedings of the

10th European Software Engineering Conference and the
11th Symposium on the Foundations of Software
Engineering, September 2003.

[21] Microsoft Online Crash Analysis.
http://oca.microsoft.com/en/Welcome.aspx.

[22] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-Aware Storage Systems. In
Proceedings of the USENIX Annual Technical Conference,
June 2006.

[23] A. Muthitacharoen, B. Chen, and D. Mazieres. A
Low-bandwidth Network File System. In Proceedings of the
18th SOSP, December 2001.

[24] Report of PHP problem after MySQL upgrade.
http://www.linuxquestions.org/questions/
showthread.php?t=425535.

[25] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and
T. D. Nguyen. Understanding and Dealing with Operator
Mistakes in Internet Services. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation, Dec. 2004.

[26] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. P.
Martin, and T. D. Nguyen. Understanding and Validating
Database System Administration. In Proceedings of the
USENIX Annual Technical Conference, June 2006.

[27] PatchLink. http://www.patchlink.com/.

[28] PHP5 Migration guide. http://ch2.php.net/
manual/en/migration5.incompatible.php.

[29] Y. Saito. Jockey: A User-Space Library for Record-Replay
Debugging. In Proceedings of the 6th International
Symposium on Automated Analysis-Driven Debugging,
September 2005.

[30] Secunia ”Security Watchdog” Blog.
http://secunia.com/blog/11.

[31] L. Sobr and P. Tuma. SOFAnet: Middleware for Software
Distribution over Internet. In Proceedings of the IEEE
Symposium on Applications and the Internet, January
2005.

[32] S. Srnivasan, S. Kandula, C. Andrews, and Y. Zhou.
Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging. In
Proceedings of the USENIX Annual Technical Conference,
June 2004.

[33] Software upgrade survey.
http://mirage.epfl.ch/webdav/site/mirage/users/
128770/public/survey.pdf.

[34] User-Mode Linux. http://user-mode-linux.sourceforge.net/.
[35] T. Xie and D. Notkin. Checking Inside the Black Box:

Regression Testing Based on Value Spectra Differences. In
Proceedings of the 20th IEEE International Conference on
Software Maintenance, September 2004.

