
2

Predicting and Preventing Inconsistencies in
Deployed Distributed Systems

MAYSAM YABANDEH, NIKOLA KNEŽEVIĆ, DEJAN KOSTIĆ,
and VIKTOR KUNCAK

Ecole Polytechnique Fédérale de Lausanne

We propose a new approach for developing and deploying distributed systems, in which nodes
predict distributed consequences of their actions and use this information to detect and avoid
errors. Each node continuously runs a state exploration algorithm on a recent consistent snapshot
of its neighborhood and predicts possible future violations of specified safety properties. We describe
a new state exploration algorithm, consequence prediction, which explores causally related chains
of events that lead to property violation.

This article describes the design and implementation of this approach, termed CrystalBall. We
evaluate CrystalBall on RandTree, BulletPrime, Paxos, and Chord distributed system implemen-
tations. We identified new bugs in mature Mace implementations of three systems. Furthermore,
we show that if the bug is not corrected during system development, CrystalBall is effective in
steering the execution away from inconsistent states at runtime.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.4.3 [Information Systems Applications]: Communications Applications

General Terms: Experimentation, Reliability

Additional Key Words and Phrases: Distributed systems, consequence prediction, reliability, exe-
cution steering, enforcing safety properties

ACM Reference Format:
Yabandeh, M., Knežević, N., Kostić, D., and Kuncak, V. 2010. Predicting and preventing inconsis-
tencies in deployed distributed systems. ACM Trans. Comput. Syst. 28, 1, Article 2 (March 2010),
49 pages. DOI = 10.1145/1731060.1731062 http://doi.acm.org/10.1145/1731060.1731062

1. INTRODUCTION

Complex distributed protocols and algorithms are used in enterprise storage
systems, distributed databases, large-scale planetary systems, and sensor

This project is supported by the Swiss National Science Foundation (grant FNS 200021-125140).
N. Knežević was funded in part by a grant from the Hasler Foundation (grant 2103).
Authors’ address: School of Computer and Communication Science, Ecole Polytechnique Fédérale
de Lausanne, Switzerland; email: {maysam.yabandeh,nikola.knezevic,dejan.kostic,victor.kuncak}
@epfl.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0734-2071/2010/03-ART2 $10.00
DOI 10.1145/1731060.1731062 http://doi.acm.org/10.1145/1731060.1731062

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:2 • M. Yabandeh et al.

Fig. 1. Execution path coverage by (a) classic model checking, (b) replay-based or live predicate
checking, (c) CrystalBall in deep online debugging mode, and (d) CrystalBall in execution steering
mode. A triangle represents the state space searched by the model checker; a full line denotes an
execution path of the system; a dashed line denotes an avoided execution path that would lead to
an inconsistency.

networks. Errors in these protocols translate to denial of service to some
clients, potential loss of data, and monetary losses. The Internet itself is a
large-scale distributed system, and there are recent proposals [John et al. 2008]
to improve its routing reliability by further treating routing as a distributed
consensus problem [Lamport 1998]. Design and implementation problems in
these protocols have the potential to deny vital network connectivity to a large
fraction of users.

Unfortunately, it is notoriously difficult to develop reliable high-performance
distributed systems that run over asynchronous networks. Even if a distributed
system is based on a well-understood distributed algorithm, its implementation
can contain errors arising from complexities of realistic distributed environ-
ments or simply coding errors [Liu et al. 2008]. Many of these errors can only
manifest after the system has been running for a long time, has developed a
complex topology, and has experienced a particular sequence of low-probability
events such as node resets. Consequently, it is difficult to detect such errors us-
ing testing and model checking, and many of such errors remain unfixed after
the system is deployed.

We propose to leverage increases in computing power and bandwidth to make
it easier to find errors in distributed systems, and to increase the resilience of
the deployed systems with respect to any remaining errors. In our approach,
distributed system nodes predict consequences of their actions while the sys-
tem is running. Each node runs a state exploration algorithm on a consistent
snapshot of its neighborhood and predicts which actions can lead to violations
of user-specified consistency properties. As Figure 1 illustrates, the ability to
detect future inconsistencies allows us to address the problem of reliability in
distributed systems on two fronts: debugging and resilience.
—Our technique enables deep online debugging because it explores more states

than live runs alone or more relevant states than model checking from the

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:3

initial state. For each state that a running system experiences, our tech-
nique checks many additional states that the system did not go through, but
that it could reach in similar executions. This approach combines benefits of
distributed debugging and model checking.

—Our technique aids resilience because a node can modify its behavior to avoid
a predicted inconsistency. We call this approach execution steering. Execution
steering enables nodes to resolve nondeterminism in ways that aim to mini-
mize future inconsistencies.

To make this approach feasible, we need a fast state exploration algorithm.
We describe a new algorithm, termed consequence prediction, which is effi-
cient enough to detect future violations of safety properties in a running sys-
tem. Using this approach, we identified bugs in Mace implementations of a
random overlay tree, and the Chord distributed hash table. These implemen-
tations were previously tested as well as model-checked by exhaustive state
exploration starting from the initial system state. Our approach therefore en-
ables the developer to uncover and correct bugs that were not detected using
previous techniques. Moreover, we show that, if a bug is not detected during
system development, our approach is effective in steering the execution away
from erroneous states, without significantly degrading the performance of the
distributed service.

1.1 Contributions

We summarize the contributions of this article as follows.

—We introduce the concept of continuously executing a state space exploration
algorithm in parallel with a deployed distributed system, and introduce an
algorithm that produces useful results even under tight time constraints
arising from runtime deployment;

—We describe a mechanism for feeding a consistent snapshot of the neigh-
borhood of a node in a large-scale distributed system into a running model
checker; the mechanism enables reliable consequence prediction within lim-
ited time and bandwidth constraints;

—We present execution steering, a technique that enables the system to steer
execution away from the predicted inconsistencies;

—We describe CrystalBall [Yabandeh et al. 2009a], the implementation of our
approach on top of the Mace framework [Killian et al. 2007a]. We evaluate
CrystalBall on RandTree, Bullet′, Paxos, and Chord distributed system im-
plementations. CrystalBall detected several previously unknown bugs that
can cause system nodes to reach inconsistent states. Moreover, in the case of
remaining bugs, CrystalBall’s execution steering predicts them in a deployed
system and steers execution away from them, all with an acceptable impact
on the overall system performance.

1.2 Example

We next describe an example of an inconsistency exhibited by a distributed
system, then later we show how CrystalBall predicts and avoids it. The

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:4 • M. Yabandeh et al.

inconsistency appears in the Mace [Killian et al. 2007a] implementation of the
RandTree overlay. RandTree implements a random, degree-constrained overlay
tree designed to be resilient to node failures and network partitions. The trees
built by an earlier version of this protocol serve as a control tree for a num-
ber of large-scale distributed services such as Bullet [Kostić et al. 2005] and
RanSub [Kostić et al. 2003]. In general, trees are used in a variety of multicast
scenarios [Castro et al. 2003; Chu et al. 2002] and data collection/monitoring
environments [Jain et al. 2008]. Inconsistencies in these environments trans-
late into denial of service to the users, data loss, inconsistent measurements,
and suboptimal control decisions. The RandTree implementation was previ-
ously manually debugged in both local- and wide-area settings over a period
of three years, as well as debugged using an existing model checking approach
[Killian et al. 2007b] but, to our knowledge, this inconsistency has not been
discovered before (see Section 5 for some of the additional inconsistencies that
CrystalBall discovered).

RandTree Topology. Nodes in a RandTree overlay form a directed tree of
bounded degree. Each node maintains a list of its children and the address
of the root. The node with the numerically smallest IP address acts as the root
of the tree. Each nonroot node contains the address of its parent. Children of
the root maintain a sibling list. Note that, for a given node, its parent, children,
and siblings are all distinct nodes. The seemingly simple task of maintaining
a consistent tree topology turns out to be complicated across asynchronous
networks, in the face of node failures and machine slowdowns.

Joining the Overlay. A node nj joins the overlay by issuing a Join request
to one of the designated nodes. If the message has not been forwarded by the
root, then the receiver forwards the request back to the root. If the root already
has the maximal number of children, it asks one of its children to incorporate
the node into the overlay. Once the request reaches a node np whose number
of children is less than maximum allowed, node np inserts nj as one of its
children, and notifies nj about a successful join using a JoinReply message (if
np is the root, it also notifies its other children about their new sibling nj using
an UpdateSibling message).

Example System State. The first row of Figure 2 shows a state of the system
that we encountered by running RandTree in the ModelNet cluster [Vahdat
et al. 2002] starting from the initial state. We examine the local states of nodes
n1, n9, and n13. For each node n, we display its neighborhood view as a small
graph whose central node is n itself, marked with a circle. If a node is root and
in a “joined” state, we mark it with a triangle in its own view.

The state in the first row of Figure 2 is formed by n13 joining as the only child
of n9 and then n1 joining and assuming the role of the new root with n9 as its
only child (n13 remains as the only child of n9). Although the final state shown
in first row of Figure 2 is simple, it takes 13 steps of the distributed system
(such as atomic handler executions, including application events) to reach this
state from the initial state.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:5

Local view(1)

1

13

9

1
3

Join

9

1

1

13

9

1
3

9

1

13

1

13

9

1
3

1

13

 UpdateSibling

1
3

 JoinReply

9

1

9

1

13

9

1
3

9

1

Rese
t

9

Local view(9) Local view(13)

Fig. 2. An inconsistency in a run of RandTree; Safety property: children and siblings are disjoint
lists.

Scenario Exhibiting Inconsistency. Figure 2 describes a sequence of actions
that leads to the state that violates the consistency of the tree. We use arrows
to represent the sending and the receiving of some of the relevant messages. A
dashed line separates distinct distributed system states (for simplicity we skip
certain intermediate states and omit some messages).

The sequence begins by a silent reset of node n13 (such reset can be caused by,
for example, a power failure). After the reset, n13 attempts to join the overlay
again. The root n1 accepts the join request and adds n13 as its child. Up to this
point node n9 received no information on actions that followed the reset of n13,
so n9 maintains n13 as its own child. When n1 accepts n13 as a child, it sends an
UpdateSibling message to n9. At this point, n9 simply inserts n13 into the set
of its sibling. As a result, n13 appears both in the list of children and in the list
of siblings of n9, which is inconsistent with the notion of a tree.

Challenges in Finding Inconsistencies. We would clearly like to avoid in-
consistencies such as the one appearing in Figure 2. Once we have realized the
presence of such inconsistency, we can, for example, modify the handler for the
UpdateSibling message to remove the new sibling from the children list. Previ-
ously, researchers had successfully used explicit-state model checking to iden-
tify inconsistencies in distributed systems [Killian et al. 2007b] and reported
a number of safety and liveness bugs in Mace implementations. However, due
to an exponential explosion of state space, current techniques capable of model
checking distributed system implementations take a prohibitively long time to

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:6 • M. Yabandeh et al.

identify inconsistencies, even for seemingly short sequences such as the ones
needed to generate states in Figure 2. For example, when we applied the Mace
Model Checker’s [Killian et al. 2007a] exhaustive search to the safety properties
of RandTree starting from the initial state, it failed to identify the inconsistency
in Figure 2 even after running for 17 hours (on a 3.4-GHz Pentium-4 Xeon that
we used for some of our experiments in Section 5). The reason for this long run-
ning time is the large number of states reachable from the initial state up to
the depth at which the bug occurs, all of which are examined by an exhaustive
search.

1.3 CrystalBall Overview

Instead of running the model checker from the initial state, we propose to ex-
ecute a model checker concurrently with the running distributed system, and
continuously feed current system states into the model checker. When, in our
example, the system reaches the state at the beginning of Figure 2, this state
is fed to the model checker as initial state and the model checker will predict
the state at the end of Figure 2 as a possible future inconsistency. In sum-
mary, instead of focusing only on inconsistencies starting from the initial state
(which for complex protocols means never exploring states beyond the initial-
ization phase), our model checker predicts inconsistencies that can occur in a
system that has been running for a significant amount of time in a realistic
environment.

As Figure 1 suggests, compared to the standard model checking approach,
this approach identifies inconsistencies that can occur within much longer sys-
tem executions. Compared to simply checking the live state of the running
system, our approach has two advantages.

(1) Our approach systematically covers a large number of executions that con-
tain low-probability events, such as node resets that ultimately triggered
the inconsistency in Figure 2. It can take a very long time for a running
system to encounter such a scenario, which makes testing for possible bugs
difficult. Our technique therefore improves system debugging by providing
a new technique that combines some of the advantages of testing and static
analysis.

(2) Our approach identifies inconsistencies before they actually occur. This is
possible because the model checker can simulate packet transmission in
time shorter than propagation latency, and because it can simulate timer
events in time shorter than the actual time delays. This aspect of our ap-
proach opens an entirely new possibility: adapt the behavior of the running
system on the fly and avoid a predicted inconsistency. We call this technique
execution steering. Because it does not rely on a history of past inconsis-
tencies, execution steering is applicable even to inconsistencies that were
previously never observed in past executions.

Example of Execution Steering. In our example, a model checking algorithm
running in n1 detects the violation at the end of Figure 2. Given this knowl-
edge, execution steering causes node n1 not to respond to the join request of
n13 and to break the TCP connection with it. Node n13 eventually succeeds

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:7

Fig. 3. An example execution sequence that avoids the inconsistency from Figure 2; thanks to
execution steering.

joining the random tree (perhaps after some other nodes have joined first). The
stale information about n13 in n9 is removed once n9 discovers that the stale
communication channel with n13 is closed, which occurs the first time when n9
attempts to communicate with n13. Figure 3 presents one scenario illustrating
this alternate execution sequence. Effectively, execution steering has exploited
the nondeterminism and robustness of the system to choose an alternative ex-
ecution path that does not contain the inconsistency.1

1Besides external events (such as additional node joining), a node typically has sufficient amount
of choice to allow it to make progress (e.g., multiple bootstrap nodes). In general, however, it is
possible that enforcing safety can reduce liveness.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:8 • M. Yabandeh et al.

Consequence Prediction. We believe that inconsistency detection and execu-
tion steering are compelling reasons to use an approach where a model checker
is deployed online to find future inconsistencies. To make this approach feasible,
it is essential to have a model checking technique capable of quickly discovering
potential inconsistencies to significant depths in a very short amount of time.
The previous model checking technique is not sufficient for this purpose: when
we tried deploying it online, by the time a future inconsistency was identified,
the system had already passed the execution depth at which the inconsistency
occurs. We need an exploration technique that is sufficiently fast and focused
to be able to discover a future inconsistency faster than the time that it takes
node interaction to cause the inconsistency in a distributed system. We present
such an exploration technique, termed consequence prediction.

Consequence prediction focuses on exploring causally related chains of
events. Our system identifies the scenario in Figure 2 by running consequence
prediction on node n1. Consequence prediction considers, among others, the Re-
set action on node n13. It then uses the fact that the Reset action brings the
node into a state where it can issue a Join request. Even though there are many
transitions that a distributed system could take at this point, consequence pre-
diction focuses on the transitions that were enabled by the recent state change.
It will therefore examine the consequences of the response of n1 to the Join
request and, using the knowledge of the state of its neighborhood, discover a
possible inconsistency that could occur in n9. Consequence prediction also ex-
plores other possible sequences of events, but, as we explain in Section 3.2, it
avoids certain sequences, which makes it faster than applying the standard
search to the same search depth.

2. BACKGROUND

We next present a simple model of distributed systems and describe a basic
model checking algorithm based on breadth-first search and state caching.

2.1 System Model

Figure 4 describes a simple model of a distributed system. We use this model
to describe system execution at a high level of abstraction, describe an existing
model checking algorithm, and present our new algorithm, consequence pre-
diction. (The model does not attempt to describe our technique for obtaining
consistent snapshots.)

System state. The state of the entire distributed system is given by (1) local
state of each node, and (2) in-flight network messages. We assume a finite set
of node identifiers N (corresponding to, for example, IP addresses). Each node
n ∈ N has a local state L(n) ∈ S. Local state models all node-local information
such as explicit state variables of the distributed node implementation, the
status of timers, and the state that determines application calls. Network state
is given by in-flight messages, I . We represent each in-flight message by a pair
(N , M) where N is the destination node of the message and M is the remaining
message content (including sender node information and message body).

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:9

Fig. 4. A simple model of a distributed system.

Node behavior. Each node in our system runs the same state-machine im-
plementation. The state machine is given by two kinds of handlers: a message
handler executes in response to a network message; an internal handler exe-
cutes in response to a node-local event such as a timer and an application call.

We represent message handlers by a set of tuples HM . The condition
((s1, m), (s2, c)) ∈ HM means that, if a node is in state s1 and it receives a mes-
sage m, then it transitions into state s2 and sends the set c of messages. Each
element (n′, m′) ∈ c is a message with target destination node n′ and content m′.
Internal node action handler is analogous to a message handler, but it does not
consume a network message. Instead, ((s1, a), (s2, c)) ∈ HA represents handling
of an internal node action a ∈ A. (In both handlers, if c is the empty set, it
means that the handler did not generate any messages.)

System behavior. The behavior of the system specifies one step of a tran-
sition from one global distributed system state (L, I) to another global state
(L′, I ′). We denote this transition by (L, I) �(L′, I ′) and describe it in Figure 4
in terms of handlers HM and HA. The handler that sends the message directly
inserts the message into the network state I , whereas the handler receiving
the message simply removes it from I . To keep the model simple, we assume
that transport errors are particular messages, generated and processed by
message handlers.

2.2 Model-Checking Distributed Systems

Figure 5 presents a standard breadth-first search (BFS) for finding safety viola-
tions in a transition system given by relation �. We describe BFS here, because

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:10 • M. Yabandeh et al.

Fig. 5. The algorithm for finding errors in model checkers using state space exploration. The
presented algorithm is based on BFS (Breadth First Search) approach.

it is easier to understand. In practice, model checkers usually use bounded
depth-first search (DFS), which is more memory efficient. The search starts
from a given global state firstState, which in the standard approach, is the ini-
tial state of the system. The search systematically explores reachable global
states at larger and larger depths and checks whether the states satisfy the
given property condition. In practice, the number of reachable states is very
large and the search needs to be terminated upon exceeding some bound such
as running time or search depth. The condition of exceeding some bound is
denoted StopCriterion in Figure 5.

2.3 Consistent Global Snapshots

Examining global state of a distributed system is useful in a variety of sce-
narios, such as checkpointing/recovery, debugging, and in our case, running a
model checking algorithm in parallel with the system. A snapshot consists of
checkpoints of nodes’ states. For the snapshot to be useful, it needs to be con-
sistent. There has been a large body of work in this area, starting with the
seminal paper by Chandy and Lamport [1985]. We next describe one of the re-
cent algorithms for obtaining consistent snapshots [Manivannan and Singhal
2002]. The general idea is to collect a set of checkpoints which do not violate
the happens-before relationship [Lamport 1978] established by messages sent
by the distributed service.

In this algorithm, the runtime of each node ni keeps track of the checkpoint
number cni (the role of checkpoint number is similar to the Lamport’s logical
clock [Lamport 1978]). Whenever ni sends a message M , it stores cni in it
(denote this value M .cn). When node nj receives a message, it compares cn j
with M .cn. If M .cn > cn j , then nj takes a checkpoint C, assigns C.cn = M .cn,
and sets cn j = M .cn. This is the key step of the algorithm that avoids violating
the happens-before relationship. A node ni can take snapshots on its own, and
this is done whenever the cni is locally incremented, which happens periodically.

To collect the required checkpoints, a node ni sends a checkpoint request mes-
sage containing a checkpoint request number cri. Upon receiving the request,

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:11

N0

N1

0

0 1 2

1

C0
1

Regular checkpoint Forced checkpoint

m2

N2

N3

0

0

1 2

1 Req (1)

C 1

C1
1

C2
1

Time

m1

m2

Fig. 6. Example illustrating the consistent snapshot collection algorithm. Black ovals represent
regular checkpoints. Messages m1 and m2 force checkpoints (white ovals) to be taken before mes-
sages are processed at nodes 2 and 1, respectively, and so does the checkpoint request from node 3
when it arrives at node 0.

CrystalBall

Controller

Consequence

predictioncheckpoints

snapshots+

properties

local checkpoint

violations

rk

Safety Properties

Runtime
Service

(state
machine)

event filter

messages,

timersmessages

CrystalBall node

N
e

tw
o

r

neighbor info

Fig. 7. High-level overview of CrystalBall. This figure depicts the high-level architecture of
CrystalBall and its main components.

a node nj responds with the appropriate checkpoint. There are two cases: 1) if
cri > cn j (the request number is greater than any number nj has seen), then
nj takes a checkpoint, stamps it with C.cn = cri, sets cn j = cri, and sends that
checkpoint; 2) if cri ≤ cn j , the request is for a checkpoint taken in the past,
and nj responds with the earliest checkpoint C for which C.cn ≥ cri. The exam-
ple depicted in Figure 6 includes different scenarios that the algorithm forces
taking checkpoints in order to maintain the checkpoints globally consistent.

3. CRYSTALBALL DESIGN

We next sketch the design of CrystalBall. Figure 7 shows the high-level
overview of a CrystalBall-enabled node. We concentrate on distributed systems
implemented as state machines, as this is a widely used approach [Killian et al.
2007b; Lamport 1978, 1998; Rodriguez et al. 2004; Schneider 1990].

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:12 • M. Yabandeh et al.

The state machine interfaces with the outside world via the runtime module.
The runtime receives the messages coming from the network, demultiplexes
them, and invokes the appropriate state machine handlers. The runtime also
accepts application level messages from the state machines and manages the
appropriate network connections to deliver them to the target machines. This
module also maintains the timers on behalf of all services that are running.

The CrystalBall controller contains a checkpoint manager that periodically
collects consistent snapshots of a node’s neighborhood, including the local node.
The controller feeds them to the model checker, along with a checkpoint of the
local state. The model checker runs the consequence prediction algorithm which
checks user- or developer-defined properties and reports any violation in the
form of a sequence of events that leads to an erroneous state.

CrystalBall can operate in two modes. In the deep online debugging mode,
the controller only outputs the information about the property violation. In
the execution steering mode the controller examines the report from the model
checker, prepares an event filter that can avoid the erroneous condition, checks
the filter’s impact, and installs it into the runtime if it is deemed to be
safe.

3.1 Consistent Neighborhood Snapshots

To check system properties, the model checker requires a snapshot of the
system-wide state. Ideally, every node would have a consistent, up-to-date
checkpoint of every other participant’s state. Doing so would give every node
high confidence in the reports produced by the model checker. However, given
that the nodes could be spread over a high-latency wide-area network, this
goal is unattainable. In addition, the sheer amount of bandwidth required to
disseminate checkpoints might be excessive.

Given these fundamental limitations, we use a solution that aims for scala-
bility: we apply model checking to a subset of all nodes in a distributed system.
We leverage the fact that in scalable systems, a node typically communicates
with a small subset of other participants (“neighbors”) and thus needs to per-
form model checking only on this neighborhood. In some distributed hash table
implementations, a node keeps track of O(log n) other nodes; in mesh-based
content distribution systems, nodes communicate with a constant number of
peers, or this number does not explicitly grow with the size of the system. Also
in a random overlay tree, a node is typically aware of the root, its parent, its
children, and its siblings. We therefore arrange for a node to distribute its state
checkpoints to its neighbors, and we refer to received checkpoints as snapshot
neighborhood. The checkpoint manager maintains checkpoints and snapshots.
Other CrystalBall components can request an on-demand snapshot to be gath-
ered by invoking an appropriate call on the checkpoint manager.

3.1.1 Discovering and Managing Snapshot Neighborhoods. To propagate
checkpoints, the checkpoint manager needs to know the set of a node’s neigh-
bors. This set depends on the distributed service. We use two techniques to pro-
vide this list. In the first scheme, we ask the developer to implement a method

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:13

that will return the list of neighbors. The checkpoint manager then periodically
queries the service and updates its snapshot neighborhood.

Because changing the service code might not always be possible, our second
technique uses a heuristic to determine the snapshot neighborhood. Specifi-
cally, the heuristic periodically queries the runtime to obtain the list of open
connections (for TCP), and recent message recipients (for UDP). It then clus-
ters connection endpoints according to the communication times, and selects a
sufficiently large cluster of recent connections.

3.1.2 Enforcing Snapshot Consistency. CrystalBall ensures that the
neighborhood snapshot corresponds to a consistent view of the distributed sys-
tem at some point of logical time. Our starting point is a technique similar to
the one described in Section 2.3.

Instead of gathering a global snapshot, a node periodically sends a checkpoint
request to the members of its snapshot neighborhood. Even though nodes re-
ceive checkpoints only from a subset of nodes, all distributed service and check-
pointing messages are instrumented to carry the checkpoint number (logical
clock) and each neighborhood snapshot is a fragment of a globally consistent
snapshot. In particular, a node that receives a message with a logical timestamp
greater than its own logical clock takes a forced checkpoint. The node then uses
the forced checkpoint to contribute to the consistent snapshot when asked for
it.

Node failures are commonplace in distributed systems, and our algorithm
has to deal with them. The checkpoint manager proclaims a node to be dead
if it experiences a communication error (e.g., a broken TCP connection) with it
while collecting a snapshot. An additional cause for an apparent node failure
is change of a node’s snapshot neighborhood in the normal course of operation
(e.g., when a node changes parents in the random tree). In this case, the node
triggers a new snapshot gather operation.

3.1.3 Checkpoint Content. Although the total footprint of some services
might be very large, this need not necessarily be reflected in checkpoint size.
For example, the Bullet′ [Kostić et al. 2005] file distribution application has non-
negligible total footprint, but the actual file content transferred in Bullet′ does
not play any role in consistency detection. In general, the checkpoint content is
given by a serialization routine. The developer can choose to omit certain parts
of the state from serialized content and reconstruct them if needed at deseri-
alization time. As a result, checkpoints are smaller and the code compensates
the lack of serialized state when a local state machine is being recreated from
a remote node’s checkpoint in the model checker.

3.1.4 Managing Checkpoint Storage. The checkpoint manager keeps track
of checkpoints via their checkpoint numbers. Over the course of its operation,
a node can collect a large number of checkpoints, and a long-running system
might demand an excessive amount of memory and storage for this task. It is
therefore important to prune old checkpoints in a way that nevertheless leaves
the ability to gather consistent snapshots.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:14 • M. Yabandeh et al.

Our approach to managing checkpoint storage is to enforce a per-node stor-
age quota for checkpoints. Older checkpoints are removed first to make room.
Removing older checkpoints might cause a checkpoint request to fail when
the request is asking for a checkpoint that is outside the range of remaining
checkpoints at the node. In this case, the node responds negatively to the check-
point requester and inserts its current checkpoint number in the response
(R.cn = cni). Then, upon receiving the responses from all nodes in the snapshot
neighborhood, the requestor chooses the greatest among the R.cn received, and
initiates another snapshot round. Provided that the rate at which the snapshots
are removed is not greater than the rate at which the nodes are communicating,
this second snapshot collection will likely succeed.

3.1.5 Managing Bandwidth Consumption. For a large class of services,
the relevant per-node state is relatively small, for example, a few KB. It is
nevertheless important to limit bandwidth consumed by state checkpoints for
a number of reasons: (1) sending large amounts of data might congest the node’s
outbound link, and (2) consuming bandwidth for checkpoints might adversely
affect the performance and the reaction time of the system.

To reduce the amount of checkpoint data transmitted, CrystalBall can use a
number of techniques. First, it can employ “diffs” that enable a node to trans-
mit only parts of state that are different from the last sent checkpoint. Second,
the checkpoints can be compressed on-the-fly. Finally, CrystalBall can enforce
a bandwidth limit by: (1) making the checkpoint data be a fraction of all data
sent by a node, or (2) enforcing an absolute bandwidth limit (e.g., 10 Kbps). If
the checkpoint manager is above the bandwidth limit, it responds with a neg-
ative response to a checkpoint request and the requester temporarily removes
the node from the current snapshot. A node that wishes to reduce its inbound
bandwidth consumption can reduce the rate at which it requests checkpoints
from other nodes.

3.2 Consequence Prediction Algorithm

The key to enabling fast prediction of future inconsistencies in CrystalBall is
our consequence prediction algorithm. The idea of the algorithm is to avoid ex-
ploring internal (local) actions of nodes whose local state was encountered pre-
viously at a smaller depth in the search tree. Recall that the state of the entire
system contains the local states of each node in the neighborhood. A standard
search avoids re-exploring actions of states whose particular combination of
local states was encountered previously; it achieves this by storing hashes of
the entire global state. We found this standard approach to be too slow for our
purpose because of the high branching in the search tree (Figure 13 shows an
example for RandTree). Consequence prediction therefore additionally avoids
exploring internal actions of a node if this node was already explored with the
same local state (regardless of the states of other nodes). Consequence predic-
tion implements this policy by maintaining an additional hash table that stores
hashes of visited local states for each node.

Figure 8 shows the consequence prediction pseudo code. In its overall struc-
ture, the algorithm is similar to the standard state-space search in Figure 5.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:15

Fig. 8. Consequence prediction algorithm.

(We present the algorithm at a more concrete level, where the relation � is
expressed in terms of action handlers HA and HM introduced in Figure 4.) In
fact, if we omitted the test in Line 17,

if (!localExplored.contains(hash(n,s))),

the algorithm would reduce precisely to Figure 5.
In Line 8 of Figure 8, the algorithm checks whether the explored state sat-

isfies the desired safety properties. To specify the properties, the developer
can use a simple language [Killian et al. 2007a], that supports universal and
existential quantifiers, comparison operators, state variables, and function in-
vocations.

3.2.1 Exploring Chains. To understand the intuition behind consequence
prediction, we identify certain executions that consequence prediction does and
does not explore. Consider the model of Figure 4 and the algorithm in Figure 8.
We view local actions as triggering a sequence of message exchanges. Define
an event chain as a sequence of steps eAeM1 . . . eM p (for p ≥ 0) where the first
element eA is an internal node action (element of HA in Figure 4, representing
application or scheduler event), and where the subsequent elements eMi are
network events (elements of HM in Figure 4). Clearly, every finite execution
sequence can be written as a concatenation of chains.

Executions explored: Consequence prediction explores all chains that start
from the current state (i.e., the live state of the system). This is because (1)

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:16 • M. Yabandeh et al.

Fig. 9. Full state space, consequence prediction, and partial order reduction in an example with
internal actions of three distinct nodes.

consequence prediction prunes only local actions, not network events, (2) a
chain has only one local action, namely the first one, and (3) at the beginning
of the search the localExplored hash tables are empty, so no pruning occurs.

Executions not necessarily explored: Consider a chain C of the form
eAeM1 . . . eM p and another chain C′ of the form e′

Ae′
M1 . . . e′

Mq , where e′
A is a lo-

cal action applicable to a node n. Then consequence prediction will explore the
concatenation CC′ of these chains if there is no previously explored reachable
state (at the depth less than p) at which the node n has the same state as after
C. As a special case, suppose chains C and C′ involve disjoint sets of nodes.
Then consequence prediction will explore both C and C′ in isolation. However,
it will not explore the concatenation CC′, nor a concatenation C1C′

1 where C1 is
a nonempty prefix of C and C′

1 is nonempty prefix of C′.
The notion of avoiding interleavings is related to the techniques of partial or-

der reduction [Godefroid and Wolper 1994] and dynamic partial order reduction
[Flanagan and Godefroid 2005; Sen and Agha 2006], but our algorithm uses it
as a heuristic that does not take into account the user-defined properties being
checked. Note that user-defined properties in CrystalBall can arbitrarily relate
local states of different nodes. In the example of disjoint nodes above, a partial
order reduction technique would explore CC′ but, assuming perfect indepen-
dence information, would not explore C′. Figure 9 illustrates this difference;
the Appendix presents a larger example. The preference for a longer execution
makes partial order reduction less appropriate for our scenario where we need
to impose a bound on search depth.

Note that hash(n, s) in Figure 8 implies that we have separate tables cor-
responding to each node for keeping hashed local states. If a state variable is
not necessary to distinguish two separate states, the user can annotate the
state variable that he or she does not want to be included in the hash func-
tion, improving the performance of Consequence Prediction (our experiments in
Section 5 make use of this mechanism). Instead of holding all encountered
hashes, the hash table could be designed as a bounded cache of explored hash

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:17

entries to fit into the L2 cache or main memory, favoring access speed while
admitting the possibility of reexploring previously seen states.

Note that consequence prediction algorithm does not prune any message
processing events. For example, if a node resets, the other nodes in the system
can detect this reset by trying to communicate with the node and receiving an
RST signal.

Although simple, the idea of removing from the search the internal actions of
nodes with previously seen states eliminates many (uninteresting) interleav-
ings from the search and has a profound impact on the search depth that the
model checker can reach with a limited time budget. This change was there-
fore the key to enabling the use of the model checker at runtime. Knowing
that consequence prediction avoids considering certain states, the question re-
mains whether the remaining states are sufficient to make the search useful.
Ultimately, the answer to this question comes from our evaluation (Section 5).

3.3 Execution Steering

CrystalBall’s execution steering mode enables the system to avoid entering
an erroneous state by steering its execution path away from the predicted in-
consistencies. If a protocol was designed with execution steering in mind, the
runtime system could report a predicted inconsistency as a special program-
ming language exception, and allow the service to react to the problem using
a service-specific policy. Moreover, in the new programming model [Yabandeh
et al. 2009b] that has been suggested recently, the developer can explicitly define
multiple handlers for a given event. At runtime, the runtime support module
picks the one that satisfies the user-defined objective, such as consistency. In
the present article, however, we focus on generic runtime mechanisms that do
not require the developer to change the programming model or explicitly specify
corrective actions.

3.3.1 Event Filters. Recall that a node in our framework operates as a
state machine and processes messages, timer events, and application calls via
handlers. Upon noticing that running a certain handler could lead to an erro-
neous state, CrystalBall installs an event filter, which temporarily blocks the
invocation of the state machine handler for the messages from the relevant
sender.

The rationale for event filters is that a distributed system often contains a
large amount of nondeterminism that allows it to proceed even if certain tran-
sitions are disabled. For example, if the offending message is a Join request in a
random tree, ignoring the message can prevent violating a safety property. The
joining node can later retry the procedure with an alternative potential parent
and successfully join the tree. Similarly, if handling a message causes a race
condition manifested as an inconsistency, delaying message handling allows
the system to proceed to the point where handling the message becomes safe
again. Note that state machine handlers are atomic, so CrystalBall is unlikely
to interfere with any existing recovery code.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:18 • M. Yabandeh et al.

3.3.2 Granularity of Filters. There is a trade-off in the granularity of the
filter that we can install to steer away from the inconsistency. By using a coarse
granularity filter, we can cover more cases that can possibly lead to the same in-
consistency and hence reduce the false negative rate. However, doing so might
increase the false positive rate by filtering other events which are not threaten-
ing the consistency of the system. On the other hand, using a fine granularity
filter would decrease the false positive rate as it affects only the events that are
more likely to reach the inconsistency point. Doing so could result in a higher
false negative rate since there might be other erroneous paths which the model
checker could not find in time.

There has been related work that tries to determine the right granularity
for the filter by further processing around the erroneous path using symbolic
execution and path slicing [Costa et al. 2007]. Although these techniques can
be effective in general, they are not directly applicable to execution steering,
because the filter needs to be installed very quickly to catch the erroneous
events in time.

The granularity we adopt in this article is at the level of a handler identifier.
In particular, we filter on the handler whose execution in the model checker led
to an inconsistency. In the case of handlers for network messages, we include
the source address of the received message in the filter. It is worth noting that
we can have multiple handlers for the same event. They differ in the guard
condition (i.e., the Boolean expression defined over the state variables) and the
received message header that determines which handler is allowed to execute.

3.3.3 Point of Intervention. In general, execution steering can intervene at
several points in the execution path. Given several choices with equal impact
in terms of predicted errors, our policy is to steer the execution as early as
possible (subject to nondisruptiveness criteria described in the following). For
example, if the erroneous execution path involves a node issuing a Join request
after resetting, the system’s first interaction with that node occurs at the node
which receives its Join request. If this node discovers the erroneous path, it can
install the event filter.

We choose the earliest-point-of-intervention policy because it gives the sys-
tem more choices (a longer execution) to adjust to the steering action. More-
over, we have a separate mechanism, the immediate safety check (described
in the following), that enables a node to perform last-minute corrections to its
behavior.

3.3.4 Nondisruptiveness of Execution Steering. Ideally, execution steering
would always prevent inconsistencies from occurring, without introducing new
inconsistencies due to a change in behavior. In general, however, guaranteeing
the absence of inconsistencies is as difficult as guaranteeing that the entire
program is error-free. CrystalBall therefore makes execution steering safe in
practice through two mechanisms:

(1) Sound Choice of Filters. It is important that the chosen corrective action
does not sacrifice the soundness of the state machine. A sound filtering is
the one in which the observed finite executions with filtering are a subset

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:19

of possible finite executions without filtering. Consequently, if a finite exe-
cution appeared in the presence of execution steering, it was also possible
(even if less likely) for it to appear in the original system. The breaking of a
TCP connection is common in a distributed system using TCP. This makes
sending a TCP RST signal a good candidate for a sound event filter, and is
the filter we choose to use in CrystalBall. In the case of communication over
UDP, the filter simply drops the UDP packet, which could similarly happen
in normal operation of the network. The sound filter for timer events is to
avoid invoking the timer handler and to reschedule the timer firing. This
is a sound filter because there are no real-time guarantees for invoking
the scheduled timers on time; hence, the timer execution could have been
postponed during normal system operation.

(2) Exploration of Corrected Executions. Before allowing the event filter to per-
form an execution steering action, CrystalBall runs the consequence pre-
diction algorithm to check the effect of the event filter action on the system.
If the consequence prediction algorithm does not suggest that the filter ac-
tions are safe, CrystalBall does not attempt execution steering and leaves
the system to proceed as usual.

3.3.5 Rechecking Previously Discovered Violations. An event filter reflects
possible future inconsistencies reachable from the current state, and leaving an
event filter in place indefinitely could deny service to some distributed system
participants. CrystalBall therefore removes the filters from the runtime after
every model checking run. However, it is useful to quickly check whether the
previously identified error path can still lead to an erroneous condition in a new
model checking run. This is especially important given the asynchronous nature
of the model checker relative to the system messages, which can prevent the
model checker from running long enough to rediscover the problem. To prevent
this from happening, the first step executed by the model checker is to replay
the previously discovered error paths. If the problem reappears, CrystalBall
immediately reinstalls the appropriate filter.

3.3.6 Immediate Safety Check. CrystalBall also supports immediate safety
check, a mechanism that avoids inconsistencies which would be caused by ex-
ecuting the current handler. Such imminent inconsistencies can happen even
in the presence of execution steering because (1) consequence prediction ex-
plores states given by only a subset of all distributed system nodes, and (2) the
model checker runs asynchronously and may not always detect inconsistencies
in time. The immediate safety check speculatively runs the handler, checks
the consistency properties in the resulting state, and prevents actual handler
execution if the resulting state is inconsistent.

We have found that exclusively using immediate safety check would not
be sufficient for avoiding inconsistencies. The advantages of installing event
filters are: (i) performance benefits of avoiding the error sooner, for example,
reducing unnecessary message transmission, (ii) faster reaction to an error,
which implies greater chance of avoiding a “point of no return” after which
error avoidance would be impossible, and (iii) the node that is supposed to

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:20 • M. Yabandeh et al.

ultimately avoid the inconsistency by immediate safety check might not have all
the checkpoints needed to notice the violation; this can result in false negatives
(as shown in Figure 16).

3.3.7 Liveness Properties. The notion of sound filtering (already presented)
ensures that no new finite executions are introduced into the system by exe-
cution steering. It is possible, in principle, that applying an event filter would
affect liveness properties of a distributed system (i.e., introduce new infinite
executions). In our experience, due to a large amount of nondeterminism (e.g.,
the node is bootstrapped with a list of multiple nodes it can join), the system
usually finds a way to make progress. We focus on enforcing safety properties;
according to a negative result by Fischer et al. [1985], it is anyway impossi-
ble to have safety and liveness in an asynchronous system. (For example, the
Paxos [Lamport 1998] protocol guarantees safety but not liveness.)

3.4 Scope of Applicability

CrystalBall does not aim to find all errors; it is rather designed to find and
avoid important errors that can manifest in real runs of the system. Results
in Section 5 demonstrate that CrystalBall works well in practice. Nonetheless,
we next discuss the limitations of our approach and characterize the scenarios
in which we believe CrystalBall would be effective.

Up-to-Date Snapshots. For Consequence Prediction to produce results rel-
evant for execution steering and immediate safety check, it needs to receive
sufficiently many node checkpoints sufficiently often. (Thanks to snapshot con-
sistency, this is not a problem for deep online debugging.) We expect the stale
snapshots to be less of an issue with stable properties, for example, those de-
scribing a deadlock condition [Chandy and Lamport 1985]. Since the node’s own
checkpoint might be stale (because of enforcing consistent neighborhood snap-
shots for checking multi-node properties), immediate safety check is perhaps
more applicable to node-local properties.

Higher frequency of changes in state variables requires higher frequency
of snapshot exchanges. High-frequency snapshot exchanges in principle lead
to: 1) more frequent model checker restarts (given the difficulty in building
incremental model checking algorithms), and (2) high bandwidth consumption.
Among the examples for which our techniques is appropriate are overlays in
which state changes are infrequent.

Consequence Prediction as a Heuristic. Consequence Prediction is a heuris-
tic that explores a subset of the search space. This is an expected limitation of
explicit-state model checking approaches applied to concrete implementations
of large software systems. The key question in these approaches is directing
the search towards most interesting states. Consequence Prediction uses in-
formation about the nature of the distributed system to guide the search. The
experimental results in Section 5 show that it works well in practice, but we
expect that further enhancements are possible.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:21

Applicability to Less Structured Systems. CrystalBall uses the Mace frame-
work [Killian et al. 2007a] and presents further evidence that higher-level mod-
els make the development of reliable distributed systems easier [Dagand et al.
2009; Killian et al. 2007b]. Nevertheless, consequence prediction algorithm and
the idea of execution steering are also applicable to systems specified in a less
structured way. While doing so is beyond the scope of this article, recently pro-
posed tools such as MODIST [Yang et al. 2009] could be combined with our
approach to bring the benefits of execution steering to a wider range of dis-
tributed system implementations. Given the need for incomplete techniques
in systems with large state spaces, we believe that consequence prediction re-
mains a useful heuristics for these scenarios.

4. IMPLEMENTATION

Our CrystalBall prototype is built on top of Mace [Killian et al. 2007a]. Mace
allows distributed systems to be specified succinctly, and it outputs high-
performance C++ code. We run the model checker as a separate process that
communicates future inconsistencies to the runtime. Our implementation in-
cludes a checkpoint manager, which enables each service to collect and manage
checkpoints to generate consistent neighborhood snapshots based on the no-
tion of logical time. It also includes implementation of consequence prediction
algorithm, with the ability to replay the previously discovered paths which led
to some inconsistencies. Finally, it contains implementation of the execution
steering mechanism.

4.1 Checkpoint Manager

To collect and manage snapshots, we modified the Mace compiler and the
runtime. We added a snapshot on directive to the service description to inform
the Mace compiler and the runtime that the service requires checkpointing.
The presence of this directive causes the compiler to generate the necessary
code. For example, it automatically inserts a checkpoint number in every ser-
vice message and adds the code to invoke the checkpoint manager when that
is required by the snapshot algorithm.

The checkpoint manager itself is implemented as a Mace service, and it com-
presses the checkpoints using the LZW algorithm. To further reduce bandwidth
consumption, a node checks if the previously sent checkpoint is identical to the
new one (on per-peer basis), and avoids transmitting duplicate data.

4.2 Consequence Prediction

Our starting point for the consequence prediction algorithm was the publicly
available MaceMC implementation [Killian et al. 2007a]. This code was not
designed to work with live state. For example, the node addresses in the code
are assumed to be of the form 0,1,2,3, etc. To handle this issue, we added a
mapping from live IP addresses to model checker addresses. Since the model
checker is executing real code in the event and the message handlers, we did
not encounter any additional addressing-related issues.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:22 • M. Yabandeh et al.

Another change that we made allowed the model checker to scale to hundreds
of nodes and deal with partial system state. We introduced a dummy node that
represents all system nodes without checkpoints in the current snapshot. All
messages sent to such nodes are redirected to the dummy node. The model
checker does not consider the events of this node during state exploration.

To minimize the impact on distributed service performance, we decouple the
model checker from event processing path by running it as a separate process.
On a multicore machine this CPU-intensive process will likely be scheduled on
a separate core. Operating systems already have techniques to balance the load
of processes among the available CPU cores. Furthermore, some kernels (e.g.,
FreeBSD, Windows Vista) already have interfaces support for pinning down
applications to CPU cores.

4.3 Immediate Safety Check

Our current implementation of the immediate safety check executes the handler
in a copy of the state machine (using fork()), and avoids the transmission of the
messages. In general, delaying message transmission can be done by adding an
extra check in the messaging layer: if the code is running in the child process,
it ignores the messages which are waiting in queue for transmission. However,
because: (1) message transmission in the Mace framework is done by a separate
thread and (2) by running fork() we only duplicate the active thread, adding
the extra check would be redundant.

Our implementation must be careful about the resources that are shared
between the parent (primary state machine) and the child process (copy). For
example, the file descriptors shared between two processes might cause a prob-
lem for the incoming packets: they might be received either by the parent or
the child process. The approach we took is to close all the file descriptors in the
child process (the one doing immediate safety check) after calling fork(). The
fork() happens after the system has reacted to a message and the execution
of the handler does not read further messages. In principle, file descriptors can
be used for arbitrary I/O, including sending messages and file system opera-
tions. In our implementation, however, messaging is under Mace’s control and
it is straightforward to hold message transmission. In our experiments, only
Bullet′ [Kostić et al. 2005] was performing file system I/O and we manually
implemented buffering for its file system operations. A more flexible solution
could be implemented on top of a transactional operating, system [Porter et al.
2009].

The other shared resources that we need to consider are locks. After forking,
the locks could be shared between parent and child process and waiting on them
in the child process might cause undesirable effects in both the parent and the
child process. We address this issue by adding an extra check in the Mace
library files which operate on locks; if the code is running as child process, the
library does not invoke locking/unlocking functions. This choice does not affect
the system operation because the locks are used for synchronization between
threads. In the child process, there is only one thread, which eliminates the
need for using locks.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:23

Since modern operating system implementations of fork() use the copy-
on-write scheme, the overhead of performing the immediate safety check is
relatively low (and it did not affect our applications). In case of applications
with high messaging/state change rates where the performance of immediate
safety check is critical, one could obtain a state checkpoint [Srinivasan et al.
2004] before running the handler and rollback to it only in case of an encoun-
tered inconsistency. Another option would be to employ operating system-level
speculation [Nightingale et al. 2005].

Upon encountering an inconsistency in the copy, the runtime does not execute
the handler in the primary state machine. Instead, it employs a sound event
filter (Section 3.3).

4.4 Replaying Past Erroneous Paths

To check whether an inconsistency that was reported in the last run of model
checker can still occur when starting from the current snapshot, we replay past
erroneous paths. Strictly replaying a sequence of events and messages that
form the erroneous path on the new neighborhood snapshot might be incorrect.
For example, some messages could only have been generated by the old state
checkpoints and would thus be different from those the new state can generate.
Our replay technique therefore replays only timer and application events, and
relies on the code of the distributed service to generate any messages. We then
follow the causality of the newly generated messages throughout the system.

The high fidelity replay of erroneous paths necessitates a deterministic re-
play of pseudorandom numbers. Recall that the model checker systematically
explores all possible return values of the pseudorandom number generator. This
function is called in three cases: i) in the protocol implementation by the devel-
oper to get a random value, ii) in the simulator to decide whether to simulate a
fault injection in the current event, and iii) in the model checker to pick one of
the enabled events to be simulated in the next round. As explained above, de-
terministically replaying all these values would not satisfy our requirements,
because it is very likely that the exact explored path by previous run of the
model checker does not work for the newly received state checkpoints. Hence,
in deterministically replaying pseudorandom number generation, we only aim
to cover the first two cases.

Toward this end, we instrumented the pseudorandom number generator
function. During simulation of events, we record the values returned by
the pseudorandom number generator; these values are then appended to
the recorded information corresponding to the erroneous path. Later on, while
replaying the erroneous path, we supply these values instead of calling the
pseudorandom number generator.

4.5 Event Filtering for Execution Steering

Execution steering is driven by the reports received from the model checker;
reports are sequences of events that could lead to inconsistencies. The Crystal-
Ball controller then picks a subset of these events and installs the corresponding
filters. In general, the nodes could collaborate to install disjoint sets of filters

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:24 • M. Yabandeh et al.

corresponding to each reported erroneous path. We have used a simple but ef-
fective approach for picking the event to filter on: the node that discovers the
erroneous path looks for its first contribution to this path and installs the filter
for that event. Recall that filters are designed for protocol-specific events, hence
the events like node reset or message loss which are beyond the control of the
protocol, will be ignored. Upon checking the existence and the potential impact
of a corrective action, the CrystalBall controller installs an event filter into the
runtime.

4.6 Checking Safety of Event Filters

To check the safety of event filters, we modified our baseline execution steering
library. When the execution steering module wants to check the safety of an
event filter, it checks that, if the code is running inside model checker, then it
randomly selects both safe and unsafe choices. Since a call to the pseudorandom
number generator causes a branch in the model checker, the model checker
explores both cases: (i) where handling the event is safe and its corresponding
handler will be called, and (ii) where handling the event is detected to be unsafe
and the filter will be installed.

Although important for checking the safety of event filters, this technique has
a negative impact on the model checker efficiency as the number of branches
that the model checker needs to check increases. We assume that erroneous
paths would show up rarely. Therefore, we need to check the effects of the filters
only when an inconsistency is reported. However, there is a challenge here:
the depth-first search algorithm is designed based on the assumption that the
paths will be reexplored deterministically. Hence pausing branch exploration
and exploring it later can have unpredictable effects on the search algorithm.
We address this issue by isolating the search of the branch caused by the event
filter. For example, the states that are explored in this branch would not be
reflected in the model checker data structures.

5. EVALUATION

Our experimental evaluation addresses the following questions.

(1) Is CrystalBall effective in finding inconsistencies in live runs?
(2) Can any of the inconsistencies found by CrystalBall also be identified by

the MaceMC model checker alone?
(3) Is execution steering capable of avoiding inconsistencies in deployed dis-

tributed systems?
(4) Are the CrystalBall-induced overheads within acceptable levels?

5.1 Experimental Setup

We conducted our live experiments using ModelNet [Vahdat et al. 2002]. Mod-
elNet allows us to run live code in a cluster of machines, while application
packets are subjected to packet delay, loss, and congestion typical of the Inter-
net. Our cluster consists of 17 older machines with dual 3.4 GHz Pentium-4
Xeons with hyper-threading, 8 machines with dual 2.33 GHz dual-core Xeon

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:25

5140s, and 3 machines with 2.83 GHz Xeon X3360s (for Paxos experiments).
Older machines have 2 GB of RAM, while the newer ones have 4 GB and 8 GB,
respectively. These machines run GNU/Linux 2.6.17. One 3.4 GHz Pentium-4
machine running FreeBSD 4.9 served as the ModelNet packet forwarder for
these experiments. All machines are interconnected with a full-rate 1-Gbps
Ethernet switch.

We consider two deployment scenarios. For our large-scale experiments with
deep online debugging, we multiplex 100 logical end hosts running the dis-
tributed service across the 20 Linux machines, with 2 participants running the
model checker on 2 different machines. We run with 6 participants for small-
scale debugging experiments, one per machine.

We use a 5,000-node INET [Chang et al. 2002] topology that we further
annotate with bandwidth capacities for each link. The INET topology preserves
the power law distribution of node degrees in the Internet. We keep the latencies
generated by the topology generator; the average network RTT is 130ms. We
randomly assign participants to act as clients connected to one-degree stub
nodes in the topology. We set transit-transit links to be 100 Mbps, while we set
access links to 5 Mbps/1 Mbps inbound/outbound bandwidth. To emulate the
effects of cross traffic, we instruct ModelNet to drop packets at random with a
probability chosen uniformly at random between [0.001,0.005] separately for
each link.

5.2 Deep Online Debugging Experience

We have used CrystalBall to find inconsistencies (violations of safety proper-
ties) in two mature implemented protocols in Mace, namely an overlay tree
(RandTree) and a distributed hash table (Chord [Stoica et al. 2003]). These im-
plementation were not only manually debugged in both local- and wide-area
settings, but were also model checked using MaceMC [Killian et al. 2007a].
We have also used our tool to find inconsistencies in Bullet′, a file distribution
system that was originally implemented in MACEDON [Rodriguez et al. 2004],
and then ported to Mace. We found 13 new subtle bugs in these three systems
that caused violation of safety properties.

In 7 of the inconsistencies, the violations were beyond the scope of exhaustive
search by the existing software model checker, typically because the errors
manifested themselves at depths far beyond what can be exhaustively searched.

Table I summarizes the inconsistencies that CrystalBall found in RandTree,
Chord, and Bullet′. Typical elapsed times (wall clock time) until finding an in-
consistency in our runs have been from less than an hour up to a day. This time
allowed the system being debugged to go through complex realistic scenarios.2

CrystalBall identified inconsistencies by running consequence prediction from
the current state of the system for up to several hundred seconds. To demon-
strate their depth and complexity, we detail four out of 13 inconsistencies we
found in the three services we examined.

2During this time, the model checker ran concurrently with a normally-running system. We there-
fore do not consider this time to be wasted by the model checker before deployment; rather, it is
the time consumed by a running system.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:26 • M. Yabandeh et al.

Table I.
Summary of inconsistencies found for each

system using CrystalBall. LOC stands for lines
of code and reflects both the MACE code size

and the generated C++ code size. The low LOC
counts for Mace service implementations are a

result of Mace’s ability to express these services
succinctly. This number does not include the

line counts for libraries and low-level services
that services use from the Mace framework

System Bugs Found LOC Mace/C++
RandTree 7 309/2000
Chord 3 254/2200
Bullet′ 3 2870/19628

5.2.1 Example RandTree Bugs Found. We next discuss bugs we identified
in the RandTree overlay protocol presented in Section 1.2. We name bugs ac-
cording to the consistency properties that they violate.

Children and Siblings Disjoint. The first safety property we considered is
that the children and sibling lists should be disjoint. The first identified sce-
nario by CrystalBall that violates this property is the scenario from Figure 2.
The problem can be corrected by removing the stale information about chil-
dren in the handler for the UpdateSibling message. CrystalBall also identified
variations of this bug that require changes in other handlers.

Scenario #2 exhibiting inconsistency. During live execution, A is initially the
root of the tree and parent of B. R tries to join the tree by sending a join request
to A. A accepts the request and decides that R should be the root of the tree,
because it has a smaller identifier. Therefore, A joins under R. After receiving
the JoinReply message, R is the root of the tree and A’s parent. At this point,
consequence prediction detects the following scenario. Node B resets, but its
TCP RST packet to A is lost. Then, B sends a Join request to R, which is
accepted by R because it has a free space in its children list. Accordingly, R
sends a sibling update message to its child, A. Upon receipt of this message, A
updates its sibling list by adding B to it, while the children list still includes B.

Scenario #3 exhibiting inconsistency. During live execution, R is the root of
the tree and parent of A and C. Then, B joins the tree under A. At this point,
consequence prediction detects the following scenario. B experiences a node
reset, but its TCP RST packet to A is lost. Then, B sends a Join request to R
and R forwards the request to C. After that, R experiences a node reset and
resets the TCP connections with its children A and C. Upon receiving the error
signal, each of them removes R from its parent pointer and promotes itself to
be the root. In addition, each of A and C, sets its join timer to find the real
root. Join timer of A expires and sends a Join message to C, which is accepted
by C because it has a free space in its children list. Upon receipt of JoinReply
message, A adds B to its sibling list, while B is in its children list as well.

Scenario #4 exhibiting inconsistency. During live execution, R is the root of
the tree and the parent of A and C. At this point, consequence prediction detects

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:27

Fig. 10. An inconsistency in a run of RandTree. Root (9) appears as a child.

the following scenario. Upon receiving the error signal, both nodes remove R
from its parent pointer and promote themselves to be the root. In addition, both
A and C start their join timer to find the real root. The join timer of A expires
and A sends a Join message to C, which is accepted by C because it has a free
space in its children list. Recall that A is still a sibling of C.

Possible corrections. In the message handler, check the children list before
adding a new sibling. In the case of a conflict, we can either simply trust the
new message and remove the conflicting node from the children list or query
the offending node to confirm its state.

Root is Not a Child or Sibling. CrystalBall found violation of the property
that the root node should not appear as a child, identifying a node 69 that
considers node 9 both as its root and its child. (See Figure 10.)

Scenario exhibiting inconsistency. During live execution, node 61 is initially
the root of the tree and parent of nodes 5, 65, and 69; 69 is also parent of 9. At
this point, consequence prediction detects the following scenario. Node 9 resets,
but its TCP RST packet to its parent (69) is lost. 9 sends a Join request to 61.
Based on 9’s identifier, 61 considers 9 more eligible and selects it as the new
root and indicates it in the JoinReply message. Besides, it also sends a Join
message to the new root which would be 9. After receiving a JoinReply from 9,
61 informs its children about the new root (9) by sending NewRoot messages to
them. However, 69 still thinks 9 is its child, which causes the inconsistency.

Possible correction. Check the children list whenever installing information
about the new root node.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:28 • M. Yabandeh et al.

Root Has No Siblings. CrystalBall found violation of the property that the
root node should contain no sibling pointers, identifying a node A that considers
itself a root but at the same time has an address of another node B in its sibling
list.

Scenario exhibiting inconsistency. During live execution, A is initially the
root of the tree and parent of B and C. Node R sends a Join request to A. Based
on R ’s identifier, A considers R more eligible to be the root and thus informs it
of its new role. A notifies its children about the new root by sending them the
NewRoot messages. At this point, consequence prediction detects the following
scenario. A experiences a node reset and resets the TCP connections with its
children B and C. Upon receiving the error signal, B removes A from its parent
pointer and promotes itself to be the root. However, it keeps its stale sibling
list, which causes the inconsistency.

Possible correction. Clean the sibling list whenever a node relinquishes the
root position in favor of another node.

Recovery Timer Should Always Run. An important safety property for
RandTree is that the recovery timer should always be scheduled. This timer
periodically causes each node to send Probe messages to the members of its
peer list with which it does not have an open connection. It is vital for the tree’s
consistency to keep the nodes up-to-date about the global structure of the tree.
The property that checks whether the recovery timer is always running was
written by the authors of MaceMC [Killian et al. 2007a], but the authors did
not report any violations of it. We believe that our approach discovered it in
part because our experiments considered more complex join scenarios.

Scenario exhibiting inconsistency. CrystalBall found a violation of the prop-
erty in a state where node A joins itself, and changes its state to “joined” but
does not schedule any timers. Although this does not cause problems immedi-
ately, the inconsistency occurs when another node B with a smaller identifier
tries to join, at which point A gives up the root position, selects B as the root,
and adds B it to its peer list. At this point A has a nonempty peer list but no
running timer.

Possible correction. Keep the timer scheduled even when a node has an empty
peer list.

5.2.2 Example Chord Bugs Found. We next describe violations of consis-
tency properties in Chord [Stoica et al. 2003], a distributed hash table that
provides key-based routing functionality. Chord and other related distributed
hash tables form a backbone of a large number of proposed and deployed dis-
tributed systems [Jain et al. 2008; Rhea et al. 2005; Rowstron and Druschel
2001].

Chord Topology. Each Chord node is assigned a Chord id (effectively, a key).
Nodes arrange themselves in an overlay ring where each node keeps pointers
to its predecessor and the list of its successors. Even in the face of asynchronous
message delivery and node failures, Chord has to maintain a ring in which the
nodes are ordered according to their ids, and each node has a set of “fingers”
that enables it to reach exponentially larger distances on the ring.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:29

Fig. 11. An inconsistency in a run of Chord. Node C has its predecessor pointing to itself while its
successor list includes other nodes.

Joining the System. To join the Chord ring, a node A first identifies its
potential predecessor by querying with its id. This request is routed to the
appropriate node P , which in turn replies to A. Upon receiving the reply, A
inserts itself between P and P ’s successor, and sends the appropriate messages
to its predecessor and successor nodes to update their pointers. A “stabilize”
timer periodically updates these pointers.

If Successor Is Self, So Is Predecessor. If a predecessor of a node A equals A,
then its successor must also be A (because then A is the only node in the ring).
This is a safety property of Chord that had been extensively checked using
MaceMC, presumably using both exhaustive search and random walks.

Scenario exhibiting inconsistency: CrystalBall found a state where node A
has A as its predecessor but has another node B as its successor. This violation
happens at depths that are beyond those reachable by exhaustive search from
the initial state. Figure 11 shows the scenario. During live execution, several
nodes join the ring and all have a consistent view of the ring. Three nodes A, B,
and C are placed consecutively on the ring, that is, A is predecessor of B and
B is predecessor of C. Then B experiences a node reset and other nodes which
have established TCP connection with B receive a TCP RST. Upon receiving this
error, node A removes B from its internal data structures. As a consequence,
node A considers C as its immediate successor.

Starting from this state, consequence prediction detects the following sce-
nario that leads to the violation. C experiences a node reset, losing all its state.
C then tries to rejoin the ring and sends a FindPred message to A. Because
nodes A and C did not have an established TCP connection, A does not observe

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:30 • M. Yabandeh et al.

the reset of C. Node A replies to C by a FindPredReply message that shows A’s
successor to be C. Upon receiving this message, node C (i) sets its predecessor
to A; (ii) stores the successor list included in the message as its successor list;
and (iii) sends an UpdatePred message to A’s successor which, in this case, is
C itself. After sending this message, C receives a transport error from A and
removes A from all of its internal structures including the predecessor pointer.
In other words, C’s predecessor would be unset. Upon receiving the (loopback)
message to itself, C observes that the predecessor is unset and then sets it
to the sender of the UpdatePred message which is C. Consequently, C has its
predecessor pointing to itself while its successor list includes other nodes.

Consequence of the inconsistency. Services implemented on top of distributed
hash tables rely on its ability to route to any system participant. An incor-
rect successor can therefore disrupt the connectivity of the entire system by
disconnecting the Chord ring.

Possible corrections. One possibility is for nodes to avoid sending UpdatePred
messages to themselves (this appears to be a deliberate coding style in Mace
Chord). If we wish to preserve such coding style, we can alternatively place a
check after updating a node’s predecessor: if the successor list includes nodes
in addition to itself, avoid assigning the predecessor pointer to itself.

Node Ordering Constraint. According to the Chord specification, a node’s
predecessor pointer contains the Chord identifier of the immediate predecessor
of that node. Therefore, if a node A has a predecessor P and one of its successors
is S, then the id of S should not be between the id of P and the id of A.

Scenario exhibiting inconsistency. CrystalBall found a safety violation where
node A adds a new successor B to its successor list while its predecessor pointer
is set to C and the id of B is between the id of A and C. The scenario discovered
is as follows (Figure 12). The id of B is less than the id of A and the id of A is less
than the id of C. During live execution, first, node C joins the ring. Then, nodes
A and B both try to join with C by sending FindPred messages to it. Node C
sends FindPredReply back to A and B with exactly the same information. Upon
receipt of this message, nodes A and B set their predecessor and successor to C
and send UpdatePred message back to C. Finally, node C sets its predecessor
to A and successor to B.

In this state, consequence prediction discovers the following actions. Stabi-
lizer timer of A fires and this node queries C by sending it a GetPred message.
Node C replies back to A with a GetPredReply message that shows the C’s
predecessor to be A and its successor list to contain B. Upon receiving this
message, A adds B to its successor list while its predecessor pointer still points
to C.

Possible correction. The bug occurs because node A adds information to its
successor list but does not update its predecessor. The bug could be fixed by
updating the predecessor after updating the successor list.

Bound on Data Structure Size. An implicit property of the data structure
of a protocol is that there should be a reasonable limit on its size. Usually, this
limit is internally enforced by the data structure. Chord keeps a queue called

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:31

Fig. 12. An inconsistency in a run of Chord. For node A, its successor and predecessor do not obey
the ordering constraint.

findQueue to store the received join requests while the node has not joined the
ring. The node feeds requests as loop back messages to itself to respond to them.
We set a property that puts a limit on the size of this queue.

Scenario exhibiting inconsistency. CrystalBall found a safety violation where
the size of this queue gets unreasonably large. This causes both i) a performance
problem for processing all of the messages, and ii) increase in the size of the
node checkpoint from a few KB to 1MB. The bug occurs when the potential root
of the tree (i.e., R) has not yet joined and other nodes of the tree stubbornly
send join requests to it. When R finally joins the ring, it has a very long list of
request to process.

Possible correction. The bug exists because the Mace Chord implementation
does not avoid inserting duplicate messages in this queue. This bug was not
observable using MaceMC because it does not model check more than several
nodes (because of the state explosion problem). Our live 100-node run using
CrystalBall uncovered the bug.

5.2.3 Example Bullet′ Bug Found. Next, we describe our experience of ap-
plying CrystalBall to the Bullet′ [Kostić et al. 2005] file distribution system.
The Bullet′ source sends the blocks of the file to a subset of nodes in the system;
other nodes discover and retrieve these blocks by explicitly requesting them.
Every node keeps a file map that describes blocks that it currently has. A node
participates in the discovery protocol driven by RandTree, and peers with other
nodes that have the most disjoint data to offer to it. These peering relationships
form an overlay mesh.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:32 • M. Yabandeh et al.

Bullet′ is more complex than RandTree, Chord (and tree-based overlay mul-
ticast protocols) because of (1) the need for senders to keep their receivers up-
to-date with file map information, (2) the block request logic at the receiver, and
(3) the finely-tuned mechanisms for achieving high throughput under dynamic
conditions.

The three bugs we found were results of inconsistencies involving the vari-
ants of property (1). Since the conditions that led to the inconsistencies are
similar, we describe a bug involving the following property:

Sender’s File Map and Receivers View of It Should Be Identical. Every
sender keeps a “shadow” file map for each receiver informing it which are the
blocks it has not told the receiver about. Similarly, a receiver keeps a file map
that describes the blocks available at the sender. Senders use the shadow file
map to compute “diffs” on-demand for receivers containing information about
blocks that are “new” relative to the last diff.

Senders and receivers communicate over nonblocking TCP sockets that are
under control of MaceTcpTransport. This transport queues data on top of the
TCP socket buffer, and refuses new data when its buffer is full.

Scenario exhibiting inconsistency: In a live run lasting less than three min-
utes, CrystalBall quickly identified a mismatch between a sender’s file map and
the receiver’s view of it. The problem occurs when the diff cannot be accepted by
the underlying transport. The code then clears the receiver’s shadow file map,
which means that the sender will never try again to inform the receiver about
the blocks containing that diff. Interestingly enough, this bug existed in the
original MACEDON implementation, but there was an attempt to fix it by the
UCSD researchers working on Mace. The attempted fix consisted of retrying
later on to send a diff to the receiver. Unfortunately, since the programmer left
the code for clearing the shadow file map after a failed send, all subsequent diff
computations will miss the affected blocks.

Consequence of the inconsistency. Having some receivers not learn about
certain blocks can cause incomplete downloads because of the missing blocks
(nodes cannot request blocks that they do not know about). Even when a node
can learn about a block from multiple senders, this bug can also cause perfor-
mance problems because the request logic uses a rarest-random policy to decide
which block to request next. Incorrect file maps can skew the request decision
toward blocks that are more popular and would normally need to be retrieved
later during the download.

Possible corrections. Once the inconsistency is identified, the fix for the bug is
easy and involves not clearing the sender’s file map for the given receiver when
a message cannot be queued in the underlying transport. The next successful
enqueuing of the diff will then correctly include the block info.

5.3 Comparison with MaceMC

To establish the baseline for model checking performance and effectiveness,
we installed our safety properties in the original version of MaceMC [Killian
et al. 2007a]. We then ran it for the three distributed services for which we had
identified safety violations. After 17 hours, exhaustive search did not identify

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:33

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10 12

T
im

e
 (

h
)

Depth (levels)

Elapsed time for RandTree with 5 nodes

Fig. 13. MaceMC performance: the elapsed time for exhaustively searching in RandTree state
space.

any of the violations caught by CrystalBall. Some of the specific depths reached
by the model checker are as follows: (1) RandTree with 5 nodes: 12 levels, (2)
RandTree with 100 nodes: 1 level, (3) Chord with 5 nodes: 14 levels, and Chord
with 100 nodes: 2 levels.

Figure 13 illustrates the performance of MaceMC when is used for exhaustive
search. As depicted in figure, the exponential growth of elapsed time in terms
of search depth hardly lets it search deeper than 12-13 steps. This illustrates
the limitations of exhaustive search from the initial state.

In another experiment, we additionally employed random walk feature of
MaceMC. Using this setup, MaceMC identified some of the bugs found by Crys-
talBall, but it still failed to identify 2 Randtree, 2 Chord, and 3 Bullet′ bugs
found by CrystalBall. In Bullet′, MaceMC found no bugs despite the fact that
the search lasted 32 hours. Moreover, even for the bugs found, the long list of
events that lead to a violation (on the order of hundreds) made it difficult for
the programmer to identify the error (we spent five hours tracing one of the
violations involving 30 steps). Such a long event list is unsuitable for execution
steering, because it describes a low probability way of reaching the final erro-
neous state. In contrast, CrystalBall identified violations that are close to live
executions and therefore more likely to occur in the immediate future.

5.4 Execution Steering Experience

We next evaluate the capability of CrystalBall as a runtime mechanism for
steering execution away from previously unknown bugs.

5.4.1 RandTree Execution Steering. To estimate the impact of execution
steering on deployed systems, we instructed the CrystalBall controller to check
for violations of RandTree safety properties (including the one described in
Section 5.2.1). We ran a live churn scenario in which one participant (process
in a cluster) per minute leaves and enters the system on average, with 25 tree

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:34 • M. Yabandeh et al.

nodes mapped onto 25 physical cluster machines. Every node was configured
to run the model checker. The experiment ran for 1.4 hours and resulted in
the following data points, which suggest that in practice the execution steering
mechanism is not disruptive for the behavior of the system.

When CrystalBall is not active, the system goes through a total of 121 states
that contain inconsistencies. When only the immediate safety check but not the
consequence prediction is active, the immediate safety check engages 325 times,
a number that is higher because blocking a problematic action causes further
problematic actions to appear and be blocked successfully. Finally, we consider
the run in which both execution steering and the immediate safety check (as
a fallback) are active. Execution steering detects a future inconsistency 480
times, with 65 times concluding that changing the behavior is unhelpful and
415 times modifying the behavior of the system. The immediate safety check
fallback engages 160 times. Through a combined action of execution steering
and immediate safety check, CrystalBall avoided all inconsistencies, so there
were no uncaught violations (false negatives) in this experiment.

To understand the impact of CrystalBall actions on the overall system be-
havior, we measured the time needed for nodes to join the tree. This allowed us
to empirically address the concern that TCP reset and message blocking actions
can in principle cause violations of liveness properties (in this case extending
the time nodes need to join the tree). Our measurements indicated an average
node join times between 0.8 and 0.9 seconds across different experiments, with
variance exceeding any difference between the runs with and without Crystal-
Ball. In summary, CrystalBall changed system actions 415 times (2.77% of the
total of 14956 actions executed), avoided all specified inconsistencies, and did
not degrade system performance.

5.4.2 Paxos Execution Steering. Paxos [Lamport 1998] is a well known
fault-tolerant protocol for achieving consensus in distributed systems. Recently,
it has been successfully integrated in a number of deployed [Chandra et al.
2007; Liu et al. 2007] and proposed [John et al. 2008] distributed systems.
In this section, we show how execution steering can be applied to Paxos to
steer away from realistic bugs that have occurred in previously deployed sys-
tems [Chandra et al. 2007; Liu et al. 2007]. The Paxos protocol includes the
following five steps.

(1) A leader tries to take the leadership position by sending Prepare messages
to acceptors, and it includes a unique round number in the message.

(2) Upon receiving a Prepare message, each acceptor consults the last promised
round number. If the message’s round number is greater than that num-
ber, the acceptor responds with a Promise message that contains the last
accepted value if there is any.

(3) Once the leader receives a Promise message from the majority of acceptors,
it broadcasts an Accept request to all acceptors. This message contains the
value of the Promise message with the highest round number, or is any
value if the responses reported no proposals.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:35

Fig. 14. Scenario that exposes a previously reported violation of a Paxos safety property (two
different values are chosen in the same instance).

(4) Upon the receipt of the Accept request, each acceptor accepts it by broad-
casting a Learn message containing the accepted value to the learners,
unless it had made a promise to another leader in the meanwhile.

(5) By receiving Learn messages from the majority of the nodes, a learner
considers the reported value as chosen.

The implementation we used was a baseline Mace Paxos implementation
that includes a minimal set of features. In general, a physical node can imple-
ment one or more of the roles (leader, acceptor, learner) in the Paxos algorithm;
each node plays all the roles in our experiments. The safety property we in-
stalled is the original Paxos safety property: at most one value can be chosen,
across all nodes. To speed up Consequence Prediction in the Paxos experiments,
we annotated the unnecessary state variables to exclude them from the state
hash.

The first bug we injected [Liu et al. 2007] is related to an implementation
error in step 3, and we refer to it as bug1: once the leader receives the Promise
message from the majority of nodes, it creates the Accept request by using the
submitted value from the last Promise message instead of the Promise message
with the highest round number. Because the rate at which the violation (due to
the injected error) occurs was low, we had to schedule some events to lead the
live run toward the violation in a repeatable way.

The setup we use comprises 3 nodes and two rounds, without any artificial
packet delays (other than those introduced by the network). As illustrated in
Figure 14, in the first round the communication between node C and the other
nodes is broken. Also, a Learn packet is dropped from A to B. At the end of
this round, A chooses the value proposed by itself (0). In the second round, the
communication between A and other nodes is broken. Node B proposes a new
value (1) but its messages are received by only nodes B and C. Node B responds
by a promise message containing value 0, because this value was accepted by
node B in the previous round. However, node C was disconnected in previous

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:36 • M. Yabandeh et al.

Propose (A0,0)

Promise (A0,0)

Accept (A0,0)

Learn (A0,0) X

A B C

C is disconnected

C is reachable
Node reset

Propose (B0,1)

Promise (B0,1)

Accept (B0,1)

Learn (B0,1)

0 is chosen

1 is chosen
(instead of 0)

A is disconnected

Fig. 15. Scenario that includes bug2, where node B resets but after reset forgets its previously
promised and accepted values. This leads to violation of the main Paxos safety property (two dif-
ferent values are chosen in the same instance).

round and responds back by the same value proposed by node B (1). Here the
bug bug1 shows up and node B upon receipt of the Promise of node C with value
1, broadcasts the Accept message with this value (1). At the end of this round,
the value proposed by B (1) is chosen by B itself. In summary, this scenario
shows how a buggy Paxos implementation can choose two different values in
the same instance of consensus.

The second bug we injected (inspired by Chandra et al. [2007]) involves keep-
ing a promise made by an Acceptor, even after crashes and reboots. As pointed
out in Chandra et al. [2007], it is often difficult to implement this aspect cor-
rectly, especially under various hardware failures. Hence, we inject an error in
the way an accepted value is not written to disk (we refer to it as bug2). To
expose this bug we use a scenario similar to the one used for bug2, with the ad-
dition of a reset of node B. This scenario is depicted in Figure 15. The first round
is similar to the first round in the scenario of bug2. At the end of this round, A
chooses the value proposed by itself (0). Then, node B resets, but because of the
bug2 explained above, it forgets the values that were promised and accepted
before the reset. In the second round, communication between A and the other
nodes is broken. Node B proposes a new value (1) but its messages are only
received by nodes B and C. Thus, both nodes B and C accept the default value
proposed by B because: (1) node C was disconnected and did not know about
the chosen value and (2) node B has forgotten its accepted value (0) after the
reset (due to the injected bug2). At the end of this round, the value proposed by
B (1) is chosen by B itself. Consequently, two different values have been chosen
in the same Paxos instance.

To stress test CrystalBall’s ability to avoid inconsistencies at runtime, we
repeat the live scenarios 200 times in the cluster (100 times for each bug) while
varying the time between rounds uniformly at random between 0 and 20 sec-
onds. As we can see in Figure 16, CrystalBall’s execution steering is successful

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:37

 0

 20

 40

 60

 80

 100

 120

N
u
m

b
e
r

o
f
e
x
p
e
ri
m

e
n
ts

avoided by execution steering (bug1)
avoided by execution steering (bug2)

avoided by im. safety check (bug1)
avoided by im. safety check (bug2)

violations (bug1)
violations (bug2)

Fig. 16. In 200 runs that expose Paxos safety violations due to two injected errors, CrystalBall
successfully avoided the inconsistencies in all but 1 and 4 cases, respectively.

in avoiding the inconsistency at runtime 74% and 89% of the time for bug1 and
bug2, respectively. In these cases, CrystalBall starts model checking after node
C reconnects and receives checkpoints from other participants. After running
the model checker for 3.3 seconds, C successfully predicts that the scenario in
the second round would result in violation of the safety property, and it then
installs the event filter. The avoidance by execution steering happens when C
rejects the Propose message sent by B. Execution steering is more effective for
bug2 than for bug1, as the former involves resetting B. This in turn leaves more
time for the model checker to rediscover the problem by: (i) consequence pre-
diction, or (ii) replaying a previously identified erroneous scenario. Immediate
safety check engages 25% and 7% of the time, respectively (in cases when model
checking did not have enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the Learn message from C
at node B. CrystalBall could not prevent the violation for only 1% and 4% of the
runs, respectively. The cause for these false negatives was the incompleteness
of the set of checkpoints.

To evaluate the performance of CrystalBall’s execution steering over laten-
cies and packet drops typical of wide area networks, we run the same Paxos
experiment, but this time across the wide area network emulated by ModelNet.
The results are depicted in Figure 17. Overall, execution steering works well
over wide area networks as well. However, the number of cases where execu-
tion steering and immediate safety check fail to detect the inconsistencies and
prevent them from occurring are slightly higher. This occurs because higher la-
tency and loss rate of wide area networks increases the chance that the model
checker does not receive the consistent neighborhood snapshot in time. In exe-
cution steering, missing the updated checkpoint makes the model checker not to
be able to predict the actions which are the consequences of the updated state.
Similarly, the immediate safety check cannot detect the violation because of the
stale snapshots.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:38 • M. Yabandeh et al.

 0

 20

 40

 60

 80

 100

 120

N
u
m

b
e
r

o
f
e
x
p
e
ri
m

e
n
ts

avoided by execution steering (bug1)
avoided by execution steering (bug2)

avoided by im. safety check (bug1)
avoided by im. safety check (bug2)

violations (bug1)
violations (bug2)

Fig. 17. In this experiment we run Paxos across an emulated wide area network using ModelNet.
The experiment contains 200 runs in which the same two errors as in Figure 16 were injected.
CrystalBall successfully avoided the inconsistencies in all but 6 and 3 cases, respectively.

 0

 20

 40

 60

 80

 100

 120

N
u
m

b
e
r

o
f
e
x
p
e
ri
m

e
n
ts

avoided by execution steering
avoided by imm. safety check

violations

Fig. 18. In 100 runs that expose a Chord safety violation we identified, CrystalBall successfully
avoided the inconsistencies in all cases.

CrystalBall causes a twofold increase in CPU utilization. One CPU core be-
comes almost 100% utilized to run consequence prediction (up from zero utiliza-
tion). On the core running the application itself, the CPU utilization is 8% peak
burst compared to 6% without CrystalBall (in a one-second window). Given
the availability of additional CPU cores and the fact that the model checking
process is decoupled from the application, we consider this increase acceptable.
Our approach is therefore in line with related efforts to improve reliability
by leveraging increasing hardware resources [Bayazit and Malik 2005; Arnold
et al. 2008].

5.4.3 Chord. In the final set of our execution steering experiments, we
stress test CrystalBall’s ability to avoid violations of Chord safety properties.
We use a scenario that repeatedly exposes a violation described in Section 5.2.2.
Figure 18 demonstrates that CrystalBall’s execution steering is successful in

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:39

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

In
c
re

a
s
e
d
 M

e
m

o
ry

 S
iz

e
 (

k
B

)

Depth (levels)

Consequence Prediction on RandTree

Fig. 19. The memory consumed by consequence prediction (RandTree, depths 7 to 8) fits in an L2
CPU cache.

avoiding this inconsistency at runtime 100% of the time. Execution steering
avoids 71% of the cases, while immediate safety check avoids the rest.

5.5 Performance Impact of CrystalBall

Memory, CPU, and Bandwidth Consumption. Because consequence predic-
tion runs in a separate process that is most likely mapped to a different CPU
core on modern processors, we expect little impact on the service performance.
In addition, since the model checker does not cache previously visited states
(it only stores their hashes) the memory is unlikely to become a bottleneck
between the model-checking CPU core and the rest of the system.

One concern with state exploration such as model-checking is the memory
consumption. Figure 19 shows the consequence prediction memory footprint as
a function of search depth for our RandTree experiments. As expected, the con-
sumed memory increases exponentially with search depth. However, because
the effective CrystalBall’s search depth is less than 7 or 8, the consumed mem-
ory by the search tree is less than 1 MB and can thus easily fit into the L2
or L3 (most recently) cache of the state of the art processors. Having the en-
tire search tree in-cache reduces the access rate to main memory and improves
performance.

To precisely measure the consumed memory per each visited state by conse-
quence prediction algorithm, we divided the total memory used by search tree
by the number of visited states. As illustrated in the Figure 20, the per-state
memory gets stable at about 150 bytes as we take more states into consideration
and amortize the fixed amount of space used by the model checker.

In the deep online debugging mode, the model checker was running for 950
seconds on average in the 100-node case, and 253 seconds in the 6-node case.
When running in the execution steering mode (25 nodes), the model checker
ran for an average of about 10 seconds. The checkpointing interval was also
10 seconds.

The average size of a RandTree node checkpoint is 176 bytes, while a Chord
checkpoint requires 1028 bytes. Average per-node bandwidth consumed by

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:40 • M. Yabandeh et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25

M
e

m
o

ry
 S

iz
e

 p
e

r
s
ta

te
 (

b
y
te

s
)

Depth (levels)

Consequence Prediction on RandTree

Fig. 20. The average amount of memory consumed by each explored state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

F
ra

c
ti
o
n
 o

f
n
o
d
e
s

download time(s)

BulletPrime (baseline)
BulletPrime (CrystalBall)

Fig. 21. CrystalBall slows down Bullet′ by less than 5% for a 20 MB file download.

checkpoints for RandTree and Chord (100-nodes) was 803 bps and 8224 bps,
respectively. These numbers show that overheads introduced by CrystalBall
are low. Hence, we did not need to enforce any bandwidth limits in these cases.

Overhead from Checking Safety Properties. In practice we did not find the
overhead of checking safety properties to be a problem because: i) the number
of nodes in a neighborhood snapshot is small, ii) the most complex of our prop-
erties have O(n2) complexity, where n is the number of nodes, and iii) the state
variables fit into L2 cache.

Overall Impact. Finally, we demonstrate that having CrystalBall monitor
a bandwidth-intensive application featuring a nonnegligible amount of state
such as Bullet′ does not significantly impact the application’s performance. In
this experiment, we instructed 49 Bullet′ instances to download a 20 MB file.
Bullet′ is not a CPU intensive application, although computing the next block to
request from a sender has to be done quickly. It is therefore interesting to note
that in 34 cases during this experiment the Bullet′ code was competing with
the model checker for the Xeon CPU with hyper-threading. Figure 21 shows

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:41

that in this case, using CrystalBall had a negative impact on performance by
less than 5%. Compressed Bullet′ checkpoints were about 3 KB in size, and
the bandwidth that was used for checkpoints was about 30 Kbps per node (3%
of a node’s outbound bandwidth of 1 Mbps). The reduction in performance is
therefore primarily due to the bandwidth consumed by checkpoints.

6. RELATED WORK

Debugging distributed systems is a notoriously difficult and tedious process.
Developers typically start by using an ad-hoc logging technique, coupled with
strenuous rounds of writing custom scripts to identify problems. Several cate-
gories of approaches have gone further than the naive method, and we explain
them in more detail in the remainder of this section.

6.1 Collecting and Analyzing Logs

Several approaches (Magpie [Barham et al. 2004], X-trace [Fonseca et al. 2007],
Pip [Reynolds et al. 2006]) have successfully used extensive logging and offline
analysis to identify performance problems and correctness issues in distributed
systems. Unlike these approaches, CrystalBall works on deployed systems, and
performs an online analysis of the system state.

6.2 Deterministic Replay with Predicate Checking

Friday [Geels et al. 2007] goes one step further than logging to enable a gdb-like
replay of distributed systems, including watch points and checking for global
predicates. WiDS-checker [Liu et al. 2007] is a similar system that relies on a
combination of logging/checkpointing to replay recorded runs and check for user
predicate violations. WiDS-checker can also work as a simulator. In contrast to
replay- and simulation-based systems, CrystalBall explores additional states
and can steer execution away from erroneous states.

6.3 Online Predicate Checking

Singh et al. [2006] have advocated debugging by online checking of distributed
system state. Their approach involves launching queries across the distributed
system that is described and deployed using the OverLog/P2 [Singh et al. 2006]
declarative language/runtime combination. D3S [Liu et al. 2008] and MaceODB
[Dao et al. 2009] enable developers to specify global predicates which are then
automatically checked in a deployed distributed system. By using binary in-
strumentation, D3S can work with legacy systems. Specialized checkers per-
form predicate-checking topology on snapshots of the nodes’ states. To make
the snapshot collection scalable, the checker’s snapshot neighborhood can be
manually configured by the developer. This work has shown that it is feasible
to collect snapshots at runtime and check them against a set of user-specified
properties. CrystalBall advances the state-of-the-art in online debugging in two
main directions: (1) it employs an efficient algorithm for model checking from
a live state to search for bugs “deeper” and “wider” than in the live run, and (2)
it enables execution steering to automatically prevent previously unidentified
bugs from manifesting themselves in a deployed system.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:42 • M. Yabandeh et al.

6.4 Model Checking

Model checking techniques for finite state systems [Holzmann 1997; Burch et al.
1990] have proved successful in analysis of concurrent finite state systems, but
require the developer to manually abstract the system into a finite-state model
which is accepted as the input to the system. Several systems have used sound
abstraction techniques to verify sequential software as opposed to its models
[Ball and Rajamani 2002; Henzinger et al. 2002; Chaki et al. 2003]. Recently,
techniques based on bounding the number of context switches in multithreaded
programs have been applied to single-node software systems [Musuvathi and
Qadeer 2007; Musuvathi et al. 2008]. Doing so enables deterministic and sys-
tematic testing of concurrent programs, which is useful, for example in find-
ing and reproducing so-called heisenbugs. Bounding the number of context
switches stands in contrast to consequence prediction, which follows chains
of actions across any number of different nodes. Early efforts on explicit-state
model checking of C and C++ implementations [Musuvathi et al. 2002; Musu-
vathi and Engler 2004; Yang et al. 2006b] have primarily concentrated on a
single-node view of the system. A continuation of this work, eXplode [Yang
et al. 2006a], makes it easy to model-check complex, layered storage systems,
in some cases involving a client and a server.

MODIST [Yang et al. 2009] and MaceMC [Killian et al. 2007a] represent
the state-of-the-art in model checking distributed system implementations.
MODIST [Yang et al. 2009] is capable of model checking unmodified distributed
systems; it orchestrates state space exploration across a cluster of machines.
MaceMC runs state machines for multiple nodes within the same process,
and can determine safety and liveness violations spanning multiple nodes.
MaceMC’s exhaustive state exploration algorithm limits in practice the search
depth and the number of nodes that can be checked. In contrast, CrystalBall’s
consequence prediction allows it to achieve significantly shorter running times
for similar depths, thus enabling it to be deployed at runtime. In MaceMC
[Killian et al. 2007a] the authors acknowledge the usefulness of prefix-based
search, where the execution starts from a given supplied state. Our work ad-
dresses the question of obtaining prefixes for prefix-based search: we propose
to directly feed into the model checker states as they are encountered in live
system execution. Using CrystalBall we found bugs in code that was previously
debugged in MaceMC and that we were not able to reproduce using MaceMC’s
search. In summary, CrystalBall differs from MODIST and MaceMC by being
able to run state space exploration from live state. Further, CrystalBall sup-
ports execution steering that enables it to automatically prevent the system
from entering an erroneous state.

Cartesian abstraction [Ball et al. 2001] is a technique for overapproximating
state space that treats different state components independently. The inde-
pendence idea is also present in our consequence prediction but, unlike over-
approximating analyses, bugs identified by consequence prediction search are
guaranteed to be real with respect to the model explored. The idea of disabling
certain transitions in state-space exploration appears in partial-order reduc-
tion (POR) [Godefroid and Wolper 1994; Flanagan and Godefroid 2005]. Our

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:43

initial investigation suggests that a POR algorithm takes considerably longer
than the consequence prediction algorithm.

6.5 Runtime Mechanisms

In the context of operating systems, researchers have proposed mechanisms
that safely reexecute code in a changed environment to avoid errors [Qin et al.
2007]. Such mechanisms become difficult to deploy in the context of distributed
systems. Distributed transactions are a possible alternative to execution steer-
ing, but involve several rounds of communication and are inapplicable in en-
vironments such as wide-area networks. A more lightweight solution involves
forming a FUSE [Dunagan et al. 2004] failure group among all nodes involved in
a join process. Making such approaches feasible would require collecting snap-
shots of the system state, as in CrystalBall. Our execution steering approach
reduces the amount of work for the developer because it does not require code
modifications. Moreover, our experimental results show an acceptable compu-
tation and communication overhead.

In Vigilante [Costa et al. 2005] and Bouncer [Costa et al. 2007], end hosts
cooperate to detect and inform each other about worms that exploit even previ-
ously unknown security holes. These systems deploy detectors that use a combi-
nation of symbolic execution and path slicing to detect infection attempts. Upon
detecting an intrusion, the detector generates a Self-Certifying Alert (SCA) and
broadcasts it quickly over an overlay in an attempt to win the propagation race
against the worm that spreads via random probing. There are no false positives,
since each host verifies every SCA in sandbox (virtual machine), after receiv-
ing it. After verification, hosts protect themselves by generating filters that
block bad inputs. Relative to these systems, CrystalBall deals with distributed
system properties, and predicts inconsistencies before they occur.

Researchers have explored modifying actions of concurrent programs to re-
duce data races [Janjua and Mycroft 2006] by inserting locks in an approach
that does not employ running static analysis at runtime. Another static ap-
proach to modifying program behavior is [Jobstmann et al. 2005], where the
authors formalize the problem as a game. Approaches that modify state of a
program at runtime include [Demsky and Rinard 2003; Rinard et al. 2004];
these approaches enforce program invariants or memory consistency without
computing consequences of changes to the state.

A recent approach [Wang et al. 2008; Wang et al. 2009] first uses offline static
analysis to construct a Petri net model of the multithreaded application. The
authors then apply Discrete Control Theory to identify potential deadlocks in
the model, and synthesize control logic that enables the instrumented applica-
tion to avoid deadlocks at runtime. This approach is applicable to multithreaded
applications and the particular property of avoiding deadlock. In contrast, Crys-
talBall is designed to avoid general safety properties in distributed systems.

7. CONCLUSIONS

We presented a new approach for improving the reliability of distributed sys-
tems, where nodes predict and avoid inconsistencies before they occur, even if

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:44 • M. Yabandeh et al.

they have not manifested in any previous run. We believe that our approach is
the first to give running distributed system nodes access to such information
about their future. To make our approach feasible, we designed and imple-
mented consequence prediction, an algorithm for selectively exploring future
states of the system, and developed a technique for obtaining consistent infor-
mation about the neighborhood of distributed system nodes. Our experiments
suggest that the resulting system, CrystalBall, is effective in finding bugs that
are difficult to detect by other means, and can steer execution away from incon-
sistencies at runtime.

APPENDIX

A. EXAMPLE RUN OF CONSEQUENCE PREDICTION ON A SMALL SERVICE

Figure 23 shows a small service where each node has a local counter and two
states. In the initial state, the node issues a Query message to another node.
Upon receiving a Response message, the node stops its operation. We use this
example to illustrate the differences between consequence prediction and dy-
namic partial order reduction.

Figures 22, 24, and 25 show, respectively, the entire space of reachable states,
the transitions explored by a dynamic partial order reduction algorithm, and
transitions explored by Consequence Prediction. There are 16 reachable states
in the system, 20 paths, and 24 edges. A dynamic partial order reduction algo-
rithm explores 11 of these edges, and consequence prediction explores 14 edges.
Note that partial order reduction explores first one complete path, then inserts
branches to consider certain interleavings. In contrast, consequence prediction

Fig. 22. Reachable states of the system in Figure 23 .

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:45

Fig. 23. Example Service in Mace language.

Fig. 24. Partial Order Reduction.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:46 • M. Yabandeh et al.

Fig. 25. Consequence prediction.

explores event chains initiated by internal actions, as well as sequences of these
chains where the last action of one sequence changes the state in which next
local action occurs.

ACKNOWLEDGMENTS

We thank Barbara Jobstmann for useful discussions, James Anderson for his
help with the Mace Paxos implementation, and Charles Killian for answering
questions about MaceMC.

REFERENCES

ARNOLD, M., VECHEV, M., AND YAHAV, E. 2008. Qvm: An efficient runtime for detecting defects
in deployed systems. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented
Programming Systems Languages and Applications (OOPSLA’08). ACM, New York, NY, 143–
162.

BALL, T., PODELSKI, A., AND RAJAMANI, S. K. 2001. Boolean and cartesian abstraction for model
checking C programs. In Proceedings of the Workshop on Tools and Algorithms for the Construc-
tion and Analysis of Systems.

BALL, T. AND RAJAMANI, S. K. 2002. The SLAM project: Debugging system software via static
analysis. In Proceedings of the ACM Symposium on Principles of Programming Languages.

BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. 2004. Using magpie for request extraction
and workload modelling. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation.

BAYAZIT, A. A. AND MALIK, S. 2005. Complementary use of runtime validation and model check-
ing. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’05). IEEE Computer Society, Los Alamitos, CA, 1052–1059.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL, D. L., AND HWANG, L. J. 1990. Symbolic model
checking: 1020 states and beyond. In Proceedings of the Annual IEEE Symposium on Logic in
Computer Science.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:47

CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A., ROWSTRON, A., AND SINGH, A. 2003. Split-
stream: High-bandwidth content distribution in cooperative environments. In Proceedings of the
ACM Symposium on Operating Systems Principles.

CHAKI, S., CLARKE, E., GROCE, A., JHA, S., AND VEITH, H. 2003. Modular verification of software
components in C. IEEE Trans. Softw. Engin. 30, 6.

CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. 2007. Paxos made live: An engineering perspec-
tive. In Proceedings of the Annual ACM Symposium on Principles of Distributed Computing.

CHANDY, K. M. AND LAMPORT, L. 1985. Distributed snapshots: Determining global states of dis-
tributed systems. ACM Trans. Comput. Syst. 3, 1, 63–75.

CHANG, H., GOVINDAN, R., JAMIN, S., SHENKER, S., AND WILLINGER, W. 2002. Towards capturing
representative AS-level internet topologies. In Proceedings of the ACM SIGMETRICS Joint In-
ternational Conference on Measurement and Modeling of Computer Systems.

CHU, Y., RAO, S. G., SESHAN, S., AND ZHANG, H. 2002. A case for end system multicast. IEEE J. Sel.
Areas Comm. 20, 8, 1456–1471.

COSTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND PEINADO, M. 2007. Bouncer: Securing software by
blocking bad input. In Proceedings of the ACM Symposium on Operating Systems Principles.

COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A., ZHOU, L., ZHANG, L., AND BARHAM, P. 2005.
Vigilante: End-to-end containment of internet worms. In Proceedings of the ACM Symposium on
Operating Systems Principles.

DAGAND, P.-E., KOSTIĆ, D., AND KUNCAK, V. 2009. Opis: Reliable distributed systems in
OCaml. In Proceedings of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation.

DAO, D., ALBRECHT, J. R., KILLIAN, C. E., AND VAHDAT, A. 2009. Live debugging of distributed systems.
In Proceedings of the International Conference on Compiler Construction.

DEMSKY, B. AND RINARD, M. 2003. Automatic detection and repair of errors in data structures. In
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations.

DUNAGAN, J., HARVEY, N. J. A., JONES, M. B., KOSTIĆ, D., THEIMER, M., AND WOLMAN, A. 2004. FUSE:
Lightweight guaranteed distributed failure notification. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation.

FISCHER, M., LYNCH, N., AND PATERSON, M. 1985. Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2, 374–382.

FLANAGAN, C. AND GODEFROID, P. 2005. Dynamic partial-order reduction for model checking soft-
ware. In Proceedings of the ACM Symposium on Principles of Programming Languages.

FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STOICA, I. 2007. X-Trace: A pervasive
network tracing framework. In Proceedings of the ACM/USENIX Symposium on Networked
Systems Design and Implementation.

GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND STOICA, I. 2007. Friday: Global comprehension
for distributed replay. In Proceedings of the ACM/USENIX Symposium on Networked Systems
Design and Implementation.

GODEFROID, P. AND WOLPER, P. 1994. A partial approach to model checking. Inf. Comput. 110, 2,
305–326.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2002. Lazy abstraction. In Proceedings
of the ACM Symposium on Principles of Programming Languages.

HOLZMANN, G. J. 1997. The model checker SPIN. IEEE Trans. Softw. Engin. 23, 5, 279–295.
JAIN, N., MAHAJAN, P., KIT, D., YALAGANDULA, P., DAHLIN, M., AND ZHANG, Y. 2008. Network impreci-

sion: A new consistency metric for scalable monitoring. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation.

JANJUA, M. U. AND MYCROFT, A. 2006. Automatic correction to safety violations. In Proceedings of
the International Conference on Thread Verification (TV’06).

JOBSTMANN, B., GRIESMAYER, A., AND BLOEM, R. 2005. Program repair as a game.
In Proceedings of the International Conference on Computer Aided Verification. 226–
238.

JOHN, J. P., KATZ-BASSETT, E., KRISHNAMURTHY, A., ANDERSON, T., AND VENKATARAMANI, A. 2008. Con-
sensus routing: The internet as a distributed system. In Proceedings of the ACM/USENIX Sym-
posium on Networked Systems Design and Implementation.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

2:48 • M. Yabandeh et al.

KILLIAN, C. E., ANDERSON, J. W., BRAUD, R., JHALA, R., AND VAHDAT, A. M. 2007a. Mace: Language
support for building distributed systems. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation.

KILLIAN, C. E., ANDERSON, J. W., JHALA, R., AND VAHDAT, A. 2007b. Life, death, and the critical tran-
sition: Finding liveness bugs in systems code. In Proceedings of the ACM/USENIX Symposium
on Networked Systems Design and Implementation.

KOSTIĆ, D., BRAUD, R., KILLIAN, C., VANDEKIEFT, E., ANDERSON, J. W., SNOEREN, A. C., AND VAHDAT, A.
2005. Maintaining high bandwidth under dynamic network conditions. In Proceedings of the
USENIX Annual Technical Conference.

KOSTIĆ, D., RODRIGUEZ, A., ALBRECHT, J., BHIRUD, A., AND VAHDAT, A. 2003. Using random subsets
to build scalable network services. In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Comm.
ACM 21, 7, 558–565.

LAMPORT, L. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 2, 133–169.
LIU, X., GUO, Z., WANG, X., CHEN, F., LIAN, X., TANG, J., WU, M., KAASHOEK, M. F., AND ZHANG, Z. 2008.

D3S: Debugging deployed distributed systems. In Proceedings of the ACM/USENIX Symposium
on Networked Systems Design and Implementation.

LIU, X., LIN, W., PAN, A., AND ZHANG, Z. 2007. WiDS checker: Combating bugs in distributed sys-
tems. In Proceedings of the ACM/USENIX Symposium on Networked Systems Design and Im-
plementation.

MANIVANNAN, D. AND SINGHAL, M. 2002. Asynchronous recovery without using vector timestamps.
J. Parall. Distrib. Comput. 62, 12, 1695–1728.

MUSUVATHI, M. AND ENGLER, D. R. 2004. Model checking large network protocol implementations.
In Proceedings of the ACM/USENIX Symposium on Networked Systems Design and Implemen-
tation.

MUSUVATHI, M., PARK, D. Y. W., CHOU, A., ENGLER, D. R., AND DILL, D. L. 2002. CMC: A pragmatic
approach to model checking real code. SIGOPS Oper. Syst. Rev. 36, SI, 75–88.

MUSUVATHI, M. AND QADEER, S. 2007. Iterative context bounding for systematic testing of mul-
tithreaded programs. In Proceedings of the Conference on Programming Language Design and
Implementation. 446–455.

MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G., NAINAR, P. A., AND NEAMTIU, I. 2008. Finding and
reproducing heisenbugs in concurrent programs. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation.

NIGHTINGALE, E. B., CHEN, P. M., AND FLINN, J. 2005. Speculative execution in a distributed file
system. In Proceedings of the ACM Symposium on Operating Systems Principles.

PORTER, D. E., HOFMANN, O. S., ROSSBACH, C. J., BENN, A., AND WITCHEL, E. 2009. Operating sys-
tems transactions. In Proceedings of the 22nd ACM SIGOPS Symposium on Operating Systems
Principles (SOSP’09). ACM, New York, NY, 161–176.

QIN, F., TUCEK, J., ZHOU, Y., AND SUNDARESAN, J. 2007. Rx: Treating bugs as allergies—A safe
method to survive software failures. ACM Trans. Comput. Syst. 25, 3.

REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C., SHAH, M. A., AND VAHDAT, A. 2006. Pip: De-
tecting the unexpected in distributed systems. In Proceedings of the ACM/USENIX Symposium
on Networked Systems Design and Implementation.

RHEA, S., GODFREY, B., KARP, B., KUBIATOWICZ, J., RATNASAMY, S., SHENKER, S., STOICA, I., AND YU, H.
2005. OpenDHT: A public DHT service and its uses. In Proceedings of the ACM SIGCOMM
Conference.

RINARD, M. C., CADAR, C., DUMITRAN, D., ROY, D. M., LEU, T., AND BEEBEE, W. S. 2004. Enhanc-
ing server availability and security through failure-oblivious computing. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation.

RODRIGUEZ, A., KILLIAN, C., BHAT, S., KOSTIĆ, D., AND VAHDAT, A. 2004. MACEDON: Methodology
for automatically creating, evaluating, and designing overlay networks. In Proceedings of the
ACM/USENIX Symposium on Networked Systems Design and Implementation.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proceedings of the ACM Symposium on Operating Sys-
tems Principles.

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

Predicting and Preventing Inconsistencies in Deployed Distributed Systems • 2:49

SCHNEIDER, F. B. 1990. Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Comput. Surv. 22, 4, 299–319.

SEN, K. AND AGHA, G. 2006. Automated systematic testing of open distributed programs. In Pro-
ceedings of the International Conference on Fundamental Approaches to Software Engineering.
339–356.

SINGH, A., MANIATIS, P., ROSCOE, T., AND DRUSCHEL, P. 2006. Using queries for distributed monitor-
ing and forensics. SIGOPS Oper. Syst. Rev. 40, 4, 389–402.

SRINIVASAN, S. M., K, S., ANDREWS, C. R., AND ZHOU, Y. 2004. Flashback: A lightweight extension for
rollback and deterministic replay for software debugging. In Proceedings of the USENIX Annual
Technical Conference.

STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D. R., KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN,
H. 2003. Chord: A scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM
Trans. Netw. 11, 1, 17–32.

VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P., KOSTIĆ, D., CHASE, J., AND BECKER, D. 2002. Scala-
bility and accuracy in a large-scale network emulator. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation.

WANG, Y., KELLY, T., KUDLUR, M., LAFORTUNE, S., AND MAHLKE, S. A. 2008. Gadara: Dynamic deadlock
avoidance for multithreaded programs. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation.

WANG, Y., LAFORTUNE, S., KELLY, T., KUDLUR, M., AND MAHLKE, S. 2009. The theory of deadlock avoid-
ance via discrete control. In Proceedings of the ACM Symposium on Principles of Programming
Languages.

YABANDEH, M., KNEŽEVIĆ, N., KOSTIĆ, D., AND KUNCAK, V. 2009a. CrystalBall: Predicting and pre-
venting inconsistencies in deployed distributed systems. In Proceedings of the ACM/USENIX
Symposium on Networked Systems Design and Implementation.

YABANDEH, M., VASIĆ, N., KOSTIĆ, D., AND KUNCAK, V. 2009b. Simplifying distributed system devel-
opment. In Proceedings of the Workshop on Hot Topics in Operating Systems.

YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H., YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. 2009.
MODIST: Transparent model checking of unmodified distributed systems. In Proceedings of the
ACM/USENIX Symposium on Networked Systems Design and Implementation.

YANG, J., SAR, C., AND ENGLER, D. 2006a. EXPLODE: A lightweight, general system for finding
serious storage system errors. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation.

YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M. 2006b. Using model checking to find serious
file system errors. ACM Trans. Comput. Syst. 24, 4, 393–423.

Received June 2009; revised December 2009; accepted January 2010

ACM Transactions on Computer Systems, Vol. 28, No. 1, Article 2, Publication date: March 2010.

