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Abstract

The objects studied in this thesis are families of cycles on schemes. A space — the
Chow variety — parameterizing effective equidimensional cycles was constructed by Chow
and van der Waerden in the first half of the twentieth century. Even though cycles are
simple objects, the Chow variety is a rather intractable object. In particular, a good func-
torial description of this space is missing. Consequently, descriptions of the corresponding
families and the infinitesimal structure are incomplete. Moreover, the Chow variety is not
intrinsic but has the unpleasant property that it depends on a given projective embedding.
A main objective of this thesis is to construct a closely related space which has a good
functorial description. This is partly accomplished in the last paper.

The first three papers are concerned with families of zero-cycles. In the first paper, a
functor parameterizing zero-cycles is defined and it is shown that this functor is represented
by a scheme — the scheme of divided powers. This scheme is closely related to the
symmetric product. In fact, the scheme of divided powers and the symmetric product
coincide in many situations.

In the second paper, several aspects of the scheme of divided powers are discussed.
In particular, a universal family is constructed. A different description of the families as
multi-morphisms is also given. Finally, the set of k-points of the scheme of divided powers
is described. Somewhat surprisingly, cycles with certain rational coefficients are included
in this description in positive characteristic.

The third paper explains the relation between the Hilbert scheme, the Chow scheme,
the symmetric product and the scheme of divided powers. It is shown that the last three
schemes coincide as topological spaces and that all four schemes are isomorphic outside
the degeneracy locus.

The last paper gives a definition of families of cycles of arbitrary dimension and a
corresponding Chow functor. In characteristic zero, this functor agrees with the functors
of Barlet, Guerra, Kollár and Suslin-Voevodsky when these are defined. There is also a
monomorphism from Angéniol’s functor to the Chow functor which is an isomorphism
in many instances. It is also confirmed that the morphism from the Hilbert functor to
the Chow functor is an isomorphism over the locus parameterizing normal subschemes
and a local immersion over the locus parameterizing reduced subschemes — at least in
characteristic zero.
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Introduction

Families of cycles

Let X be a scheme. The cycles on X is the free abelian group C(X) generated by the
set of reduced and irreducible closed subschemes of X. A cycle on X is thus a formal
sum

P
i mi[Zi] where the mi’s are integers and the Zi’s are closed subvarieties of X. A

cycle is effective if all the mi’s are positive. We let Cr(X) be the subgroup of cycles
which are equidimensional of dimension r. Given a projective embedding X ↪→ Pn, every
r-dimensional cycle comes with a degree. Geometrically the degree can be interpreted as
the number of points, counted with multiplicity, after intersecting the cycle with r general
hyperplanes.

Let X be a quasi-projective variety with a given embedding X ↪→ Pn. A fundamental
result [CW37] in classical algebraic geometry, due to Chow and van der Waerden, is the
existence of a quasi-projective variety ChowVarr,d(X ↪→ Pn) — the Chow variety —
parameterizing cycles of dimension r and degree d on X. The main goal of this thesis is
to obtain a better understanding of this variety.

A family of cycles, parameterized by a variety S, is roughly a collection of cycles
{Zs}s∈S on X which is “continuous”. A natural interpretation of continuity is that we
require {Zs} to be induced by a morphism S → ChowVarr,d(X ↪→ Pn). As expected, such
a family is then represented by a single cycle Z on X × S. There are, however, several
serious problems with this approach.

• It can be shown that ChowVarr,d(X ↪→ Pn) depends on the chosen projective embed-
ding in positive characteristic. Thus, we do not have a good notion of “continuous”
in this case.

• The cycle Z on X × S representing the family {Zs} is not “flat”, as the objects
usually are in other similar problems. This has several drawbacks, for example, Zs

is not simply the fiber of Z over s.

• It is desirable to have a notion of families of cycles also over non-reduced schemes.
In particular, it is important to have an infinitesimal theory to be able to study
deformations of cycles. The classical construction of the Chow variety comes without
any infinitesimal structure, that is, it is a variety and not a scheme. It is therefore
not at all clear what a family parameterized by a scheme is.
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2 INTRODUCTION

Methods

The first problem is due to a deficiency in the classical construction. After choosing
a sufficiently ample projective embedding, the classical construction gives the “correct”
Chow variety, at least for zero-cycles. Also, families of cycles can be defined without
referring to the Chow variety so this is not a serious problem.

The second problem is mainly technical. It also indicates that representing {Zs} as a
cycle on X × S, although appealing, is not an ideal approach.

The third problem is paramount. A possible solution, closely related to the construc-
tion of the Chow variety, is to represent families of cycles as certain families of divisors
on a grassmannian parameterizing linear subspaces of complementary dimension. This
seems to be somewhat cumbersome and has not been systematically studied. The method
introduced by Barlet [Bar75] is of a dual nature. Instead of intersecting with subspaces,
he studies projections onto affine spaces of the same dimension as the cycle. A family is
then an object, in his case a cycle Z on X × S, which induces a family of zero-cycles over
every projection.

When the parameter scheme S is not reduced, then in general there is not such a simple
object as a cycle on X×S which induces a family of zero-cycles over each projection. The
method advocated in this thesis is to not require the existence of such an object a priori.
Instead, a family α is defined to be a collection of zero-cycles, indexed by all projections,
satisfying natural compatibility conditions. Under appropriate conditions on S and the
family α, one can then find simpler geometric objects inducing this family. For example,
if S is reduced then α is represented by a cycle Z on X × S as above. If the cycles of the
family α are without multiplicities or are divisors, then there is a subscheme Z of X × S
inducing α. If S is of characteristic zero, then α is represented by its relative fundamental
class.

Angéniol [Ang80], working exclusively in characteristic zero, starts from the opposite
end and defines a family as a class, the relative fundamental class, and imposes conditions
on this class ensuring that it induces a zero-cycle over each projection. It is reasonable
to believe that Angéniol’s definition of a family agrees with the definition outlined above
but this is not at all clear.

Angéniol’s approach, applying duality and residue theory, requires deeper theory and
is arguably more complicated. On the other hand, he is able to give a deformation theory
for families of cycles and to show representability. My method, although also technical
and sometimes cumbersome, has the advantage of giving a definition in great generality
without assuming projectivity, smoothness, characteristic zero etc. It is also more ge-
ometric and easier to relate with other definitions, such as those of Kollár [Kol96] and
Suslin-Voevodsky [SV00].

Overview of the thesis and results

In Paper I, a functor Γd
X/S parameterizing families of zero-cycles on X/S is defined and

shown to be represented by an algebraic space Γd(X/S). This space — the space of
divided powers — is closely related to the divided powers algebra and can be viewed as a
functorially well-behaved version of the symmetric product Symd(X/S). The algebraicity
of Γd(X/S), for an arbitrary algebraic space X/S, is obtained via an explicit étale covering.
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With similar methods, the existence of geometric quotients [Ryd07b] and the algebraicity
of Hilbert stacks [Ryd08] can be shown.

In Paper II, several aspects of the space of divided powers are discussed. A universal
family of zero-cycles is constructed and a description of the k-points of Γd(X/S) is given.
Also, a different description of the functor Γd

X/S in terms of multi-morphisms is given.
In Paper III, the relation between the Hilbert scheme of points, the symmetric product,

the space of divided powers and the Chow variety of zero-cycles is studied. It is shown that
all four of these schemes coincide over the locus parameterizing non-degenerate families
and it is shown that the last three schemes coincide as topological spaces. The dependence
of the Chow variety on a given projective embedding is explained using weighted projec-
tive spaces. This is related to the fact that the ring of multisymmetric functions is not
generated by elementary multisymmetric functions in positive characteristic [Ryd07a].
The morphism from the Hilbert scheme of points to the Chow variety, is essentially a
blow-up [Hai98, ES04, RS07, Ran08] and has been used to study the Hilbert scheme of
points [Fog68, Göt94].

In Paper IV, families of cycles of arbitrary dimension are defined. This definition
generalizes previous definitions by Barlet [Bar75], Guerra [Gue96], Kollár [Kol96] and
Suslin-Voevodsky [SV00]. Conjecturally, this definition also coincides with Angéniol’s
definition [Ang80] in characteristic zero. Indeed, this is so in many cases. The Chow
functor, parameterizing families of proper and equidimensional cycles, is representable in
similar situations.

There are natural morphisms from the Hilbert scheme [FGA], the Hilbert stack [Art74,
App.], the space of Cohen-Macaulay curves [Høn05], the stack of branchvarieties [AK06]
and the Kontsevich space of stable maps [Kon95] into the Chow functor. It is shown that
all these morphisms are isomorphisms over the subset parameterizing normal subschemes,
at least in characteristic zero. It is also shown that the Hilbert-Chow morphism is a local
immersion over the subset parameterizing reduced subschemes.

The interdependence between the papers is as follows. Paper II presupposes Paper I
and Papers III and IV depend on both Paper I and II. The fourth paper is to a large
extent work in progress.

Lawson homology

There is a natural equivalence relation on Cr(X) called rational equivalence and the quo-
tient by this relation is the Chow group Ar(X). If X is a smooth and projective scheme
of dimension n, then A•(X) =

Ln
i=0 An−i(X) is a graded ring — the Chow ring — under

the intersection product. The Chow ring is a central object of study in algebraic geometry
and an alternative to usual cohomology theories. In fact, for any Weil cohomology H• on
X, such as Betti cohomology, l-adic cohomology or algebraic singular cohomology, there
is a ring homomorphism A•(X) → H2•(X).

The cycle map Cr(X) → Ar(X) → H2r(X) factors through algebraic equivalence. Two
cycles Z1 and Z2 are algebraically equivalent if there exists an effective cycle W such that
Z1 +W and Z2 +W corresponds to two points in the same connected component of the
Chow variety ChowVarr(X). The quotient of Cn−1(X) by algebraic equivalence is the
Néron-Severi group of X.

One of the more spectacular applications of Chow varieties is Lawson (co)homology.
The Lawson homology groups of X are defined as LrHk(X) = πk−2r(Chowr(X)+) where
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+ is a topological group completion [Law89, Fri89]. In particular, it immediately follows
that LrH2r(X) is the group of r-dimensional cycles up to algebraic equivalence. Dold-
Thom’s theorem is that the singular homology group Hk(X, Z) is naturally isomorphic
to πk

“`‘
d Symd(X)

´+
”

= πk

`
Chow0(X)+

´
. Thus L0Hk(X) = Hk(X, Z) and Lawson

homology interpolates between topological homology groups and algebraic groups.
When studying Lawson homology, operations such as proper push-forward, flat pull-

back and proper intersections are used extensively. These are commonly only defined as
algebraic maps between Chow varieties, i.e., as continuous maps induced by algebraic cor-
respondences. This is equivalent with giving morphisms on the semi-normalizations. For
topological purposes, it is enough to define these operations as algebraic maps. Neverthe-
less, it is expected that these operations exist as morphisms. In Paper IV, it is shown that
the push-forward and the pull-back are defined as morphisms under certain assumptions.

An example

To illustrate the difference between the Chow scheme and other parameter spaces we
study curves of degree two in P3. Recall that such a curve, if reduced, is either a conic
contained in a plane (g = 0) or two skew lines (g = −1). The main distinction between the
parameter spaces is the various descriptions of curves with multiplicities, that is, double
lines in our example. Note that all these parameter schemes are isomorphic over the
locus parameterizing smooth curves. The schemes are illustrated with figures where ovals
indicate closed subsets and the numbers are the dimensions of the corresponding closed
subsets.

The Chow scheme. The Chow scheme parameterizes one-dimensional cycles Z of
degree two on P3. It is connected and has two irreducible components. One of these
parameterizes conics contained in a plane and lines of multiplicity two. The other com-
ponent parameterizes pairs of skew lines, singular conics and lines of multiplicity two. In
characteristic zero, the Chow scheme is non-reduced over the locus parameterizing lines
of multiplicity two [Ang80, Rem. 6.4.3].

8
7 4

8

Figure 1: The Chow scheme of degree two curves on P3.

The Hilbert scheme. The Hilbert scheme parameterizes one-dimensional sub-
schemes of P3 of degree two. The Hilbert scheme has an infinite number of connected
components indexed by the (arithmetic) genus g of the curve and is non-empty for any
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integer g ≤ 0. In fact, there are even subschemes of arbitrary negative genus which are
Cohen-Macaulay, that is, without components of dimension zero [Har04]. When g = 0,
the Hilbert scheme is smooth and irreducible and parameterizes conics. When g = −1,
the Hilbert scheme consists of several irreducible components. The main component, with
generic member a pair of skew lines, is generically smooth.

8
7 5

g = 0

11 10 8

10 9 7

7 6

8

7

g = −1

Figure 2: Part of the Hilbert scheme of degree two curves on P3.

The stack of Branch-varieties. The stack of Branch varieties parameterizes re-
duced curves C together with a finite morphism to P3. It has an infinite number of
connected components indexed by the genus g of the curve C. It is non-empty for every
integer g ≥ −1. For positive g, it parameterizes reduced, possibly singular, genus g curves
C equipped with a ramified degree two covering C → P1 of a line in P3. In particular, C
is hyperelliptic.

When g = 0 then C is either a smooth rational curve or two secant lines. The map
C → P3 either embedds C as a conic in a plane or is a ramified cover of degree two over
a line in P3.

When g = −1 then C is a pair of skew lines which either sits inside P3, maps onto two
secant lines of P3 or maps onto a single line of P3. This component is the stack quotient
of a product of grassmannians [Gr(2, 4)2/S2] and hence smooth.

8

7

6

5

g = 0

7 4

8

g = −1

Figure 3: Part of the stack of Branch-varieties of degree two curves mapping to P3.
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Open questions

• An explicit description of the deformation theory of multiplicity-free cycles is yet
missing. This should be a far more amenable problem than a description of the
deformation theory of general cycles.

• Representability of the Chow functor is not shown except in the cases when the
functor is shown to coincide with other descriptions. To show the representability
using Artin’s criteria, knowledge of the deformation theory is crucial. In the pro-
jective case, a projective embedding is conjecturally given by the classical Chow
construction.

• Many of the operations on families of cycles, such as push-forward, pull-back and
intersections, have only been defined for families satisfying certain properties. It
should be possible to define these operations in general.

• Given a sheaf F on X, there is an induced sheaf on Chow0,d(X). Are there similar
Chow sheaves in higher dimension?

• Even though there is a good functorial description of the Chow-scheme, there are
some features similar to that of a coarse functor to a stack. In characteristic zero
Chow0,d(X) = Symd(X) is the coarse moduli space of the symmetric stack. Is
there a similar stack in higher dimension? This stack would probably be without
automorphisms over the locus parameterizing multiplicity-free cycles.
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FAMILIES OF ZERO-CYCLES AND DIVIDED POWERS: I.
REPRESENTABILITY

DAVID RYDH

Abstract. Let X/S be a separated algebraic space. We construct an algebraic
space Γd(X/S), the space of divided powers, which parameterizes zero cycles
of degree d on X. When X/S is affine, this space is affine and given by the
spectrum of the ring of divided powers. In characteristic zero or when X/S is

flat, the constructed space coincides with the symmetric product Symd(X/S).
We also prove several fundamental results on the kernels of multiplicative
polynomial laws necessary for the construction of Γd(X/S).

Introduction

Chow varieties, parameterizing families of cycles of a certain dimension and de-
gree, are classically constructed using explicit projective methods [CW37, Sam55].
Moreover, Chow varieties are defined as reduced schemes and in positive charac-
teristic the classical construction has the unpleasant property that it depends on a
given projective embedding [Nag55].

Many attempts to give a nice functorial description of Chow varieties have been
made and some successful steps towards this goal have been taken. For families
parameterized by seminormal schemes, Kollár, Suslin and Voevodsky, have given a
functorial description [Kol96, SV00]. In characteristic zero, Barlet [Bar75] has given
an analytic description over reduced C-schemes and Angéniol [Ang80] has given an
algebraic description over, not necessarily reduced, Q-schemes. The situation in
characteristic zero is simplified by the fact that for a finite extension A ↪→ B such
that the determinant B → A is defined, the determinant is determined by the trace.

In this article we will restrict our attention to Chow varieties of zero cycles, that
is, families of cycles of relative dimension zero. We will construct an algebraic space
Γd(X/S), parameterizing zero-cycles, which coincides with Angéniol’s Chow space
in characteristic zero. As with Angéniol’s Chow space, the algebraic space Γd(X/S)
is not always reduced but its reduction coincides with the classical Chow variety if
we use a sufficiently good projective embedding. The relation with the Chow variety
will be discussed in a subsequent article [III]. A good understanding of families of
zero-cycles is crucial for the understanding of families of higher-dimensional cycles.

2000 Mathematics Subject Classification. Primary 14C05; Secondary 14C25, 14L30.
Key words and phrases. Families of cycles, zero-cycles, divided powers, symmetric tensors,

symmetric product, Chow scheme, Hilbert scheme.
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2 DAVID RYDH

In fact, a family of higher-dimensional cycles is defined by giving zero-dimensional
families on “smooth projections” [Bar75, IV].

A natural space parameterizing zero-cycles is the symmetric product Symd(X/S).
This is the correct choice, in the sense that it coincides with Γd(X/S), when X is
of characteristic zero or when X/S is flat. In general, however, Symd(X/S) is not
functorially well-behaved and should be replaced with the “scheme of divided pow-
ers”. In the affine case, this is the spectrum of the algebra of divided power ΓdA(B)
and it coincides with the symmetric product when d! is invertible in A or when B
is a flat A-algebra.

Although the ring of divided powers ΓdA(B) and multiplicative polynomial laws
have been studied by many authors [Rob63, Rob80, Ber65, Zip86, Fer98], there
are some important results missing. We provide these missing parts, giving a full
treatment of the kernel of a multiplicative law. Somewhat surprisingly, the kernel
does not commute with flat base change, except in characteristic zero. We will
show that the kernel does commute with étale base change.

After this preliminary study of ΓdA(B) we define, for any separated algebraic
space X/S, a functor ΓdX/S which parameterizes families of zero-cycles. From the
definition of ΓdX/S and the results on the kernel of a multiplicative law, it will be
obvious that ΓdX/S is represented by Spec(ΓdA(B)) in the affine case. If X/S is a
scheme such that for every s ∈ S, every finite subset of the fiber Xs is contained
in an affine open subset of X, then we say that X/S is an AF-scheme, cf. Appen-
dix A.1. In particular, this is the case if X/S is quasi-projective. For an AF-scheme
X/S it is easy to show that ΓdX/S is representable by a scheme.

To treat the general case — when X/S is any separated scheme or separated
algebraic space — we use the fact that ΓdX/S is functorial in X: For any morphism
f : U → X there is an induced push-forward f∗ : ΓdU/S → ΓdX/S . We show
that when f is étale, then f∗ is étale over a certain open subset corresponding to
families of cycles which are regular with respect to f . We then show that ΓdX/S is
represented by an algebraic space Γd(X/S) giving an explicit étale covering.

In the last part of the article we introduce “addition of cycles” and investigate
the relation between the symmetric product Symd(X/S) and the algebraic space
Γd(X/S). Intuitively, the universal family of Γd(X/S) should be related to the
addition of cycles morphism ΦX/S : Γd−1(X/S)×S X → Γd(X/S). In the special
case when ΦX/S is flat, e.g., when X/S is a smooth curve, Iversen has shown that
the universal family is given by the norm of ΦX/S [Ive70]. In general, there is a
similar but more subtle description. The universal family and some other properties
of Γd(X/S) are treated in [II].

We now discuss the results and methods in more detail:

Multiplicative polynomial laws. In §1 we recall the basic properties of the
algebra of divided powers ΓA(B) and the algebra ΓdA(B). We also mention the
universal multiplication of laws which later on will be described geometrically as
addition of cycles.
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Kernel of a multiplicative polynomial law. Let B be an A-algebra. In §2 the
basic properties of the kernel ker(F ) of a multiplicative law F : B → A is estab-
lished. First we show that B/ ker(F ) is integral over A using Cayley-Hamilton’s
theorem. We then show that the kernel commutes with limits, localization and
smooth base change. As mentioned above, the kernel does not commute with flat
base change in general and showing that the kernel commutes with smooth base
change takes some effort. Finally, we show some topological properties of the ker-
nel: The radical of the kernel commutes with arbitrary base change, the fibers
of Spec(B/ ker(F )) → Spec(A) are finite sets, and Spec(B/ ker(F )) → Spec(A) is
universally open.

The functor ΓdX/S. Guided by the knowledge that ΓdA(B) is what we want in the
affine case, we define in §3.1 a well-behaved functor ΓdX/S parameterizing families
of zero-cycles of degree d as follows. A family over an affine S-scheme T = Spec(A)
is given by the following data

(i) A closed subspace Z ↪→ X×S T such that Z → T is integral. In particular
Z = Spec(B) is affine.

(ii) A family α on Z, i.e., a morphism T → Γd(Z/T ) := Spec(ΓdA(B)).

Moreover, two families are equivalent if they are both induced by a family for some
common smaller subspace Z. We often suppress the subspace Z and talk about the
family α. The smallest subspace Z ↪→ X ×S T in the equivalence class containing
α is the image of the family α and the reduction Zred of the image is the support
of the family. The image of α is given by the kernel of the multiplicative law
corresponding to α. Since the kernel commutes with étale base change, as shown
in §2, so does the image of a family. This is the key result needed to show that
ΓdX/S is a sheaf in the étale topology.

In contrast to the Hilbert functor, for which families over T are determined by a
subspace Z ↪→ X ×S T , a family of zero-cycles is not determined by its image Z. If
T is reduced, then the image Z of a family parameterized by T is reduced and the
family is determined by an effective cycle supported on Z. In positive characteristic,
over non-perfect fields, this cycle may have rational coefficients. This is discussed
in [II].

Push-forward of cycles. A morphism f : X → Y of separated algebraic spaces
induces a natural transformation f∗ : ΓdX/S → ΓdY/S which we call the push-forward.
When Y/S is locally of finite type, the existence of f∗ follows from standard results.
In general, we need a technical result on integral morphisms given in Appendix A.2.

We say that a family α ∈ ΓdX/S(T ) is regular if the restriction of fT to the image
of α is an isomorphism. If f : X → Y is étale then the regular locus is an open
subfunctor of ΓdX/S . A main result is that under certain regularity constraints,
push-forward commutes with products, cf. Proposition (3.3.10). Using this fact we
show that the push-forward along an étale morphism is representable and étale over
the regular locus. This is Proposition (3.3.15).
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Representability. The representability of ΓdX/S when X/S is affine or AF is, as
already mentioned, not difficult and given in 3.1. When X/S is any separated
algebraic space, the representability is proven in Theorem (3.4.1) using the results
on the push-forward.

Addition of cycles. Using the push-forward we define in §4.1 a morphism

Γd(X/S)×S Γe(X/S) → Γd+e(X/S)

which on points is addition of cycles. This induces a morphism (X/S)d → Γd(X/S)
which has the topological properties of a quotient of (X/S)d by the symmetric
group.

Relation with the symmetric product. The morphism (X/S)d → Γd(X/S)
factors through the quotient map (X/S)d → Symd(X/S) and it is easily proven
that Symd(X/S) → Γd(X/S) is a universal homeomorphism with trivial residue
field extensions, cf. Corollary (4.2.5). It is further easy to show that Symd(X/S) →
Γd(X/S) is an isomorphism over the non-degeneracy locus, cf. Proposition (4.2.6).

Comparison of representability techniques. Consider the following inclusions
of categories:

X/S affine X/S AF-scheme� � //

X/S quasi-projective
of finite presentation

� _

��

X/S separated algebraic space,
locally of finite presentation

� � //

X/S separated algebraic space.

� _

��

� � //

WhenX/S is affine, it is fairly easy to show the existence of the quotient Symd(X/S)
[Bou64, Ch. V, §2, No. 2, Thm. 2], the representability of ΓdX/S and the repre-
sentability of the Hilbert functor of points HilbdX/S [Nor78, GLS07]. The existence
of Symd(X/S) and the representability of ΓdX/S and HilbdX/S in the category of
AF-schemes is then a simple consequence.

When X/S is (quasi-)projective and S is noetherian, one can also show the
existence and (quasi-)projectivity of Symd(X/S), Γd(X/S) and Hilbd(X/S) with
projective methods, cf. [III] and [FGA, No. 221]. The representability of the Hilbert
scheme in the category of separated algebraic spaces locally of finite presentation
can be established using Artin’s algebraization theorem [Art69, Cor. 6.2]. We could
likewise have used Artin’s algebraization theorem to prove the representability of
ΓdX/S when X/S is locally of finite presentation. The crucial criterion, that ΓdX/S
is effectively pro-representable, is shown in §3.2.

Finally, the methods that we have used in this article to show that ΓdX/S is rep-
resentable in the category of all separated algebraic spaces can be applied, mutatis
mutandis, to the Hilbert functor of points. The proofs become significantly simpler
as the difficulties encountered for ΓdX/S are almost trivial for the Hilbert functor.
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More generally, these methods apply to the Hilbert stack of points [Ryd08b]. The
existence of Symd(X/S) can also be proven in the same vein and this is done
in [Ryd07].

Notation and conventions. We denote a closed immersion of schemes or alge-
braic spaces with X ↪→ Y . When A and B are rings or modules we use A ↪→ B
for an injective homomorphism. We let N denote the set of non-negative integers
0, 1, 2, . . . and use the notation ((a, b)) =

(
a+b
a

)
for binomial coefficients.
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1. The algebra of divided powers

We begin this section by briefly recalling the definition of polynomial laws in §1.1,
the algebra of divided powers ΓA(M) in §1.2 and the multiplicative structure of
ΓdA(B) in §1.3.
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1.1. Polynomial laws and symmetric tensors. We recall the definition of a
polynomial law [Rob63, Rob80].

Definition (1.1.1). Let M and N be A-modules. We denote by FM the functor

FM : A–Alg → Sets, A′ 7→M ⊗A A′

A polynomial law from M to N is a natural transformation F : FM → FN . More
concretely, a polynomial law is a set of maps FA′ : M ⊗A A′ → N ⊗A A′ for
every A-algebra A′ such that for any homomorphism of A-algebras g : A′ → A′′

the diagram

M ⊗A A′
FA′ //

idM⊗g
��

N ⊗A A′

idN⊗g
��

M ⊗A A′′
FA′′ // N ⊗A A′′
◦

commutes. The polynomial law F is homogeneous of degree d if for any A-algebra
A′, the corresponding map FA′ : M ⊗A A′ → N ⊗A A′ is such that FA′(ax) =
adFA′(x) for any a ∈ A′ and x ∈M ⊗A A′. If B and C are A-algebras then a poly-
nomial law from B to C is multiplicative if for any A-algebra A′, the corresponding
map FA′ : B⊗AA′ → C⊗AA′ is such that FA′(1) = 1 and FA′(xy) = FA′(x)FA′(y)
for any x, y ∈ B ⊗A A′.

Notation (1.1.2). Let A be a ring and M and N be A-modules (resp. A-algebras).
We let Pold(M,N) (resp. Poldmult(M,N)) denote the polynomial laws (resp. mul-
tiplicative polynomial laws) M → N which are homogeneous of degree d.

Notation (1.1.3). Let A be a ring and M an A-algebra. We denote the dth tensor
product of M over A by TdA(M). We have an action of the symmetric group Sd on
TdA(M) permuting the factors. The invariant ring of this action is the symmetric
tensors and is denoted TSdA(M). By TA(M) and TSA(M) we denote the graded
A-modules

⊕
d≥0 TdA(M) and

⊕
d≥0 TSdA(M) respectively.

(1.1.4) The covariant functor TSdA(·) commutes with filtered direct limits. In fact,
denoting the group ring of Sd by Z[Sd] we have that

TSdA(·) = TdA(·)Sd = HomZ[Sd]

(
Z,TdA(·)

)
where Sd acts trivially on Z. As tensor products, being left adjoints, commute
with any (small) direct limit so does Td. Reasoning as in [EGAI, Prop. 0.6.3.2]
it follows that HomZ[Sd](Z, ·) commutes with filtered direct limits. In fact, Z is
a Z[Sd]-module of finite presentation and that Z[Sd] is non-commutative is not a
problem here.

(1.1.5) Shuffle product — When B is an A-algebra, then TSdA(B) has a natural
A-algebra structure induced from the A-algebra structure of TdA(B). The multi-
plication on TSdA(B) will be written as juxtaposition. For any A-module M , we
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can equip TA(M) and TSA(M) with A-algebra structures. The multiplication on
TA(M) is the ordinary tensor product and the multiplication on TSA(M) is called
the shuffle product and is denoted by ×. If x ∈ TSdA(M) and y ∈ TSeA(M) then

x× y =
∑

σ∈Sd,e

σ (x⊗A y)

where Sd,e is the subset of Sd+e such that σ(1) < σ(2) < · · · < σ(d) and σ(d+1) <
σ(d+ 2) < . . . σ(d+ e).

1.2. Divided powers. Most of the material in this section can be found in [Rob63]
and [Fer98].

(1.2.1) Let A be a ring and M an A-module. Then there exists a graded A-
algebra, the algebra of divided powers, denoted ΓA(M) =

⊕
d≥0 ΓdA(M) equipped

with maps γd : M → ΓdA(M) such that, denoting the multiplication with × as
in [Fer98], we have that for every x, y ∈M , a ∈ A and d, e ∈ N

Γ0
A(M) = A, and γ0(x) = 1(1.2.1.1)

Γ1
A(M) = M, and γ1(x) = x(1.2.1.2)

γd(ax) = adγd(x)(1.2.1.3)

γd(x+ y) =
∑
d1+d2=d

γd1(x)× γd2(y)(1.2.1.4)

γd(x)× γe(x) = ((d, e))γd+e(x)(1.2.1.5)

Using (1.2.1.1) and (1.2.1.2) we will identify A with Γ0
A(M) and M with Γ1

A(M).
If (xα)α∈I is a family of elements of M and ν ∈ N(I) then we let

γν(x) = ×
α∈I

γνα(xα)

which is an element of ΓdA(M) with d = |ν| =
∑
α∈I να.

(1.2.2) Functoriality — ΓA(·) is a covariant functor from the category of A-
modules to the category of graded A-algebras [Rob63, Ch. III §4, p. 251].

(1.2.3) Base change — If A′ is an A-algebra then there is a natural isomor-
phism ΓA(M)⊗A A′ → ΓA′(M ⊗A A′) mapping γd(x)⊗A 1 to γd(x⊗A 1) [Rob63,
Thm. III.3, p. 262]. This shows that γd is a homogeneous polynomial law of degree
d.

(1.2.4) Universal property — The map HomA

(
ΓdA(M), N

)
→ Pold(M,N) given

by f → f ◦ γd is a bijection [Rob63, Thm. IV.1, p. 266].

(1.2.5) Basis and generators — If (xα)α∈I is a set of generators of M , then(
γν(x)

)
ν∈N(I) is a set of generators of ΓA(M) as an A-module. If (xα)α∈I is a

basis of M then
(
γν(x)

)
ν∈N(I) is a basis of ΓA(M) [Rob63, Thm. IV.2, p. 272].

Furthermore, if A is an algebra over an infinite field or A is an algebra over Λd =
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Z[T ]/Pd(T ) where Pd is the unitary polynomial Pd(T ) =
∏

0≤i<j≤d(T
i − T j) − 1,

then γd(M) generates ΓdA(M) [Fer98, Lemme 2.3.1]. In particular, there is always a
finite faithfully flat base change A→ A′ such that ΓdA′(M

′) is generated by γd(M ′).
More generally γd(M) generates ΓdA(M) if and only if every residue field of A has
at least d elements [III].

(1.2.6) Exactness — The functor ΓA(·) is a left adjoint [Rob63, Thm. III.1, p. 257]
and thus commutes with any (small) direct limit. It is thus right exact [GV72,
Def. 2.4.1] but note that ΓA(·) is a functor from A–Mod to A–Alg and that the
latter category is not abelian. By [GV72, Rem. 2.4.2] a functor is right exact if
and only if it takes the initial object onto the initial object and commutes with
finite coproducts and coequalizers. Thus ΓA(0) = A and given an exact diagram of
A-modules

M ′
f

//

g
// M

h // M ′′

the diagram

ΓA(M ′)
Γf

//

Γg
// ΓA(M) Γh // ΓA(M ′′)

is exact in the category of A-algebras and

ΓA(M ⊕M ′) = ΓA(M)⊗A ΓA(M ′).

The latter identification can be made explicit [Rob63, Thm. III.4, p. 262] as

ΓdA(M ⊕M ′) =
⊕
a+b=d

(
ΓaA(M)⊗A ΓbA(M ′)

)
γd(x+ y) =

∑
a+b=d

γa(x)⊗ γb(y).
(1.2.6.1)

This makes ΓA(M ⊕M ′) =
⊕

a,b≥0 Γa,b(M ⊕M ′) into a bigraded algebra where
Γa,b(M ⊕M ′) = ΓaA(M)⊗A ΓbA(M ′).

(1.2.7) Surjectivity — If M � N is a surjection then it is easily seen from the
explicit generators of Γ(N) in (1.2.5) that ΓA(M) � ΓA(N) is surjective. This also
follows from the right-exactness of ΓA(·) as any right-exact functor from modules
to rings takes surjections onto surjections, cf. (1.2.8)

(1.2.8) Presentation — Let M = G/R be a presentation of the A-module M .
Then ΓA(M) = ΓA(G)/I where I is the ideal of ΓA(G) generated by the images
in ΓA(G) of γd(x) for every x ∈ R and d ≥ 1 [Rob63, Prop. IV.8, p. 284]. In fact,
denoting the inclusion of R in G by i, we can write M as a coequalizer of A-modules

R⊕G
i⊕idG //

0⊕idG

// G
h // M
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which by (1.2.6) gives the exact sequence

ΓA(R⊕G)
Γ(i⊕idG)

//

Γ(0⊕idG)
// ΓA(G)

Γ(h)
// ΓA(M)

of A-algebras. Since Γ0
A(0) = Γ0

A(i) = idA and ΓdA(0) = 0 for d > 0 it follows
that ΓA(M) is the quotient of ΓA(G) by

⊕
d≥1,e≥0 Γd,e(R ⊕ G), i.e., the quotient

of ΓA(G) by the ideal generated by Γ(i)
(⊕

d≥1 Γd(R)
)
.

(1.2.9) Exactness of ΓdA(·) — If M � N is a surjection then ΓdA(M) � ΓdA(N) is
surjective since ΓA(M) � ΓA(N) is surjective. This does, however, not imply that
ΓdA(·) is right exact. In fact, in general it is not since we have that ΓdA(M ⊕M ′) 6=
ΓdA(M)⊕ ΓdA(M ′).

(1.2.10) Presentation of ΓdA(·) — If M = G/R is a quotient of A-modules then
ΓdA(M) = ΓdA(G)/I where I is the A-submodule generated by the elements γk(x)×y
for 1 ≤ k ≤ d, x ∈ R and y ∈ Γd−kA (G). This follows immediately from (1.2.8).

(1.2.11) Filtered direct limits — The functor ΓdA(·) commutes with filtered direct
limits. In fact, if (Mα) is a directed filtered system of A-modules then⊕

d≥0

ΓdA( lim−→
A–Mod

Mα) = lim−→
A–Alg

⊕
d≥0

ΓdA(Mα) =

= lim−→
A–Mod

⊕
d≥0

ΓdA(Mα) =
⊕
d≥0

lim−→
A–Mod

ΓdA(Mα).

The first equality follows from (1.2.6) and the second from the fact that a filtered
direct limit in the category of A-algebras coincides with the corresponding filtered
direct limit in the category of A-modules [GV72, Cor. 2.9].

(1.2.12) If M is a free (resp. flat) A-module then ΓdA(M) is a free (resp. flat)
A-module. This follows from (1.2.5) and (1.2.11) as any flat module is a filtered
direct limit of free modules [Laz69, Thm. 1.2].

(1.2.13) Γ and TS — The homogeneous polynomial law M → TSdA(M) of degree
d given by x 7→ x⊗Ad = x⊗A · · ·⊗A x corresponds by the universal property (1.2.4)
to an A-module homomorphism ϕ : ΓdA(M) → TSdA(M). This extends to an A-
algebra homomorphism ΓA(M) → TSA(M), where the multiplication in TSA(M)
is the shuffle product (1.1.5), cf. [Rob63, Prop. III.1, p. 254].

When M is a free A-module the homomorphisms ΓdA(M) → TSdA(M) and
ΓA(M) → TSA(M) are isomorphisms of A-modules respectively A-algebras [Rob63,
Prop. IV.5, p. 272]. The functors TSdA and ΓdA commute with filtered direct lim-
its by (1.1.4) and (1.2.11). Since any flat A-module is the filtered direct limit of
free A-modules [Laz69, Thm. 1.2], it thus follows that ΓA(M) → TSA(M) is an
isomorphism of graded A-algebras for any flat A-module M .



10 DAVID RYDH

Moreover by [Rob63, Prop. III.3, p. 256], there are natural A-module homo-
morphisms TSdA(M) ↪→ TdA(M) � SdA(M) → ΓdA(M) → TSdA(M) such that going
around one turn in the diagram

SdA(M)

||yy
yy

yy
yy

ΓdA(M) // TSdA(M)

ccGGGGGGGG

is multiplication by d!. Here SdA(M) denotes the degree d part of the symmetric
algebra. Thus if d! is invertible then ΓdA(M) → TSdA(M) is an isomorphism. In
particular, this is the case when A is purely of characteristic zero, i.e., contains the
field of rationals.

(1.2.14) Universal multiplication of laws — Let d, e ∈ N. There is a canonical
homomorphism

ρd,e : Γd+eA (M) → ΓdA(M)⊗A ΓeA(M)

given by the homogeneous polynomial law x 7→ γd(x)⊗ γe(x) of degree d + e and
the universal property (1.2.4). In particular

(1.2.14.1) ρd,e
(
γν(x)

)
=

∑
ν′+ν′′=ν

|ν′|=d, |ν′′|=e

γν
′
(x)⊗ γν

′′
(x).

We can factor ρd,e as πd,e ◦ Γd+e(p) where p : M → M ⊕M is the diagonal map
x 7→ x⊕x and πd,e is the projection on the factor of bidegree (d, e) of Γd+e(M⊕M),
cf. Equation (1.2.6.1).

If F1 : M → N1 and F2 : M → N2 are polynomial laws homogeneous of degrees
d and e respectively we can form the polynomial law F1 ⊗ F2 : M → N1 ⊗A N2

given by (F1 ⊗F2)(x) = F1(x)⊗F2(x). The law F1 ⊗F2 is homogeneous of degree
d + e. If f1 : Γd(M) → N1, f2 : Γe(M) → N2 and f1,2 : Γd+e(M) → N1 ⊗A N2

are the corresponding homomorphisms then f1,2 = (f1 ⊗ f2) ◦ ρd,e.

1.3. Multiplicative structure. Let M,N be A-modules and d a positive integer.
There is a unique homomorphism

µ : ΓdA(M)⊗A ΓdA(N) → Γd(M ⊗A N)

sending µ(γd(x) ⊗ γd(y)) to γd(x ⊗ y) [Rob80]. When B is an A-algebra, the
composition of µ and the multiplication homomorphism B ⊗A B → B induces a
multiplication on ΓdA(B) which we will denote by juxtaposition. The multiplication
is such that γd(x)γd(y) = γd(xy) and this makes γd into a multiplicative polynomial
law homogeneous of degree d. The unit in ΓdA(B) is γd(1).

If B is an A-algebra and M is a B-module, then µ together with the module
structure B ⊗AM →M induces a ΓdA(B)-module structure on ΓdA(M).
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(1.3.1) Universal property — Let B and C be A-algebras. Then the map

HomA–Alg

(
ΓdA(B), C

)
→ Poldmult(B,C)

given by f → f ◦ γd is a bijection [Rob80]. Also see [Fer98, Prop. 2.5.1].

(1.3.2) Γ and TS — The homogeneous polynomial law M → TSdA(M) of degree
d given by x 7→ x⊗Ad = x ⊗A · · · ⊗A x is multiplicative. The homomorphism
ϕ : ΓdA(B) → TSdA(B) in (1.2.13) is thus an A-algebra homomorphism. It is an
isomorphism when B is a flat over A or when A is of pure characteristic zero (1.2.13).
The morphism Spec

(
TSdA(B)

)
→ Spec

(
ΓdA(B)

)
is a universal homeomorphism with

trivial residue field extensions, see Corollary (4.2.5). Further results about this
morphism is found in [III].

(1.3.3) Filtered direct limits — The functor B 7→ ΓdA(B) commutes with filtered
direct limits. This follows from (1.2.11) and the fact that a filtered direct limit in
the category of A-algebras coincides with the corresponding filtered direct limit in
the category of A-modules [GV72, Cor. 2.9].

(1.3.4) The isomorphism of A-modules given by equation (1.2.6.1) gives an iso-
morphism of A-algebras

ΓdA(B × C) =
∏

a+b=d

(
ΓaA(B)⊗A ΓbA(C)

)
γd
(
(x, y)

)
=
(
γa(x)⊗ γb(y)

)
a+b=d

.

(1.3.5) Universal multiplication of laws — If M is an A-algebra in (1.2.14), then
the polynomial law defining the homomorphism ρd,e is multiplicative. The homo-
morphism ρd,e is thus an A-algebra homomorphism. For a geometrical interpreta-
tion of ρd,e as “addition of cycles” see section §4.1.

Formula (1.3.6) (Multiplication formula [Fer98, Form. 2.4.2]). Let (xα)α∈I be a
set of elements in B and let µ, ν ∈ N(I) with d = |µ| = |ν|. Then we have the
following identity in ΓdA(B)

γµ(x)γν(x) =
∑

ξ∈Nµ,ν

γξ(x(1)x(2)) =
∑

ξ∈Nµ,ν

×
(α,β)∈I×I

γξα,β (xαxβ)

where Nµ,ν is the set of multi-indices ξ ∈ N(I×I) such that
∑
β∈I ξα,β = µα for

every α ∈ I and
∑
α∈I ξα,β = νβ for every β ∈ I.

Proposition (1.3.7). If B is an A-algebra of finite type (resp. of finite presen-
tation, resp. finite over A, resp. integral over A) then ΓdA(B) is an A-algebra of
finite type (resp. of finite presentation, resp. finite, resp. integral).

Proof. If B is an A-algebra of finite type then B is a quotient of a polynomial ring
A[x1, x2, . . . , xn]. The induced homomorphism Γd(A[x1, x2, . . . , xn]) → ΓdA(B) is
surjective, and thus it is enough to show that Γd(A[x1, x2, . . . , xn]) is an A-algebra
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of finite type. As Γd commutes with base change it is further enough to show that
ΓdZ(Z[x1, x2, . . . , xn]) = TSdZ(Z[x1, x2, . . . , xn]) is a Z-algebra of finite type. This is
well-known, cf. [Bou64, Ch. V, §1, No. 9, Thm. 2].

If B is an A-algebra of finite presentation then there is a noetherian ring A0

and a A0-algebra of finite type B0 such that B = B0 ⊗A0 A. The first part of
the proposition shows that ΓdA0

(B0) is an A0-algebra of finite type and thus also
of finite presentation as A0 is noetherian. As Γd commutes with base change this
shows that ΓdA(B) is an A-algebra of finite presentation.

If B is a finite A-algebra then ΓdA(B) is a finite A-algebra by (1.2.5). If B
is an integral A-algebra then B is a filtered direct limit of finite A-algebras. As
Γd commutes with filtered direct limits this shows that ΓdA(B) is an integral A-
algebra. �

1.4. The scheme Γd(X/S) for X/S affine. Let S be any scheme and A a quasi-
coherent sheaf of OS-algebras. As the construction of ΓdA(B) commutes with lo-
calization with respect to multiplicatively closed subsets of A we may define a
quasi-coherent sheaf of OS-algebras ΓdOS

(A). This extends the definition of the co-
variant functor Γd to the category of quasi-coherent algebras on S. If f : X → S is
an affine morphism we let Γd(X/S) = Spec

(
ΓdOS

(f∗OX)
)
. This defines a covariant

functor
Γd : Aff/S → Aff/S , X/S 7→ Γd(X/S)

where Aff/S is the category of schemes affine over S. When it is not likely to cause
confusion, we will sometimes abbreviate Γd(X/S) with Γd(X).

A polynomial law in this setting is a natural transformation of functors from
quasi-coherent OS-algebras to sheaves of sets on S. We obtain an isomorphism
HomS

(
S′,Γd(X/S)

)
→ Poldmult,OS

(OX ,OS′) for any affine S-scheme S′. Also ob-
serve that

HomS

(
S′,Γd(X/S)

) ∼= HomS′
(
S′,Γd(X/S)×S S′

)
∼= HomS′

(
S′,Γd(X ′/S′)

)
.

More generally, if S is an algebraic space and X → S is affine we define Γd(X/S)
by étale descent.

Defining Γd(X/S) for any S-scheme X is non-trivial. In the following sections
we will give a functorial description of Γd(X/S) and then show that this functor is
represented by a scheme or algebraic space Γd(X/S).

A very useful fact that will repeatedly be used in the sequel is the following
rephrasing of paragraph (1.3.4):

Proposition (1.4.1). Let S be an algebraic space and let X1, X2, . . . , Xn be alge-
braic spaces affine over S. Then

Γd
(

n∐
i=1

Xi

)
=

∐
di∈NP
i di=d

Γd1(X1)×S Γd2(X2)×S · · · ×S Γdn(Xn).
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Similarly, the following Proposition is a translation of paragraph (1.2.9):

Proposition (1.4.2). If Y is an algebraic space affine over S and X ↪→ Y a closed
subspace, then Γd(X/S) is a closed subspace of Γd(Y/S).

2. Support and image of a family of zero-cycles

Let X/S be a scheme or an algebraic space, affine over S. In this section we will
show that a “family of zero-cycles” α on X parameterized by S, that is, a morphism
α : S → Γd(X/S), has a unique minimal closed subspace Z = Image(α) ↪→ X, the
image of α, such that α factors through the closed subspace Γd(Z/S) ↪→ Γd(X/S).
The reduction Zred will be denoted the support of α and written as Supp(α).

For general X/S a family of zero-cycles α, parameterized by a S-scheme T ,
should be thought of as one of the following

(i) A morphism T → Γd(X/S).
(ii) An “object” living over Image(α) ↪→ X ×S T .
(iii) A “multi-section” T → X ×S T with image Image(α).

Note that in contrast to ordinary sections and families of closed subschemes, a
family of zero-cycles is not uniquely determined by its image. If α is a family over
a reduced scheme T , then Supp(α) = Image(α) is reduced, cf. Proposition (2.1.4).
In this case, the “object” in (ii) can be interpreted as a cycle in the ordinary sense.

We will show the following results about the image and the support:

(i) The image is integral over S. (§2.1)
(ii) The image commutes with essentially smooth base change S′ → S and

projective limits. In particular it commutes with étale base change and
henselization. (§2.2)

(iii) The support commutes with any base change. (§2.3)
(iv) The support has universally topologically finite fibers, i.e., each fiber over

S consists of a finite number of points and the separable degrees of the
corresponding field extensions are finite. (§2.4)

(v) The support is universally open over S. (§2.5)

Many of the results require rather technical but standard demonstrations. In par-
ticular we will often need to reduce from the integral to the finite case by the
standard limit techniques of [EGAIV, §8]. The fact that the support is universally
open over S will not be needed in the following sections but this result, as well
as the fact that the support has universally topologically finite fibers, shows that
topologically the support behaves as if it was of finite presentation over S.

2.1. Kernel of a multiplicative law. We will first define the kernel of a mul-
tiplicative polynomial law F : B → C of A-algebras. If F is of degree 1, i.e., a
ring homomorphism, then the kernel is the usual kernel. In general, the kernel of
F is the largest ideal I such that F factors through B � B/I. We will focus our
attention on the case when C = A. Then B/ ker(F ) is integral over A as shown in
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Proposition (2.1.6) and there is a canonical filtration of ker(F ) which degenerates
in characteristic zero.

Definition (2.1.1). Let B and C be A-algebras. Given a multiplicative law F :
B → C we define its kernel ker(F ) as the largest ideal I such that F factors as
B � B/I → C. This is a well-defined ideal since if F factors through B � B/I
and B � B/J then F factors through B/(I + J).

Note that F factors through B � B/I if and only if FA′(b′ + IB′) = FA′(b′)
for any A-algebra A′ and b′ ∈ B′ = B ⊗A A′. Also note that the kernel ker(FA′)
contains ker(F )B′ but this inclusion is often strict.

Notation (2.1.2). We will in the following denote homogeneous laws by upper-
case Latin letters and the corresponding homomorphisms by lower-case letters. For
example, if F : B → C is a homogeneous multiplicative polynomial law of degree d
we let f : ΓdA(B) → C be the corresponding homomorphism. If A′ is an A-algebra
we denote by F ′ : B′ → C ′ the multiplicative law given by F ′R = FR for every
A′-algebra R. The corresponding homomorphism f ′ : ΓdA′(B

′) → C ′ is then the
base change of f along A→ A′.

Lemma (2.1.3). Let A be a ring and let B and C be A-algebras. Given a multi-
plicative law F : B → C homogeneous of degree d, or equivalently given a morphism
f : ΓdA(B) → C, define the following subsets of B

L1 =
{
b ∈ B : f

(
γk(b)× y

)
= 0, ∀k, y

}
L2 =

{
b ∈ B : f

(
γk(bx)× y

)
= 0, ∀k, x, y

}
L3 =

{
b ∈ B : f ′

(
γk(bx′)× y′

)
= 0, ∀k,A′, x′, y′

}
where 1 ≤ k ≤ d, x ∈ B, y ∈ Γd−kA (B), x′ ∈ B′, y′ ∈ Γd−kA′ (B′) and A → A′ is a
ring homomorphism. Then ker(F ) = L1 = L2 = L3. In particular, these sets are
ideals.

Proof. Clearly L3 ⊆ L2 ⊆ L1. Let b ∈ L1 and let x ∈ B. The multiplication
formula (1.3.6) shows that for any y ∈ Γd−kA (B)

γk(bx)× y =
(
γk(b)× y

)(
γk(x)× γd−k(1)

)
+

k∑
i=1

γi(b)× yi

for some yi ∈ Γd−iA (B). Thus b ∈ L2 and hence L1 = L2. From Equations (1.2.1.3)
and (1.2.1.4) it follows that L2 = L3 and that this set is an ideal.

If I is an ideal in B then ΓdA(B/I) = ΓdA(B)/J where J is the ideal generated
by γk(b)× y where b ∈ I, 1 ≤ k ≤ d and y ∈ Γd−kA (B), cf. (1.2.10). Thus ker(F ) is
contained in L2. On the other hand, if b is contained in L3 then for any A-algebra
A′ and b′, x′ ∈ B′ = B ⊗A A′ we have that

FA′(b′ + bx′) =
d∑
k=0

f ′
(
γk(bx′)× γd−k(b′)

)
= f ′

(
γd(b′)

)
= FA′(b′)
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and thus b ∈ ker(F ). �

Proposition (2.1.4) ([Zip88, Lem. 7.6]). Let A be a ring and B,C be A-algebras
together with a multiplicative law F : B → C homogeneous of degree d. If C is
reduced then B/ ker(F ) is reduced.

Proof. Let f : ΓdA(B) → C be the homomorphism corresponding to F . Let b ∈ B
such that bn ∈ ker(F ) for some n ∈ N. Then by Lemma (2.1.3) we have that
f
(
γk(bnx) × y

)
= 0 for every 1 ≤ k ≤ d, x ∈ B and y ∈ Γd−kA (B). An easy

calculation using the multiplication formula (1.3.6) shows that the element
(
γk(b)×

y
)ddn/ke is in the kernel of f for every 1 ≤ k ≤ d and y ∈ Γd−kA (B). As C is reduced

this implies that γk(b)× y is in the kernel of f and thus b ∈ ker(F ). �

Definition (2.1.5). Let F : B → A be a multiplicative law homogeneous of degree
d. For any b ∈ B we define its characteristic polynomial as

χF,b(t) = FA[t](b− t) =
d∑
k=0

(−1)kf
(
γd−k(b)× γk(1)

)
tk ∈ A[t].

We let
ICH(F ) =

(
χF,b(b)

)
b∈B ⊆ B

be the Cayley-Hamilton ideal of F . Here χF,b(b) is the evaluation of χF,b(t) at
b ∈ B, i.e., the image of χF,b(t) along A[t] → B[t] → B[t]/(t− b) = B.

Proposition (2.1.6) ([Ber65, Satz 4]). Let F : B → A be a multiplicative law.
Then ICH(F ) ⊆ ker(F ) ⊆

√
ICH(F ). In particular it follows that B/ ker(F ) is

integral over A.

Proof. Let P � B be a surjection from a flat A-algebra P and let F ′ : P → A be
the multiplicative law given as the composition of F with P � B. As the images
of ICH(F ′) and ker(F ′) in B are ICH(F ) and ker(F ) respectively, we can, replacing
B with P and F with F ′, assume that B is flat over A. Then ΓdA(B) = TSdA(B).

We will first show the inclusion ICH(F ) ⊆ ker(F ). By definition this is equivalent
with the following: For every base change A → A′, every b ∈ B and every b′, x′ ∈
B′ = B ⊗A A′, the identity FA′

(
χF,b(b)x′ + b′

)
= FA′(b′) holds.

For any ring R we let Diagd(R) = Rd denote the diagonal d × d-matrices with
coefficients in R. Let Ψ : B → Diagd

(
TdA(B)

)
be the ring homomorphism such

that Ψ(b) = diag (b1, b2, . . . , bd) where bk = 1⊗k−1 ⊗ b ⊗ 1⊗d−k ∈ TdA(B). The
determinant gives a multiplicative law

det : Diagd
(
TdA(B)

)
→ TdA(B)

which is homogeneous of degree d. Let E = TSdA(A[t]) = A[e1, e2, . . . , ed] be the
polynomial ring over A in d variables. Here ek denotes the elementary symmetric
function t⊗k × 1⊗d−k. Let b ∈ B be any element. We have a homomorphism
ρb : E ↪→ TSdA(B) induced by the morphism A[t] → B mapping t on b. More
explicitly ρb(ek) = b⊗k × 1⊗d−k.
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Let A → A′ be any ring homomorphism and let B′ = B ⊗A A′, E′ = E ⊗A A′.
We have a commutative diagram

B′ γd

// TSdA′(B
′)

f ′
// A′

B′ ⊗A′ E′ γd

//

(id,f ′◦ρ′b)

OOOO

Ψ

��

TSdA′(B
′)⊗A′ E′

(id,f ′◦ρ′b)

OOOO

(id,ρ′b)// //
� _

��

◦

TSdA′(B
′)

f ′

OO

� _

��

◦

Diagd
(
TdA′(B

′)⊗A′ E′) det //

Diag(id,ρ′b)
����

TdA′(B
′)⊗A′ E′

(id,ρ′b)

'' ''PPPPPPPPPPPP

◦ ◦

Diagd
(
TdA′(B

′)
) det // TdA′(B

′).

◦

Let χ(t) =
∑d
k=0(−1)ked−ktk ∈ E[t] where we let e0 = 1. Let

χb(t) = ρb ◦ χ(t) =
d∑
k=0

(−1)kγd−k(b)× γk(1)tk ∈ TSdA(B)[t].

Then f(χb(t)) = χF,b(t) ∈ B[t]. Let b′, x′ ∈ B′ be any elements. We begin with the
elements χF,b(b)x′ + b′ and b′ in the upper-left corner B′ of the diagram and want
to show that their images by FA′ = f ′ ◦ γd in the upper-right corner A′ coincide.
As χF,b(b)x′ + b′ lifts to χ(b)x′ + b′ ∈ B′ ⊗A′ E′ it is enough to show that images
of b′, χ(b)x′ + b′ ∈ B′ ⊗A′ E′ in the lower-left corner Diagd

(
TdA′(B

′)
)

are equal.
For any ring R and diagonal matrix D ∈ Diagd(R) let PD(t) ∈ R[t] be the

characteristic polynomial of D. Then by Cayley-Hamilton’s theorem PD(D) = 0 in
Diagd(R). Note that the determinant and the characteristic polynomial commute
with arbitrary base change R → R′. Now, the image of χ(b) by Diag(id, ρb) ◦ Ψ
is easily seen to be χb(Ψ(b)) = PΨ(b)

(
Ψ(b)

)
= 0. Thus the images of χ(b)x′ + b′

and b′ in the lower-left corner are equal. This concludes the proof of the inclusion
ICH(F ) ⊆ ker(F ).

If b ∈ ker(F ) then by Lemma (2.1.3) f
(
γk(b) × γd−k(1)

)
= 0 for every k =

1, 2, . . . , d. Thus χF,b(t) = td and hence bd ∈ ICH(F ) which shows the second
inclusion. Finally B/ICH(F ) is clearly integral over A and thus also B/ ker(F ). �

Remark (2.1.7). Ziplies defines the radical of a not necessarily homogeneous poly-
nomial law in [Zip88, Def. 6.7]. When the polynomial law is homogeneous the
radical coincides with the kernel as defined in (2.1.5). Ziplies further proves in
[Zip88, Lem. 7.4] that if ICH(F ) is zero in B then ker(F ) is contained in the Ja-
cobson radical of B. Proposition (2.1.6) shows more generally that under this
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assumption ker(F ) is contained in the nilradical of B. Note that both inclusions
ICH(F ) ⊆ ker(F ) ⊆

√
ICH(F ) can be strict1.

In [Zip86, 3.4] Ziplies also shows that ICH(F ) is contained in the ideal

I
(1)
F =

{
b ∈ B : f

(
bx× γd−1(1)

)
= 0, ∀x ∈ B

}
=
{
b ∈ B : f(b× y) = 0, ∀y ∈ Γd−1

A (B)
}
.

As this ideal by Lemma (2.1.3) clearly contains ker(F ), the first inclusion of Propo-
sition (2.1.6) is a generalization of this result.

2.2. Kernel and base change.

Definition (2.2.1). Let A be a ring and let B and C be A-algebras. Given a
multiplicative law F : B → C homogeneous of degree d, or equivalently given a
morphism f : ΓdA(B) → C, we let

I
(k)
F =

{
b ∈ B : f

(
γi(b)× y

)
= 0, ∀1 ≤ i ≤ k, y ∈ Γd−iA (B)

}
.

for k = 0, 1, 2, . . . , d.

Proposition (2.2.2). Let B and C be A-algebras and let F : B → C be a multi-
plicative law homogeneous of degree d. Then the sets I(k)

F are ideals of B and we
have a filtration

B = I
(0)
F ⊇ I

(1)
F ⊇ · · · ⊇ I

(d)
F = ker(F ).

If A′ is an A-algebra and B′ = B⊗AA′ then I(k)
FA′

⊇ I
(k)
F B′. In particular ker(FA′) ⊇

ker(F )B′.

Proof. That I(k)
F are ideals follows exactly as in the proof of Lemma (2.1.3). That

I
(d)
F = ker(F ) is Lemma (2.1.3) and the other assertions are trivial. �

The main application for the filtration I
(0)
F ⊇ I

(1)
F ⊇ · · · ⊇ I

(d)
F is that the

elements in I(k−1)
F behave “quasi-linear” modulo I(k)

F with respect to γk in a certain
sense. This will be utilized in Lemma (2.2.10).

Lemma (2.2.3). Let n ∈ N and p be a prime. Then p |
(
n
k

)
for every 1 ≤ k ≤ n−1

if and only if n = ps.

Proof. Assume that p |
(
n
k

)
for 1 ≤ k ≤ n − 1. It easily follows that an = a in Fp

for every a ∈ Fp. Thus xp − x divides xn − x in Fp[x] which shows that p | n. We
obtain that an/p = a for every a ∈ Fp and by induction on s that n = ps. The
converse is easy. �

1There is a misprint in [Zip88, Lem. 7.4]. “equals” should be replaced with “is contained in”.
Also A should be a B-algebra as well as an R-algebra in his notation.
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Proposition (2.2.4). Let A be either a Z(p)-algebra with p a prime or a Q-algebra
in which case we let p = 1. Let k ≥ 1 be an integer. Then I

(k)
F = I

(k−1)
F if k 6= ps.

In particular, if A is a Q-algebra then ker(F ) = I
(1)
F .

Proof. Let A′ = A[t] and b′1, b
′
2 ∈ I

(k−1)
F ′ . Then for any y′ ∈ Γd−kA′ (B′)

f ′
(
γk(b′1 + b′2)× y′

)
= f ′

(
γk(b′1)× y′

)
+ f ′

(
γk(b′2)× y′

)
.

In particular for any b ∈ I(k−1)
F and y ∈ Γd−kA (B)

(1 + t)kf ′
(
γk(b)× y

)
= f ′

(
γk((1 + t)b)× y

)
= (1 + tk)f

(
γk(b)× y

)
which shows that

(
k
i

)
annihilates f

(
γk(b)× y

)
for any 1 ≤ i ≤ k− 1. If k 6= ps then

f
(
γk(b)× y

)
= 0 by Lemma (2.2.3) and thus b ∈ I(k)

F . �

Lemma (2.2.5). Let A be a ring and B = lim−→Bλ be a filtered direct limit of
A-algebras with induced homomorphisms ϕλ : Bλ → B. Let f : ΓdA(B) → C
and denote by fλ the composition of ΓdA(ϕλ) : ΓdA(Bλ) → ΓdA(B) and f . Then
I
(k)
F = lim−→ I

(k)
Fλ

for every k = 0, 1, . . . , d. In particular ker(F ) = lim−→ ker(Fλ).

Proof. As fλ factors as ΓdA(Bλ) → ΓdA(B) → C it follows that ϕ−1
λ

(
I
(k)
F

)
⊆ I

(k)
Fλ

.

Thus I(k)
F ⊆ lim−→ I

(k)
Fλ

. Conversely, for any b ∈ B \ I(k)
F there is an i ≤ k and

y ∈ Γd−iA (B) such that f
(
γi(b)× y

)
6= 0. If we let α be such that ϕα−1(b) 6= ∅ and

Γd−i(ϕα)−1(y) 6= ∅ then for any λ ≥ α and bλ ∈ Bλ such that ϕλ(bλ) = b we have
that bλ /∈ I(k)

Fλ
. Thus lim−→ I

(k)
Fλ

⊆ I
(k)
F . �

Proposition (2.2.6). Let A be a ring and S a multiplicative closed subset. Let
F : B → A be a multiplicative homogeneous law of degree d and denote by
S−1F : S−1B → S−1A the map corresponding to the A-algebra S−1A. Then
S−1I

(k)
F = I

(k)
S−1F . In particular S−1 ker(F ) = ker(S−1F ), i.e., the kernel com-

mutes with localization.

Proof. By Proposition (2.1.6) the quotient B/ ker(F ) is integral over A. Replacing
B by B/ ker(F ) we can thus assume that B is integral over A. As B is the filtered
direct limit of its finite sub-A-algebras and both the kernel of a multiplicative law,
Lemma (2.2.5), and tensor products commute with filtered direct limits we can
assume that B is a finite A-algebra. Then ΓiA(B) is a finite A-algebra for all
i = 0, 1, . . . , d by Proposition (1.3.7).

Let x/s ∈ I(k)
S−1F , i.e., by definition x/s ∈ S−1B such that S−1f

(
γi(x/s)×y

)
= 0

for all 1 ≤ i ≤ k and y ∈ Γd−iA (B). For any y ∈ Γd−iA (B) there is then a t ∈ S

such that tf
(
γi(x) × y

)
= 0 in A. As Γd−iA (B) is a finite A-algebra we can find a

common t that works for all i ≤ k and y. Then f
(
γi(tx)× y

)
= tif

(
γi(x)× y

)
= 0

for all i ≤ k and y. As x/s = tx/st, this shows that I(k)
S−1F = S−1I

(k)
F . �
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Proposition (2.2.7). Let A be a ring and B an A-algebra. Let A′ = lim−→A′λ be a
filtered direct limit of A-algebras with induced homomorphisms ϕλ : A′λ → A′. Let
F : B → A be a multiplicative polynomial law of degree d. Then I

(k)
FA′

= lim−→ I
(k)
FA′

λ

for every k = 0, 1, . . . , d. In particular ker(FA′) = lim−→ ker(FA′λ).

Proof. As in the proof of Proposition (2.2.6) we can assume that B is finite over A
and hence that ΓiA(B) is a finite A-module. Choose generators yi1, yi2, . . . , yini of
Γd−iA (B) as an A-module for i = 1, 2, . . . , d. Let B′ = B⊗A A′ and B′

λ = B⊗A A′λ.
Let b′ ∈ I(k)

FA′
. Then there exists an α and b′α ∈ B′

α such that b′ is the image of b′α
by B′

α → B. As the image of fA′α(γi(b′α)× yij) in A′ is fA′(γi(b′)× yij) and hence
zero for i = 1, 2, . . . , k, there is a β ≥ α such that b′α ∈ I

(k)
FA′

λ

for all λ ≥ β. Thus

b′ ∈ lim−→λ
I
(k)
FA′

λ

and I(k)
FA′

⊆ lim−→λ
I
(k)
FA′

λ

. The reverse inclusion is obvious. �

We will now show that the kernel, always commutes with smooth base change
and that it commutes with flat base change in characteristic zero.

Proposition (2.2.8). Let A be a ring and let F : B → A a multiplicative homoge-
neous law of degree d. Let A′ be a flat A-algebra and denote by F ′ the multiplicative
law corresponding to A′. Then I(1)

F B′ = I
(1)
F ′ . In particular, if A is a Q-algebra then

the kernel commutes with flat base change.
Proof. We reduce to B a finite A-algebra as in the proof of Proposition (2.2.6). For
any y ∈ Γd−1

A (B) let ϕy be the A-module homomorphism B → ΓdA(B) given by
b 7→ b× y. Then I(1)

f =
⋂
y∈Γd−1

A (B) ker(f ◦ ϕy). As Γd−1
A (B) is a finitely generated

A-module and ϕy is linear in y, this intersection coincides with an intersection
over a finite number of y’s. As both finite intersections and kernels commute with
flat base change the first statement of the proposition follows. The last statement
follows from Proposition (2.2.4). �

Recall that a monic polynomial g ∈ A[t] is separable if (g, g′) = A[t], where g′

is the formal derivative of g. Further recall that A ↪→ A[t]/g is étale if and only if
g is separable. We will need the following basic lemma to which we, for a lack of
suitable reference, include a proof.

Lemma (2.2.9). Let A ↪→ A′ = A[t]/g be an étale homomorphism, i.e., such that
g is a separable polynomial. If A is a local ring of residue characteristic p > 0
then for any prime power q = ps, s ∈ N, the elements 1, tq, t2q, . . . , t(n−1)q form an
A-module basis of A′ where n = deg(g).
Proof. Let k = A/mA. By Nakayama’s lemma it is enough to show that a basis of
A′/mAA

′ = k[t]/g over k is given by 1, tq, t2q, . . . , t(n−1)q. Replacing A, A′ and g
with k, A′/mAA

′ and g respectively, we can thus assume that A = k is a field of
characteristic p.

Let g = g1g2 . . . gm be a factorization of g into irreducible polynomials. We have
that A′ = k[t]/g = k′1 × k′2 × · · · × k′m where k ↪→ k′i = k[t]/gi are separable field
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extensions. The subring generated by tq is the image of k[tq]/gq =
∏
k[tq]/gqi in∏

i k
′
i. To show that tq generates k[t]/g it is thus enough to show that its image

in k′i generates k′i for every i. Thus, we can assume that g is irreducible such that
A′ = k[t]/g = k′ is a field.

The field extension k ↪→ k(tq) ↪→ k(t) = k′ is separable which shows that so is
k(tq) ↪→ k(t). Thus k(tq) = k(t) and tq generates k′. �

Lemma (2.2.10). Let F : B → A be a multiplicative polynomial law of degree
d. Let A′ = A[t]/g where either g = 0 or g is separable. Then I

(k)
F and ker(F )

commute with the base change A ↪→ A′.

Proof. If g = 0 we let n = ∞ and otherwise we let n = deg(g). A basis of A′ as an
A-module is then given by 1, t, t2, . . . , tn−1. By Proposition (2.2.6) we can assume
that A is a local ring. Let p be the exponential characteristic of the residue field
A/mA, i.e., p equals the characteristic if it is positive and 1 if the characteristic is
zero.

We will proceed by induction on k to show that I(k)
F B′ = I

(k)
F ′ . As I(0)

F = B and
I
(0)
F ′ = B′ the case k = 0 is obvious. Proposition (2.2.4) shows that I(k)

F = I
(k−1)
F if

k 6= ps and we can thus assume that k = ps.
Let x′ ∈ I

(ps)
F ′ ⊆ I

(ps−1)
F ′ . By induction x′ ∈ I

(ps−1)
F B′ and we can thus write

uniquely x′ =
∑n−1
i=0 xit

i where xi ∈ I(ps−1)
F are almost all zero. Let y ∈ Γd−p

s

A (B).
Then

f ′
(
γp

s

(x′)× y
)

=
n−1∑
i=0

tp
sif
(
γp

s

(xi)× y
)
.

If g = 0 then 1, tp
s

, t2p
s

, . . . are linearly independent in A′ = A[t]. If g is separable
then 1, tp

s

, t2p
s

, t(n−1)ps

are linearly independent by Lemma (2.2.9). This shows
that f

(
γp

s

(xi) × y
)

= 0 for every y and thus xi ∈ I
(ps)
F as xi ∈ I

(ps−1)
F . Hence

x′ ∈ I(ps)
F B′ which shows that I(ps)

F B′ = I
(ps)
F ′ . �

2.3. Image and base change. As the kernel of a multiplicative law commutes
with localization by Proposition (2.2.6) it is possible to define the kernel for a
multiplicative law for schemes:

Definition (2.3.1). Let S be a scheme, A a quasi-coherent sheaf of OS-algebras
and F : A → OS a multiplicative polynomial law, cf. §1.4. We let ker(F ) ⊆ A
be the quasi-coherent ideal sheaf given by ker(F )|U = ker

(
F |U

)
for any affine

open subset U ⊆ S. If f : X → S is an affine morphism of schemes and α : S →
Γd(X/S) is a morphism then we let the image of α, denoted Image(α), be the closed
subscheme of X corresponding to the ideal sheaf ker(Fα) where Fα : f∗OX → OS
is the polynomial law corresponding to α.

We say that a morphism S′ → S is essentially smooth if every local ring of S′ is
a local ring of a scheme which is smooth over S. The results of the previous section
are summarized in the following proposition.
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Theorem (2.3.2). Let f : X → S be an affine morphism of schemes and let
α : S → Γd(X/S) be a morphism. If S′ → S is an essentially smooth morphism
then Image(α)×S S′ = Image(α ×S S′), i.e., the image commutes with essentially
smooth base change.

Proof. As Image(α) commutes with localization we can assume that S = Spec(A)
is local and that S′ → S is smooth. Further it is enough that for any x ∈ S′

there is an affine neighborhood S′′ ⊆ S′ such that the image commutes with the
base change S′′ → S. By [EGAIV, Cor. 17.11.4] we can choose S′′ such that
S′′ → S is the composition of an étale morphism followed by a morphism AnS =
Spec(A[t1, t2, . . . , tn]) → S = Spec(A). We can thus assume that either S′ → S is
étale or S′ = A1

S .
If S′ → S is étale and S = Spec(A) is local, then for any s′ ∈ S′ we have that

OS′,s′ = A[t]/g where g ∈ A[t] is a separable polynomial [EGAIV, Thm. 18.4.6 (ii)]
and it is thus enough to consider base changes S′ → S of the form A → A[t]/g.
The result now follows from Lemma (2.2.10). �

Corollary (2.3.3). Let S = Spec(A) and S′ = Spec(A′) such that A′ is a direct
limit of essentially smooth A-algebras. Let f : X → S be an affine morphism and
let α : S → Γd(X/S) be a morphism. Then Image(α′) = Image(α) ×S S′. In
particular this holds if S′ is the henselization or the strict henselization of a local
ring of S.

Proof. Follows from Proposition (2.2.7) and Theorem (2.3.2). �

Remark (2.3.4). If S and S′ are locally noetherian and S′ → S is a flat mor-
phism with geometrically regular fibers, then S′ is a filtered direct limit of smooth
morphisms by Popescu’s theorem [Swa98, Spi99]. Thus the image of a family
α : S → Γd(X/S) commutes with the base change S′ → S under this hypoth-
esis. In particular we can apply this with S′ = Spec(ÔS,s) for s ∈ S if S is an
excellent scheme [EGAIV, Def. 7.8.2].

Definition (2.3.5). Let f : X → S be an affine morphism of algebraic spaces and
let α : S → Γd(X/S) be a morphism. We let Image(α) be the closed subspace
of X such that for any scheme S′ and étale morphism S′ → S we have that
Image(α) ×S S′ = Image(α ×S S′). As étale morphisms descend closed subspaces
and the image commutes with étale base change, this is a unique and well-defined
closed subspace. When S is a scheme, this definition of Image(α) and the one in
Definition (2.3.1) agree. We let Supp(α) = Image(α)red and call this subscheme
the support of α.

Theorem (2.3.6). Let S and X be algebraic spaces such that X is affine over S.
Let α : S → Γd(X/S) be a morphism and let S′ → S be any morphism. Then(
Supp(α) ×S S′

)
red

= Supp(α ×S S′), i.e., the support commutes with arbitrary
base change.
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Proof. We can assume that S = Spec(A) and S′ = Spec(A′) are affine. Let P
be a, possibly infinite-dimensional, polynomial algebra over A such that there is a
surjection P → A′. Then as Spec(P ) is a limit of smooth S-schemes we can by
Theorem (2.3.2) replace A with P and assume that A→ A′ is surjective.

Let X = Spec(B), let f : ΓdA(B) → A correspond to α and let F : B → A be
the corresponding multiplicative law. Pick an element b′ ∈ ker(FA′) ⊆ B⊗AA′ and
choose a lifting b ∈ B of b′. Then by Lemma (2.1.3), the elements f(γd−k(b)×γk(1)),
k = 0, 1, 2, . . . , d− 1 lie in the kernel of A→ A′. In particular, the image of χF,b(b)
in B is b′d. Thus ker(FA′) ⊆

√
ICH(F )(B ⊗A A′). As

√
ICH(F ) =

√
kerF by

Proposition (2.1.6) the theorem follows. �

Examples (2.3.7). We give two examples. The first shows that ker(F ) does not
commute with arbitrary base change even in characteristic zero. The second shows
that ker(F ) does not commute with flat base change in positive characteristic.

(i) Let A = k[x] and B = k[x, y]/(x2−y2). Then B is a free A-module of rank
2. The norm N : B → A is a multiplicative law of degree 2. It can further
be seen that ker(N) = 0. Let A′ = k[x]/x. Then B′ = B ⊗A A′ = k[y]/y2

is not reduced and by Proposition (2.1.4) the kernel of N ′ cannot be trivial.
In fact, we have that ker(N ′) = (y).

(ii) Let k be a field of characteristic p and A = B = k. We let F : B → A
be the polynomial law given by x 7→ xp, i.e., the Frobenius. Clearly
ker(F ) = 0. Let A′ = A[t]/tp which is a flat A-algebra. Then ker(F ′) = (t)
as (b′′+ tx′′)p = b′′

p+ tpx′′p = b′′
p for any A′ → A′′ and b′′, x′′ ∈ B′′ = A′′.

It is further easily seen that ker(F ) does not commute with any base
change such that A′ is not reduced. In fact, if t ∈ A′ is such that tp = 0
then t ∈ ker(F ′).

2.4. Various properties of the image and support. A morphism α : S →
Γd(X/S) is, as we will see later on, a “family of zero-cycles of degree d on X
parameterized by S”. The subscheme Supp(α) ↪→ X is the support of this family
of cycles. In particular it should, topologically at least, have finite fibers over S.

Proposition (2.4.1). Let S be a connected algebraic space and X a space affine
over S. Let α : S → Γd(X/S) be a morphism. If X =

∐n
i=1Xi, then there are

uniquely defined integers d1, d2, . . . , dn ∈ N such that d = d1+d2+ · · ·+dn and such
that α factors through the closed subspace Γd1(X1)×SΓd2(X2)×S · · ·×SΓdn(Xn) ↪→
Γd(X/S). The support Supp(α) is contained in the union of the Xi’s with di > 0.
In particular Supp(α) has at most d connected components.

Proof. By Proposition (1.4.1) there is a decomposition

Γd(X/S) =
∐
di∈NP
i di=d

Γd1(X1)×S Γd2(X2)×S · · · ×S Γdn(Xn).

As S is connected α factors uniquely through one of the spaces in this decompo-
sition. It is further clear that Xi ∩ Supp(α) 6= ∅ if and only if di > 0. The last
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observation follows after replacing X with Image(α) as then n is at most d in any
decomposition. �

Definition (2.4.2). Let S and X be as in Proposition (2.4.1). The multiplicity of
α on Xi is the integer di.

Proposition (2.4.3). Let S = Spec(k) where k is a field and let X/S be an affine
scheme. Let α : S → Γd(X/S) be a morphism. Then Image(α) = Supp(α) =∐n
i=1 Spec(ki) is a disjoint union of a at most d points such that the separable

degree of each ki/k is finite.

Proof. Propositions (2.1.4) and (2.1.6) shows that Image(α) is reduced and affine
of dimension zero, hence totally disconnected. By Proposition (2.4.1) it is thus a
disjoint union of at most d reduced points. As the support commutes with arbitrary
base change by Theorem (2.3.6), it follows after considering the base change k ↪→ k
that the separable degree of ki/k is finite. �

Corollary (2.4.4). Let X, Y and S be algebraic spaces with affine morphisms
f : X → Y and g : Y → S. Let α : S → Γd(X/S) be a morphism and denote by
f∗α the composition of α and the morphism Γd(f) : Γd(X/S) → Γd(Y/S). Then
Supp(f∗α) = f

(
Supp(α)

)
.

Proof. As the support and the set-theoretic image commute with any base change,
we can assume that S = Spec(k) where k is a field. Then

Image(α) =
n∐
i=1

Spec(ki) = {x1, x2, . . . , xn}

by Proposition (2.4.3). Further, by Proposition (1.4.1) there are positive integers
d1, d2, . . . , dn such that α factors through

∏n
i=1 Γdi

(
Spec(ki)

)
↪→ Γd(X/S). Let

f
(
Image(α)

)
=

m∐
j=1

Spec(k′j) = {y1, y2, . . . , ym}

where m ≤ n. It is then immediately seen that f∗α factors through the closed sub-
space

∏m
j=1 Γej

(
Spec(k′j)

)
↪→ Γd(Y/S) where ej =

∑
f(xi)=yj

di. As di is positive
so is ej and thus yj ∈ Supp(f∗α). This shows that Supp(f∗α) = f

(
Supp(α)

)
. �

Proposition (2.4.5). Let X be an algebraic space affine over S and let α : S →
Γd(X/S) be a morphism. Then every irreducible component of Supp(α) maps onto
an irreducible component of S.

Proof. As the support commutes with any base change it is enough to consider the
case where S = Spec(A) is irreducible, reduced and affine. Let Image(α) = Spec(B)
and F : B → A be the multiplicative polynomial law corresponding to α. We have
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a commutative diagram

ΓdA(B)

f

��

// // ΓdA(B/I) // ΓdK(A)

(
B ⊗A K(A)

)
f

��

A
� � // K(A)

◦

where I = ker
(
B → B ⊗AK(A)

)
. This shows that I ⊆ ker(F ) = 0. As V (I) is the

union of the irreducible components of Supp(α) which dominate S this shows that
every component surjects onto S. �

In the following theorem we restate the main properties of the image and support
of a family of cycles:

Theorem (2.4.6). Let X be an algebraic space affine over S and let α : S →
Γd(X/S) be a morphism. Then

(i) If S is reduced then Image(α) is reduced.
(ii) Image(α) → S is integral.
(iii) If S is connected then Supp(α) has at most d connected components.
(iv) If S = Spec(k) where k is a field then Image(α) =

∐n
i=1 Spec(ki) is a dis-

joint union of a finite number of points, at most d, such that the separable
degree of each ki/k is finite.

(v) Each geometric fiber of Supp(α) → S has at most d points. In partic-
ular, Supp(α) → S has universally topologically finite fibers, cf. Defini-
tion (A.2.1).

(vi) If S is a semi-local scheme, i.e., the spectrum of a semi-local ring, then
Supp(α) is semi-local.

(vii) Every irreducible component of Supp(α) maps onto an irreducible compo-
nent of S.

Proof. Properties (i) and (ii) follows from Propositions (2.1.4) and (2.1.6) respec-
tively. Properties (iii) and (iv) are Propositions (2.4.1) and (2.4.3) respectively.
Property (v) follows from (iv) as the support commutes with any base change and
property (vi) follows immediately from (ii) and (v). Property (vii) is Proposi-
tion (2.4.5). �

The following examples show that the support is not always finite.

Example (2.4.7). Let k = Fp(t1, t2, . . . ) and K = Fp(t1/p1 , t
1/p
2 , . . . ). We have a

polynomial law F : K → k given by a 7→ ap. The support of the corresponding
family α : Spec(k) → Γd(Spec(K)) is Spec(K) and k ↪→ K is not finite.

The following example shows that even if X → S is of finite presentation then
the image of a family α : S → Γd(X/S) need not be of finite presentation.

Example (2.4.8). Let X = S = Spec(A) where A = k[t1, t2, . . . ]/(t
p
1, t

p
2, . . . ) and k

is a field of characteristic p. Let α correspond to the multiplicative polynomial law
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F : A → A, x 7→ xp. Then, as in Examples (2.3.7) the kernel of F is (t1, t2, . . . )
which is not finitely generated. Hence Image(α) = Spec(k) ↪→ X is not finitely
presented over S.

2.5. Topological properties of the support.

Definition (2.5.1) ([EGAI, Def. 3.9.2]). We say that a morphism of algebraic
spaces f : X → Y is generizing if for any x ∈ X and generization y′ ∈ Y of
y = f(x) there exists a generization x′ of x such that f(x′) = y′. Equivalently, if
X and Y are schemes, the image of Spec(OX,x) by f is Spec(OY,y). We say that
f is component-wise dominating if every irreducible component of X dominates an
irreducible component of Y . We say that f is universally generizing (resp. univer-
sally component-wise dominating) if f ′ : X ′ → Y ′ is generizing (resp. dominating)
for any morphism g : Y ′ → Y where X ′ = X ×Y Y ′.

Remark (2.5.2). A morphism f : X → Y is generizing (resp. universally generiz-
ing) if and only if fred is generizing (resp. universally generizing). If g : Y ′ → Y
is a generizing surjective morphism, we have that f is generizing if f ′ is gener-
izing. If g : Y ′ → Y is a universally generizing surjective morphism, then f is
generizing (resp. universally generizing) if and only if f ′ is generizing (resp. uni-
versally generizing). Any flat morphism Y ′ → Y of algebraic spaces is universally
generizing.

Lemma (2.5.3). Let f : X → Y be a morphism of algebraic spaces. Then f is
universally generizing if and only if it is universally component-wise dominating.

Proof. A generizing morphism is component-wise dominating so the condition is
necessary. For sufficiency, assume that f is universally component-wise dominating.
Let x ∈ X, y = f(x) and choose a generization y′ ∈ Y . Let Y ′ = {y′} with the
reduced structure and consider the base change Y ′ ↪→ Y . As f ′ is component-wise
dominating, there is a generization x′ of x above y′. �

Proposition (2.5.4). Let f : X → S be an affine morphism of algebraic spaces.
Let α : S → Γd(X/S) be a family with support Z = Supp(α) ↪→ X. Then f |Z is
universally generizing.

Proof. Follows immediately from Lemma (2.5.3) as the support of a family of cycles
is universally component-wise dominating by Theorems (2.4.6) (vii) and (2.3.6). �

Remark (2.5.5). If Z → S is of finite presentation, e.g., if S is locally noetherian
and X → S is locally of finite type, then it immediately follows that f |Z is univer-
sally open from [EGAI, Prop. 7.3.10]. We will show that f |Z is universally open
without any hypothesis on f . The following lemma settles the case when X → S
is locally of finite type.

Lemma (2.5.6). Let S and X be affine schemes and f : X → S a morphism
of finite type. Let α : S → Γd(X/S) be a family of cycles and Z = Supp(α) its
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support. There is then a bijective closed immersion Z ↪→ Z ′ such that Z ′ is of finite
presentation over S.

Proof. Let S = Spec(A), Z = Spec(B) and let F : B → A be the multiplicative
law corresponding to α restricted to its image. Let C = A[t1, t2, . . . , tn] → B be a
surjection. The multiplicative law F induces a multiplicative law G : C � B → A.
Note that B = C/ ker(G). Corresponding to G is a homomorphism g : ΓdA(C) �
ΓdA(B) → A. As ΓdA(C) is a finitely presented A-algebra, cf. Proposition (1.3.7),
this homomorphism descends to a homomorphism g0 : ΓdA0

(C0) → A0 with A0

noetherian such that C = C0 ⊗A0 A and g = g0 ⊗A0 idA. As A0 is noetherian
C0/ ker(G0) is a finite A0-algebra of finite presentation.

Let Z0 = Spec
(
C0/ ker(G0)

)
and Z ′ = Z0 ×Spec(A0) Spec(A). As the support

commutes with base change by Theorem (2.3.6) we have that Z ↪→ Z ′ is a bijective
closed immersion. �

Proposition (2.5.7). Let S and X be algebraic spaces and f : X → S an affine
morphism. Let Z be the support of a family α : S → Γd(X/S). Then the restriction
of f to Z is universally open.

Proof. The statement is étale-local so we can assume that S = Spec(A) and
Z = Spec(B). Further as the support commutes with any base change, cf. Theo-
rem (2.3.6), it is enough to show that f |Z : Z → S is open.

We can write B as a filtered direct limit of finite A-subalgebras Bλ ↪→ B. Let
Zλ = Spec(Bλ). As Bλ ↪→ B is integral and injective it follows that Z → Zλ is
closed and dominating and thus surjective. Let α : S → Γd(Z/S) be a family with
support Z and let αλ : S → Γd(Zλ/S) be the family given by push-forward along
ϕλ : Z → Zλ.

By Corollary (2.4.4) we have that Supp(αλ) = ϕλ(Zred) = (Zλ)red. Further
by Lemma (2.5.6) there is a scheme Z ′λ of finite presentation over S such that
Supp(αλ) and Zλ are homeomorphic to Z ′λ. As Supp(αλ) → S is generizing by
Proposition (2.5.4) so is Z ′λ → S. As Z ′λ → S is also of finite presentation it is open
by [EGAI, Prop. 7.3.10] and hence so is Zλ → S.

To show that f |Z : Z → S is open it is enough to show that the image of any
quasi-compact open subset of Z is open. Let U ⊆ Z be a quasi-compact open
subset. Then according to [EGAIV, Cor. 8.2.11] there is a λ and Uλ ⊆ Zλ such that
U = ϕλ

−1(Uλ). As ϕλ is surjective and Zλ → S is open this shows that f |Z(U) is
open. �

3. Definition and representability of ΓdX/S

We will define a functor ΓdX/S and show that when X/S is affine it is represented
by Γd(X/S). It is then easy to prove that ΓdX/S is represented by a scheme for
any AF-scheme X/S. To prove representability in general, i.e., when X/S is any
separated algebraic space, is more difficult. For any morphism f : X → Y there is
a natural transformation f∗ : ΓdX/S → ΓdY/S which is “push-forward of cycles”. If
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f is étale, then f∗ is étale over a certain open subset of Γd(X/S). We will use this
result to show representability of ΓdX/S giving an explicit étale covering.

3.1. The functor ΓdX/S. Recall that a morphism of algebraic spaces f : X → S is
said to be integral if it is affine and the corresponding homomorphism OS → f∗OX
is integral. Equivalently, for any affine scheme T = Spec(A) and morphism T → S
the space X ×S T = Spec(B) is affine and A → B is integral. Further recall,
Proposition (1.4.2), that if X/S is affine and Z is a closed subspace of X, then
Γd(Z/S) is a closed subspace of Γd(X/S).

Definition (3.1.1). Let S be an algebraic space and X/S an algebraic space
separated over S. A family of zero-cycles of degree d consists of a closed sub-
scheme Z ↪→ X such that Z ↪→ X → S is integral together with a morphism
α : S → Γd(Z/S). Two families (Z1, α1) and (Z2, α2) are equivalent if there is a
closed subscheme Z of both Z1 and Z2 and a morphism α : S → Γd(Z/S) such that
αi is the composition of α and the morphism Γd(Z/S) ↪→ Γd(Zi/S) for i = 1, 2.

If g : S′ → S is a morphism of spaces and (Z,α) a family of cycles on X/S,
we let g∗(Z,α) =

(
g∗(Z), g∗α

)
be the pull-back along g. The image and support

of a family of cycles (Z,α) is the image and support of α, cf. Definitions cf. (2.3.1)
and (2.3.5).

Remark (3.1.2). It is clear that the pull-backs of equivalent families are equiva-
lent and that the image and support of equivalent families coincide. If (Z,α) is
a family then the family (Image(α), α′) is a minimal representative in the same
equivalence class. Here α′ is the restriction of α to its image, i.e., the morphism
S → Γd(Image(α)/S) which composed with Γd(Image(α)/S) ↪→ Γd(Z/S) is α.

The pull-back g∗α of a minimal representative α will not in general be a minimal
representative. However note that by Theorem (2.3.6) we have a canonical bijective
closed immersion Image(g∗α) ↪→ g∗Image(α).

Definition (3.1.3). We let ΓdX/S be the contravariant functor from S-schemes to
sets defined as follows. For any S-scheme T we let ΓdX/S(T ) be the set of equivalence
classes of families of zero-cycles (Z,α) of degree d of X×S T/T . For any morphism
g : T ′ → T of S-schemes, the map ΓdX/S(g) is the pull-back of families of cycles as
defined above.

In the sequel we will suppress the space of definition Z and write α ∈ ΓdX/S(T ).
We will not make explicit use of Z. Instead, we will use the subspace Image(α) ↪→
X ×S T which is independent on the choice of Z by Remark (3.1.2).

Proposition (3.1.4). If X is affine over S then the functor ΓdX/S is represented
by the algebraic space Γd(X/S), defined in §1.4, which is affine over S.

Proof. There is a natural transformation from ΓdX/S to HomS(−,Γd(X/S)) given
by composing a family α : T → Γd(Z/T ) with Γd(Z/T ) ↪→ Γd(X ×S T/T ) =
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Γd(X/S) ×S T → Γd(X/S). If α : T → Γd(X/S) is any morphism then α ×S idT
factors through Γd(Z/T ) ↪→ Γd(X ×S T/T ) where Z ↪→ X ×S T is the image
of α ×S idT . As Z is integral over S by Theorem (2.4.6) (ii), we have that the
morphism α corresponds to a unique equivalence class of families. It is thus clear
that Γd(X/S) represents ΓdX/S . �

Remark (3.1.5). For an affine morphism of algebraic spaces X → S, we have
that Γ1(X/S) = X and that the T -points of Γ1(X/S) parameterizes sections of
X ×S T → T . Thus, for any separated algebraic space X/S it follows that Γ1

X/S

parameterizes sections of X → S and that Γ1
X/S is represented by X.

Proposition (3.1.6). The functor ΓdX/S is a sheaf in the étale topology.

Proof. Let T be an S-scheme and f : T ′ → T an étale surjective morphism. Let
T ′′ = T ′ ×T T ′ with projections π1 and π2. Given an element α′ ∈ ΓdX/S(T ′) such
that π∗1α

′ = π∗2α
′ we have to show that there is a unique α ∈ ΓdX/S(T ) such that

f∗α = α′. Let Z ′ ↪→ X×ST ′ be the image of α′. As the image commutes with étale
base change, cf. Theorem (2.3.2), the image of α′′ is Z ′′ = π−1

1 (Z ′) = π−1
2 (Z ′). As

closed immersions satisfy effective descent with respect to étale morphisms [SGA1,
Exp. VIII, Cor. 1.9], there is a closed subspace Z ↪→ X×ST such that Z ′ = Z×T T ′.
Moreover Z is affine over T . Any α ∈ ΓdX/S(T ) such that f∗α = α′ is then in the
subset ΓdZ/T (T ) ⊆ ΓdX/S(T ). It is thus enough to show that ΓdZ/S is a sheaf in the
étale topology. But ΓdZ/S is represented by the space Γd(Z/S) which is affine over
S. As the étale topology is sub-canonical, it follows that ΓdZ/S is a sheaf. �

Proposition (3.1.7). Let X/S and Y/S be separated algebraic spaces. If f : X →
Y is an immersion (resp. a closed immersion, resp. an open immersion) then ΓdX/S
is a locally closed subfunctor (resp. a closed subfunctor, resp. an open subfunctor)
of ΓdY/S.

Proof. Let T be an S-scheme and let α ∈ ΓdX/S(T ) be a family with Z = Image(α) ↪→
XT . Then Z ↪→ XT is a closed subscheme such that Z → T is integral and hence
universally closed. As Y → S is separated it thus follows that Z ↪→ XT ↪→ YT is a
closed subscheme. It follows that ΓdX/S is a subfunctor of ΓdY/S .

Let α : T → ΓdY/S be a family of cycles. We have to show that if f is a closed
(resp. open) immersion then there is a closed (resp. open) subscheme U ↪→ T such
that if g : T ′ → T and α′ = g∗α ∈ ΓdX/S(T ′) then g factors through U . Let XT =
X ×S T , YT = Y ×S T , Z = Image(α) ⊂ YT and W = Z ∩XT = Z ×YT

XT ↪→ XT .
If f is an open immersion we let V be the closed subset YT \XT and U be the

complement of the image of V ∩Z = Z \W by Z → T . Thus U is the open subset
of T such that t ∈ U if and only if the fiber Zt does not meet V or equivalently
is contained in W . As the support commutes with arbitrary base change, see
Theorem (2.3.6), it is easily seen that Z ×T T ′ factors through XT ′ if and only if
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T ′ → T factors through U . Hence T ×Γd
Y/S

ΓdX/S = T |U which shows that ΓdX/S is
an open subfunctor.

If f is a closed immersion we consider the cartesian diagram

T ×Γd
Z/T

ΓdW/T
� _

��

// ΓdW/T
� _

��

� � // ΓdXT /T� _

��

// ΓdX/S
� _

��

T // ΓdZ/T
� � //

�

ΓdYT /T
//

�

ΓdY/S .

�

As W and Z are affine over S, the functors ΓdW/T and ΓdZ/T are represented by
Γd(W/T ) and Γd(Z/T ) respectively. As Γd(W/T ) ↪→ Γd(Z/T ) is a closed immersion
by Proposition (1.4.2) it follows that ΓdX/S is a closed subfunctor of ΓdY/S . �

Proposition (3.1.8). Let S be an algebraic space and let X1, X2, . . . , Xn be alge-
braic spaces separated over S. Then

Γd‘n
i=1Xi

=
∐
di∈NP
i di=d

Γd1X1
×S Γd2X2

×S · · · ×S Γdn

Xn
.

Proof. Follows from Proposition (1.4.1). �

Corollary (3.1.9). Let X/S be a separated algebraic space. Let k be an alge-
braically closed field and s : Spec(k) → S a geometric point of S. There is a
one-to-one correspondence between k-points of ΓdX/S and effective zero-cycles of de-
gree d on Xs. In this correspondence, a zero-cycle

∑n
i=1 di[xi] on Xs corresponds

to the family (Z,α) where Z = {x1, x2, . . . , xn} ⊆ Xs and α is the morphism

α : Spec(k) ∼= Γd1(x1/k)×k Γd2(x2/k)×k · · · ×k Γdn(xn/k) ↪→ Γd(Z/k)

Proof. Let α ∈ ΓdX/S(k) be a k-point. By Theorem (2.4.6) (iv) we have that
Z = Image(α) ↪→ Xs is a finite disjoint union of points x1, x2, . . . , xn, all with
residue field k as k is algebraically closed. According to Proposition (3.1.8), there
are positive integers d1, d2, . . . , dn such that d = d1 + d2 + · · · + dn and such that
α : k → Γd(Z/k) factors through the open and closed subscheme Γd1(x1/k) ×k
Γd2(x2/k) ×k · · · ×k Γdn(xn/k). As k(xi) = k, we have that Γdi(xi/k) ∼= k. The
point α corresponds to

∑n
i=1 di[xi]. �

Proposition (3.1.10). Let X/S be a separated algebraic space. Let {Uβ} be an
open covering of X such that any set of d points in X above the same point in S
lies in one of the Uβ’s. Then

∐
β ΓdUβ/S

→ ΓdX/S is an open covering. If X/S is an
AF-scheme then such a covering with the Uβ’s affine exists.

Proof. Let k be a field and α ∈ ΓdX/S(k). Then by Theorem (2.4.6) (iv) there is a
β such that α ∈ ΓdUβ/S

(k) ⊆ ΓdX/S(k). Thus
∐
β ΓdUβ/S

→ ΓdX/S is an open covering
by Proposition (3.1.7). �
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Theorem (3.1.11). Let S be a scheme and X/S an AF-scheme. The functor ΓdX/S
is then represented by an AF-scheme Γd(X/S).

Proof. As ΓdX/S is a sheaf in the Zariski topology, we can assume that S is affine.
Let {Uβ} be an open covering of X by affines such that any set of d points in X

above the same point in S lies in one of the Uβ ’s. As ΓdUβ/S
is represented by an

affine scheme, Proposition (3.1.10) shows that ΓdX/S is represented by a scheme
Γd(X/S).

If α1, α2, . . . , αm are points of Γd(X/S) above the same point of S, then the
union of their supports consists of at most dm points and there is thus an affine
subset U ⊆ X such that α1, α2, . . . , αm ∈ Γd(U/S). This shows that Γd(X/S)/S is
an AF-scheme. �

3.2. Effective pro-representability of ΓdX/S. Let A be a henselian local ring
and T = Spec(A) together with a morphism T → S. The image of a family of
cycles α ∈ ΓdX/S(T ) over T is then a semi-local scheme Z, integral over T by
Theorem (2.4.6) (ii), (vi). Furthermore, Proposition (A.2.7) implies that Z is a
finite disjoint union of local henselian schemes.

Let z1, z2, . . . , zn be the closed points of Z ↪→ XT and {x1, x2, . . . , xm} their
images in X where the xi’s are chosen to be distinct. As zi lies over the closed
point of T , all xi lies over a common point s ∈ S. Let hXxi = Spec(hOX,xi),
hXx1,x2,...,xm =

∐m
i=1

hXxi and hSs = Spec(hOS,s) be the henselizations of X
and S at the xi’s and s. As OZ,zi is henselian it follows that Z ↪→ XT → X
factors uniquely through hXx1,x2,...,xm → X. Thus Z ↪→ XT factors uniquely
through hXx1,x2,...,xm ×hSs

T → XT and α corresponds to a unique element of
ΓdhXx1,x2,...,xm/hSs

(T ). As hXx1,x2,...,xm is affine, we have a unique morphism T →
Γd(hXx1,x2,...,xm/

hSs).
Further, by Proposition (1.4.1)

Γd
(
hXx1,x2,...,xm/

hSs
)

=
∐
di∈NP
i di=d

m∏
i=1

Γdi
(
hXxi/

hSs
)
.

and as T is connected T → Γd(hXx1,x2,...,xm
/hSs) factors through one of these

components.
To conclude, there are uniquely determined points x1, x2, . . . , xm ∈ X, unique

positive integers di and a unique morphism

ϕ : T →
m∏
i=1

Γdi
(
hXxi/

hSs
)
↪→ Γd

(
hXx1,x2,...,xm/

hSs
)

such that α is equivalent to ϕ×hSs
idT . This implies the following:

Proposition (3.2.1). Let X/S be a separated algebraic space and assume that
ΓdX/S is represented by an algebraic space Γd(X/S). Let β ∈ Γd(X/S) be a point
with residue field k and s its image in S. The point β corresponds uniquely to points
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x1, x2, . . . , xm ∈ X, positive integers d1, d2, . . . , dm with sum d and morphisms
ϕi : k → Γd

(
k(xi)/k(s)

)
. The local henselian ring (resp. strictly local ring) at β

is the local henselian ring (resp. strictly local ring) of
∏m
i=1 Γdi(hXxi/

hSs) at the
point corresponding to the morphisms ϕi.

(3.2.2) If X/S is locally of finite type and A is a complete local noetherian ring,
then the support of any family of cycles α on X parameterized by T = Spec(A)
is finite over T . Thus Image(α) is a disjoint union of a finite number of complete
local rings. Let s ∈ S and xi ∈ X be defined as above and let X̂xi = Spec(ÔX,xi),
Ŝs = Spec(ÔS,s) and X̂x1,x2,...,xm

=
∐m
i=1 X̂xi

be the completions of X and S at
the corresponding points. Repeating the reasoning above we conclude that there is
a unique morphism

ϕ : T →
m∏
i=1

Γdi(X̂xi
/Ŝs) ↪→ Γd(X̂x1,x2,...,xm/Ŝs)

such that α is equivalent to ϕ×bSs
idT . Thus we obtain:

Proposition (3.2.3). Let S be locally noetherian and X an algebraic space sepa-
rated and locally of finite type over S and assume that ΓdX/S is represented by an
algebraic space Γd(X/S). Let β ∈ Γd(X/S) be a point with residue field k and s its
image in S. The point β corresponds uniquely to points x1, x2, . . . , xm ∈ X, pos-
itive integers d1, d2, . . . , dm with sum d and morphisms ϕi : k → Γd

(
k(xi)/k(s)

)
.

The formal local ring at β is the formal local ring of
∏m
i=1 Γdi(X̂xi

/Ŝs) at the point
corresponding to the morphisms ϕi.

Corollary (3.2.4). Let S be locally noetherian and X an algebraic space separated
and locally of finite type over S. The functor ΓdX/S is effectively pro-representable
by which we mean the following: Let k be any field and β0 ∈ ΓdX/S(k). There is
then a complete local noetherian ring Â and an object β̂ ∈ ΓdX/S(Spec(A)) such that
for any local artinian scheme T and family α ∈ ΓdX/S(T ), coinciding with β0 at the
closed point of T , there is a unique morphism f : T → Spec(Â) such that α = f∗β̂.

Remark (3.2.5). Assume that ΓdX/S is represented by an algebraic space Γd(X/S).
Questions about properties of Γd(X/S) which only depend on the strictly local
rings, such as being flat or reduced, can be reduced to the case where X is affine
using Proposition (3.2.1). As some properties cannot be read from the strictly local
rings we will need the stronger result of Proposition (3.4.2) which shows that any
point in Γd(X/S) has an étale neighborhood which is an open subset of Γd(U/S)
for some affine scheme U .
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3.3. Push-forward of families of cycles.

Definition (3.3.1). Let f : X → Y be a morphism of algebraic spaces sepa-
rated over S. If (Z,α) ∈ ΓdX/S(T ) is a family of cycles over T we let f∗(Z,α) =
(fT (Z), f∗α) where fT (Z) is the schematic image of Z along X ×S T → Y ×S T
and f∗α is the composition of α : T → Γd(Z/T ) and Γd(Z/T ) → Γd(fT (Z)/T ).
This induces a natural transformation of functors f∗ : ΓdX/S → ΓdY/S denoted the
push-forward.

Remark (3.3.2). If g : Y → Z is another morphism of S-spaces then clearly
g∗◦f∗ = (g◦f)∗. If X and Y are affine over S, the push-forward f∗ : ΓdX/S → ΓdY/S
coincides with the morphism Γd(X/S) → Γd(Y/S) given by the covariance of the
functor Γd.

Definition (3.3.1) only makes sense after we have checked that fT (Z) is integral
over T . If Y/S is locally of finite type then fT (Z) is quasi-finite and proper and
hence finite, cf. Proposition (A.2.3). More generally, as Z → T is integral with
topological finite fibers by Theorem (2.4.6) (v), it follows from Theorem (A.2.2)
that fT (Z) is integral without any hypothesis on Y/S except the separatedness.

Definition (3.3.3). Let X/S and Y/S be separated algebraic spaces and let f :
X → Y be any morphism of S-spaces. We say that α ∈ ΓdX/S(T ) is regular (resp.
quasi-regular) with respect to f if fT |Image(α) is a closed immersion (resp. univer-
sally injective) or equivalently if fT |Image(α) : Image(α) → fT

(
Image(α)

)
is an iso-

morphism (resp. a universal bijection). We let ΓdX/S,reg/f (T ) (resp. ΓdX/S,qreg/f (T ))
be the elements which are regular (resp. quasi-regular) with respect to f .

Definition (3.3.4). Let F and G be contravariant functors from S-schemes to sets.
We say that a morphism of functors f : F → G is topologically surjective if for any
field k and element y ∈ G

(
Spec(k)

)
there is a field extension g : Spec(k′) → Spec(k)

and an element x ∈ F
(
Spec(k′)

)
such that f(x) = g∗y in G

(
Spec(k′)

)
. If F and

G are represented by algebraic spaces, we have that f is topologically surjective if
and only if the corresponding morphism of spaces is surjective.

Definition (3.3.5). A morphism f : X → Y is unramified if it is formally unram-
ified and locally of finite type.

In [EGAIV] unramified morphisms are locally of finite presentation but the above
definition is more useful and also commonly used.

Proposition (3.3.6). Let X/S and Y/S be separated algebraic spaces and let f :
X → Y be a morphism of S-spaces. Let α ∈ ΓdX/S(T ). If f is unramified then α is
quasi-regular if and only if α is regular.

Proof. If α is quasi-regular and f unramified then Image(α) ↪→ X ×S T → Y ×S T
is unramified and universally injective. By [EGAIV, Prop. 17.2.6] this implies that
fT |Image(α) : Image(α) → Y ×S T is a monomorphism. As Image(α) → T is
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universally closed and YT → T is separated it follows that fT |Image(α) is a proper
monomorphism and hence a closed immersion [EGAIV, Cor. 18.12.6]. �

Proposition (3.3.7). Let X/S and Y/S be separated algebraic spaces and let f :
X → Y be a morphism of S-spaces. Let T be an S-scheme and fT : X ×S T →
Y ×S T the base change of f along T → S. Let α ∈ ΓdX/S(T ). Then

(i) Image(f∗α) ↪→ fT
(
Image(α)).

(ii) Supp(f∗α) = fT
(
Supp(α)).

(iii) Supp(α) → fT
(
Supp(α)) = Supp(f∗α) is a bijection if α is quasi-regular

with respect to f∗.
(iv) Image(α) ∼= fT

(
Image(α)) = Image(f∗α) if α is regular with respect to f∗.

Proof. (i) follows immediately by the definition of f∗ and (ii) follows from Corol-
lary (2.4.4). (iii) follows from the definition of a quasi-regular family and (ii). (iv)
follows by the definition of regular as Image(α) ∼= fT

(
Image(α)

)
easily implies that

fT
(
Image(α)

)
= Image(f∗α). �

Examples (3.3.8). We give two examples on bad behavior of the image with
respect to push-forward. In the first example f is étale, α not (quasi-)regular and
Image(f∗α) ↪→ fT

(
Image(α)) is not an isomorphism. In the second example f is

universally injective and α quasi-regular but not regular.
(i) Let S = Spec(A), Y = Spec(B) and X = Y qY = Spec(B×B) where A =

k[ε]/ε2 and B = k[ε, δ]/(ε2, δ2, εδ). We let f : X → Y be the étale map
given by the identity on the two components. Finally we let α ∈ Γ2

X/S(S)
be the family of cycles corresponding to the multiplicative polynomial law
F : B × B → B/(δ − ε) × B/(δ + ε) ∼= A × A → A ⊗A A ∼= A which
is homogeneous of degree 2. The support of α corresponds to ker(F ) =(
(δ − ε), (δ + ε)

)
⊂ B ×B. It is easily seen that f

(
Image(α)

)
= V (0). On

the other hand an easy calculation shows that Image(f∗α) = V (δ).
(ii) Let k be a field of characteristic different from 2. Let S = Spec(A),

Y = Spec(B) and X = Spec(C) where A = k[ε]/ε2, B = k[ε, δ]/(ε, δ)2 and
C = k[ε, δ, τ ]/

(
ε2, εδ, ετ, δ2, τ2, δτ − ε

)
. Let f : X → Y be the natural

morphism. An easy calculation shows that Γ2
A(C) is generated by γ2(δ),

γ2(τ), δ × 1, τ × 1 and δ × τ . After finding explicit relations for these
generators in Γ2

A(C), it can also be shown that γ2(δ), γ2(τ), δ×1, τ×1 7→ 0
and δ × τ 7→ −2ε defines a family α : S → Γ2(X/S). It is easy to check
that Image(α) = X, f(Image(α)) = Y but Image(f∗α) = V (δ).

Proposition (3.3.9). Let f : X → Y be a morphism between algebraic spaces
separated over S. Then:

(i) ΓdX/S,reg/f and ΓdX/S,qreg/f are subfunctors of ΓdX/S.
(ii) If f : X → Y is unramified then ΓdX/S,reg/f = ΓdX/S,qreg/f is an open

subfunctor of ΓdX/S.
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(iii) If f is an immersion then ΓdX/S,reg/f = ΓdX/S,qreg/f = ΓdX/S.
(iv) If f is surjective then ΓdX/S,reg/f → ΓdY/S is topologically surjective.

Proof. (i) As the support commutes with arbitrary base change it follows that
the requirement for α ∈ ΓdX/S(T ) to be quasi-regular is stable under arbitrary
base change. Thus the pull-back ΓdX/S(T ) → ΓdX/S(T ′) induced by T ′ → T re-
stricts to ΓdX/S,qreg/f . If α ∈ ΓdX/S(T ) is regular then by definition Image(α) ∼=
fT
(
Image(α)

)
= Image(f∗α). If g : T ′ → T is any morphism then clearly

Image(g∗α) ∼= Image(g∗f∗α) = Image(f∗g∗α) and thus g∗α ∈ ΓdX/S,reg/f (T
′).

(ii) Proposition (3.3.6) shows that ΓdX/S,qreg/f = ΓdX/S,reg/f . To show that
ΓdX/S,reg/f ⊆ ΓdX/S is open we let α : T → ΓdX/S be a morphism. This factors
through T → Γd(Z/T ) where Z = Image(α) ↪→ XT and XT = X×S T . As f is un-
ramified (fT )|Z : Z ↪→ XT → YT is unramified. In particular (fT )|Z : Z → fT (Z)
is finite and unramified. By Nakayama’s lemma, the rank of the fibers of a finite
morphism is upper semicontinuous. Thus, the subset W of fT (Z) over which the
geometric fibers of (fT )|Z contain more than one point is closed. Let U = T \gT (W ),
where g : Y → S is the structure morphism. Then ΓdX/S,qreg/f ×Γd

X/S
T = U which

shows that ΓdX/S,qreg/f ⊆ ΓdX/S is an open subfunctor.
(iii) Obvious from the definitions.
(iv) Let β ∈ ΓdY/S(k) where k = k is an algebraically closed field. Then by

Theorem (2.4.6) (iv) the image W := Image(β) ↪→ Yk is a finite disjoint union of
reduced points, each with residue field k. As f is surjective we can then find a field
extension k ↪→ k′ and a closed subspace Z ↪→ Xk′ such that fk′(Z) = Wk′ and
fk′ |Z : Z →Wk′ is an isomorphism. This gives an element α ∈ ΓdX/S(k′) such that
f∗α = β. �

Proposition (3.3.10). Let

X ′ g′
//

f ′

��

X

f

��

Y ′ g
// Y

�

be a cartesian square of algebraic spaces separated over S. Let

ΓdX′/S,reg/g = ΓdX′/S ×Γd
Y ′/S

ΓdY ′/S,reg/g

=
{
α ∈ ΓdX′/S : f ′∗α is regular with respect to g

}
.

Then

(i) If g is unramified or f is an immersion then

ΓdX′/S,reg/g ⊆ ΓdX′/S,reg/g′ .
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(ii) If g is étale or f is an immersion then we have a cartesian diagram

ΓdX′/S,reg/g

f ′∗
��

g′∗ // ΓdX/S

f∗

��

ΓdY ′/S,reg/g

g∗ // ΓdY/S .

�

(iii) For arbitrary g the results of (i) and (ii) are true over reduced S-schemes,
i.e., for any reduced S-scheme T we have that

ΓdX′/S,reg/g(T ) ⊆ ΓdX′/S,reg/g′(T )

and the diagram in (ii) is cartesian in the subcategory of functors from
reduced S-schemes.

Proof. (i) Let α′ ∈ ΓdX′/S(T ). If f is an immersion then Image(f ′∗α
′) = Image(α′)

and Image(f∗g′∗α
′) = Image(g′∗α

′). It is thus obvious that α′ is regular if and only
if f ′∗α

′ is regular, i.e., ΓdX′/S,reg/g = ΓdX′/S,reg/g′ .
Assume instead that f is arbitrary but g is unramified. Let Z ′ = Image(α′)

and W ′ = f ′T (Z ′). If α′ ∈ ΓdX′/S,reg/g(T ), i.e., if f ′∗α
′ is regular with respect

to g, we have that Image(f ′∗α
′) ↪→ W ′ ↪→ Y ′

T → YT is a closed immersion. But
Image(f ′∗α

′) ↪→W ′ is universally bijective and thusW ′ → YT is universally injective
and unramified. By [EGAIV, Prop. 17.2.6] this implies thatW ′ → YT is a monomor-
phism and hence a closed immersion. Thus Z ′ ↪→W ′×Y ′

T
X ′
T = W ′×YT

XT ↪→ XT

is a closed immersion which shows that α′ is regular with respect to g′.
(ii) The commutativity of the diagrams is obvious. This gives us a canonical

morphism
Λ : ΓdX′/S,reg/g → ΓdX/S ×Γd

Y/S
ΓdY ′/S,reg/g.

We construct an inverse Λ−1 of this morphism as follows: Let T be an S-scheme,
α ∈ ΓdX/S(T ) and β′ ∈ ΓdY ′/S,reg/g(T ) such that β = g∗β

′ = f∗α ∈ ΓdY/S(T ).
As β′ is regular with respect to g we have that Image(β′) ↪→ Y ′

T is isomorphic
to Image(β) ↪→ YT . Let Z = Image(α) ↪→ XT . If f is an immersion then α
is regular with respect to f and Z ↪→ XT is isomorphic to Image(β) and we let
Z ′ = Image(β′)×Image(β) Image(α) ∼= Z.

For arbitrary f but étale g, let W = fT (Z). Then Image(β) ↪→W is a bijective
closed immersion. By the regularity of β′, we have that Image(β′) is a section of
g−1
T

(
Image(β)

)
→ Image(β). As g is unramified it thus follows that Image(β′) is

open and closed in g−1
T

(
Image(β)

)
↪→ g−1

T W . Let W ′ be the corresponding open
and closed subscheme of g−1

T W . As g is étale W ′ ∼= W and we let Z ′ = W ′ ×W Z.
In both cases we have obtained a canonical closed subscheme Z ′ ↪→ X ′

T such
that Z ′ ∼= Z. This gives a unique lifting of the family α ∈ ΓdZ(T ) to a family
α′ ∈ ΓdZ′(T ) ⊆ ΓdX′/S(T ). By the construction of Z ′ and the regularity of β′, it
is clear that f ′∗α

′ = β′. We let Λ−1(T )(α, β′) = α′ and it is obvious that Λ is
a morphism since the construction is functorial. By construction Λ ◦ Λ−1 is the
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identity and as ΓdX′/S,reg/g ⊆ ΓdX′/S,reg/g′ it follows that Λ−1 ◦ Λ is the identity as
well.

(iii) Over reduced schemes, all images involved are reduced by Theorem (2.4.6) (i)
and the support of the push-forward coincides with the image. The arguments of
(i) and (ii) then simplify and go through without any hypotheses on f and g. �

Corollary (3.3.11). Let f : X → Y and g : Y ′ → Y be morphism of algebraic
spaces, separated over S. Assume that for every involved space Z, the functor ΓdZ/S
is represented by a space which we denote by Γd(Z/S).

(i) If g is unramified, then ΓdY ′/S,reg/g is represented by an open subspace
U = reg(g) of Γd(Y ′/S).

(ii) If g is étale, then we have a cartesian diagram

Γd(X ′/S)|f ′∗−1(U)

f ′∗
��

g′∗ // Γd(X/S)

f∗

��

Γd(Y ′/S)|U
g∗ // Γd(Y/S).

�

(iii) If g is unramified, the canonical morphism

Λ : Γd(X ′/S)|f ′∗−1(U) → Γd(Y ′/S)|U ×Γd(Y/S) Γd(X/S)

is a universal homeomorphism such that Λred is an isomorphism.

Proof. Follows immediately from Propositions (3.3.9) and (3.3.10). �

Corollary (3.3.12). Let fi : Xi → Y , i = 1, 2 be morphism of algebraic spaces,
separated over S. Let πi : X1 ×Y X2 → Xi be the projections. Assume that
for every involved space Z, the functor ΓdZ/S is represented by a space which we
denote by Γd(Z/S). Assume that f1 and f2 are both étale and let Ui = reg(fi) and
U12 = reg(f1 ◦ π1) = reg(f2 ◦ π2). Then

(i) U12 = ((π1)∗)−1(U1) ∩ ((π2)∗)−1(U2).
(ii) The diagram

Γd(X1 ×Y X2/S)|U12

(π1)∗

��

(π2)∗
// Γd(X2/S)|U2

(f2)∗

��

Γd(X1/S)|U1

(f1)∗
// Γd(Y/S)

�

is cartesian.

Proof. It follows from (i) of Proposition (3.3.10) that

((π1)∗)−1(U1) ∩ ((π2)∗)−1(U2) ⊆ U12

and the reverse inclusion is obvious. That the diagram is cartesian now follows
from Corollary (3.3.11). �
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Remark (3.3.13). The diagrams in Proposition (3.3.10) and Corollary (3.3.11) are
not always cartesian if g is unramified but not étale. In fact, by Examples (3.3.8)
there is a morphism f : X → Y and a family α ∈ ΓdX/S(S) such that Image(α) = X,
f(Image(α)) = Y and such that Image(f∗α) ↪→ Y is not an isomorphism. If we let
Y ′ = Image(f∗α) and β′ = f∗α ∈ ΓdY ′/S(S), then we cannot lift (α, β′) to a family
α′ ∈ ΓdX′/S(S). On the other hand, it is easily seen that Corollary (3.3.12) remains
valid if we replace étale with unramified.

Remark (3.3.14). Let X, Y , U , f and g as in Corollary (3.3.11) and let U ′ be the
open subscheme of Γd(X ′/S) which represents ΓdY ′/S,reg/g′ . Then f ′∗

−1(U) ⊆ U ′ by
Proposition (3.3.10) (i), i.e., the points of Γd(X ′/S)|f ′∗−1(U) are regular with respect
to g′. On the other hand, a point which is regular with respect to g′ need not be
regular with respect to g, i.e., the inclusion f ′∗

−1(U) ⊆ U ′ is strict in general.

Proposition (3.3.15). If f : X/S → Y/S is an étale (resp. étale and surjec-
tive) morphism of algebraic spaces separated over S, then the push-forward f∗ :
ΓdX/S,reg/f → ΓdY/S is representable and étale (resp. étale and surjective).

Proof. If f is surjective then f∗ : ΓdX/S,reg/f → ΓdY/S is topologically surjective by
Proposition (3.3.9) (iv).

I) Reduction to X → S quasi-compact. Let {Uβ} be an open cover ofX such that
Uβ is quasi-compact and any set of d points in X over the same point in S lies in
some Uβ . Then {ΓdUβ ,reg/f |Uβ

→ ΓdX,reg/f} is an open cover by Proposition (3.1.10).
Replacing X with Uβ we can thus assume that X is quasi-compact.

II) Reduction to X,Y and S affine and Y integral over S. Let T be an affine
scheme and T → ΓdY/S a morphism. Then it factors as T → Γd(W/T ) where
W ↪→ YT = Y ×S T is a closed subspace such that W → T is integral. Let
Z = f−1

T (W ). Note that f is separated and quasi-compact as X → S is separated
and quasi-compact. Hence f is quasi-affine as well as Z → W → T which is
the composition of two quasi-affine morphisms. Thus ΓZ/T and ΓW/T are both
representable by Theorem (3.1.11). As W ↪→ YT is a closed immersion it follows
from Proposition (3.3.10) (ii) that we have a cartesian diagram

Γd(Z/T )|reg(fT |Z)

(fT |Z)∗

��

� � // ΓdXT /T,reg/fT

(fT )∗

��

// ΓdX/S,reg/f

f∗

��

Γd(W/T ) � � // ΓdYT /T
//

�

ΓdY/S .

�

This shows that f∗ is representable. To show that f∗ : ΓdX/S,reg/f → ΓdY/S is
étale it is thus enough to show that Γd(Z/T ) → Γd(W/T ) is étale over the open
subset reg (fT |Z). Further, as Γd(Z/T ) is covered by open affine subsets of the
form Γd(U/T ) where U ⊆ Z is an affine open subset by Proposition (3.1.10), we
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can assume that Z/T is affine. Replacing X, Y and S with Z, W and T we can
then assume that X and S are affine and Y is integral over S.

III) Reduction to X and Y quasi-finite and finitely presented over S. Let S =
Spec(A), Y = Spec(B) and X = Spec(C). We can write B as a filtered direct limit
of finite and finitely presented A-algebras Bλ. As B → C is of finite presentation, we
can find an µ and a Bµ-algebra Cµ such that C = Cµ⊗Bµ B. Let Cλ = Cµ⊗Bµ Bλ,
Xλ = Spec(Cλ) and Yλ = Spec(Bλ) for every λ ≥ µ. As Γd commutes with
filtered direct limits, cf. paragraph (1.3.3), we have that ΓdA(B) = lim−→λ

ΓdA(Bλ) and
ΓdA(C) = lim−→λ

ΓdA(Cλ).
Let U = reg(f) ⊆ Γd(X/S) and let u ∈ U be a point with residue field k and

let α ∈ ΓX/S(k) be the corresponding family of cycles with image Z ↪→ Xk. Let
β = f∗α and W = Image(β). As α is regular Z → W is an isomorphism. Now as
W consists of a finite number of points each with a residue field of finite separable
degree over k, it is easily seen that there is a λ ≥ µ such that (Y ×S k)|W → Yλ×S k
is universally injective. Thus the push-forward of α along ψλ : X → Xλ is quasi-
regular with respect to fλ and thus regular as fλ is étale. Corollary (3.3.11) gives
the cartesian diagram

Γd(X/S)|ψ−1
λ (V )

f∗ //

ψλ∗

��

Γd(Y/S)

��

Γd(Xλ)|V
(fλ)∗

// Γd(Yλ/S)

�

where V = reg(fλ) and u ∈ ψ−1
λ (V ) as (ψλ)∗α is regular.

Replacing X and Y with Xλ and Yλ we can thus assume that X and Y are of
finite presentation over S. Further as f is quasi-finite and of finite presentation and
Y → S is finite and of finite presentation it follows that X → S is quasi-finite and
of finite presentation. Proposition (1.3.7) then shows that Γd(X/S) and Γd(Y/S)
are of finite presentation over S. Thus f∗ : Γd(X/S) → Γd(Y/S) is also of finite
presentation.

IV) Reduction to S strictly local. Let α ∈ Γd(X/S) and let β = f∗(α) and
s ∈ S be its images. Let S′ → S be a flat morphism such that s is in its image.
Then, as f∗ is of finite presentation, f∗ is étale at a point α ∈ Γd(X/S) if the mor-
phism Γd(X ′/S′) → Γd(Y ′/S′) is étale at a point α′ ∈ Γd(X ′/S′) above α [EGAIV,
Prop. 17.7.1]. We take S′ as the strict henselization of OS,s. As ΓdX/S,reg/f is an
open subfunctor of ΓdX/S we have that reg(f)×S S′ = reg(f ′). We can thus replace
X, Y and S with X ′, Y ′ and S′ and assume that S is strictly local.

V) Conclusion We have now reduced the proposition to the following situation:
S is strictly local, X → S is quasi-finite and finitely presented and Y → S is finite
and finitely presented. The support of α ∈ Γd(X/S) consists of a finite number of
points x1, x2, . . . , xm ∈ X lying above the closed point s ∈ S. As X → S is quasi-
finite and S is henselian it follows that X =

(∐m
i=1Xi

)
qX ′ where Xi are strictly
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local schemes, finite over S, such that xi ∈ Xi. Then α ∈ Γd
(∐m

i=1Xi

)
↪→ Γd(X/S)

and we can thus assume that X =
∐m
i=1Xi is finite over S.

As S is strictly local and Y → S is finite it follows that Y =
∐n
j=1 Yj is a finite

disjoint union of strictly local schemes. For every i = 1, 2, . . . ,m there is a j(i) such
that f(Xi) ↪→ Yj(i) and f |Xi : Xi → Yj(i) is an isomorphism as f is étale. We have
further by Proposition (1.4.1) that

Γd(X/S) =
∐

P
i di=d

m∏
i=1

Γdi(Xi), Γd(Y/S) =
∐

P
j ej=d

n∏
j=1

Γej (Yj).

It is obvious that the regular subset U ⊆ Γd(X/S) is given by the connected
components with d1, d2, . . . , dm such that for every j = 1, 2, . . . , n there is at most
one i with di > 0 such that j(i) = j. As

m∏
i=1

Γdi(Xi) →
m∏
i=1

Γdi
(
Yj(i)

)
is an isomorphism this completes the demonstration. �

Corollary (3.3.16). Let X/S be a separated algebraic space and {fα : Uα → X}α
an étale separated cover. Assume that for every involved space Z, the functor ΓdZ/S
is represented by a space which we denote by Γd(Z/S). Then

(3.3.16.1)
∐
α,β

Γd(Uα ×X Uβ/S)|reg //
//

∐
α

Γd(Uα/S)|reg // Γd(X/S)

is an étale equivalence relation. Here reg denotes the regular locus with respect to
the push-forward to X.

Proof. This follows from Corollary (3.3.12) and Proposition (3.3.15). �

3.4. Representability of ΓdX/S by an algebraic space. In this subsection, it
will be shown that for any algebraic space X separated over S, the functor ΓdX/S
is represented by an algebraic space, separated over S.

Theorem (3.4.1). Let S be an algebraic space and X/S a separated algebraic space.
Then the functor ΓdX/S is represented by a separated algebraic space Γd(X/S).

Proof. Let f : X ′ → X be an étale cover such that X ′ is a disjoint union of
affine schemes. Then X ′ is an AF-scheme and ΓdX′/S is represented by the scheme
Γd(X ′/S), cf. Theorem (3.1.11). By Propositions (3.1.6) and (3.3.15), the functor
ΓdX/S is a sheaf in the étale topology and the push-forward f∗ : Γd(X ′/S)|reg(f) →
ΓdX/S is an étale presentation.

To show that ΓdX/S is a separated algebraic space, it is thus sufficient to show
that the diagonal is represented by closed immersions. Let T be an S-scheme and
α, β ∈ ΓdX/S(T ). Let Zα, Zβ ↪→ X ×S T be the images of α and β. Let Z0 =
Zα ∩ Zβ = Zα ×XT

Zβ . We then let T0 = α−1(Γd(Z0/S)) ∩ β−1(Γd(Z0/S)) where
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we have considered α and β as morphisms T → Γd(Zα/T ) and T → Γd(Zβ/T )
respectively. Then T0 ↪→ T is a closed subscheme and

(α, β)∗∆Γd
X/S

/S = ΓdX/S ×Γd
X/S

×SΓd
X/S

T

= Γd(Z0/T )×Γd(Z0/T )×SΓd(Z0/T ) T0

= (α|T0 , β|T0)
∗∆Γd(Z0/T )/T

which is a closed subscheme of T0 as Γd(Z0/T ) → T is affine. �

Proposition (3.4.2). Let X/S be a separated algebraic space. Let s ∈ S and let
α ∈ Γd(X/S) be a point over s ∈ S. There is then a finite number of points
x1, x2, . . . , xn ∈ X with n ≤ d such that the following condition holds:

(*) Choose an étale neighborhood S′ → S of s and étale neighborhoods {Ui →
X} of {xi} such that the Ui’s are algebraic S′-spaces. There is then an
open subset V of Γd

(∐n
i=1 Ui/S

′) such that V → Γd(X/S) is an étale
neighborhood of α.

Furthermore, if we choose the Ui’s such that there is a point above xi with trivial
residue field extension, then there is a point in V above α with trivial residue field
extension.

In particular, Γd(X/S) has an étale covering of the form
∐
i Γ

d(Xi/Si)|Vi
where

Si and Xi are affine and Si → S and Xi → X étale.
Proof. The point α corresponds to a family Spec(k(α)) → Γd(X/S) where k(α) is
the residue field. Let Z ↪→ X ×S Spec(k(α)) be the image of this family. Then Z
is reduced and consists of a finite number of points z1, z2, . . . , zm such that m ≤ d.
Let W = {x1, x2, . . . , xn} be the projection of Z on X. Then α lies in the closed
subset Γd(W/S) ↪→ Γd(X/S).

If f : U → X is an étale neighborhood of W then it is obvious that there is
a lifting of α to V = Γd(U/S)|reg(f). Furthermore, if f has trivial residue field
extensions over W , then we can choose a lifting with the residue field k(α). That
V → Γd(X/S) is étale is Proposition (3.3.15). �

4. Further properties of Γd(X/S)

4.1. Addition of cycles and non-degenerate families. In paragraphs (1.2.14)
and (1.3.5) we defined the universal multiplication of laws ρd,e : Γd+eA (B) →
ΓdA(B)⊗AΓeA(B). We will give a corresponding morphism Γd(X/S)×S Γe(X/S) →
Γd+e(X/S) for arbitrary X/S.

Definition-Proposition (4.1.1). Let X/S be a separated algebraic space and let
d, e be positive integers. Then there exists a morphism

+ : Γd(X/S)×S Γe(X/S) → Γd+e(X/S)

which on points is addition of cycles. When X/S is affine, this morphism corre-
sponds to the homomorphism ρd,e. The operation + makes the space Γ(X/S) =∐
d≥0 Γd(X/S) into a graded commutative monoid.



FAMILIES OF ZERO-CYCLES I 41

Proof. The morphism + is the composition of the open and closed immersion
Γd(X/S)×Γe(X/S) ↪→ Γd+e(XqX/S) of Proposition (3.1.8) and the push-forward
along XqX → X. It is clear that this is an associative and commutative operation
as push-forward is functorial. When X/S is affine, it is clear from (1.2.14) that the
addition of cycles corresponds to the homomorphism ρd,e. �

Proposition (4.1.2). Let X/S be a separated algebraic space and T an S-scheme.
Let α ∈ ΓdX/S(T ) and β ∈ ΓeX/S(T ).

(i) If T is connected and Image(α) =
∐n
i=1 Zi then there are integers di ≥ 1

and families of cycles αi ∈ Γdi

Zi/S
(T ) such that d = d1 + d2 + · · ·+ dn and

α = α1 + α2 + · · ·+ αn.
(ii) Supp(α+ β) = Supp(α) ∪ Supp(β).
(iii) Let f : X → Y be a morphism of separated algebraic spaces. Then f∗(α+

β) = f∗α+ f∗β.

Proof. (i) and (ii) follows from Propositions (3.1.8) and (3.3.7) (ii) respectively. (iii)
follows easily from the definitions and the functoriality of the push-forward. �

Proposition (4.1.3). The morphism Γd(X/S)×S Γe(X/S) → Γd+e(X/S) is étale
over the open subset U ⊆ Γd(X/S) ×S Γe(X/S) where (α, β) ∈ U if Supp(α) and
Supp(β) are disjoint.

Proof. The morphism XqX → X is étale. By Propositions (3.1.8) and (3.3.15) we
have that Γd(X/S)×S Γe(X/S) → Γd+e(X/S) is étale at (α, β) if α q β is regular
with respect to X qX → X. This is fulfilled if and only if Supp(α) and Supp(β)
are disjoint. �

Notation (4.1.4). We let (X/S)d denote the fiber product X ×S X ×S · · · ×S X
of d copies of X over S.

Proposition (4.1.5). Let X/S be a separated algebraic space. The symmetric
group on d letters Sd acts on (X/S)d by permutation of factors. We equip Γd(X/S)
with the trivial Sd-action. Then:

(i) There is a canonical Sd-equivariant morphism ΨX : (X/S)d → Γd(X/S).

(ii) ΨX is integral and universally open. Its fibers are the orbits of (X/S)d

and this also holds after base change.
(iii) ΨX is étale outside the diagonals of (X/S)d.
(iv) If f : X → Y is a morphism of separated algebraic spaces we have a

commutative diagram

(X/S)d

ΨX

��

fd

// (Y/S)d

ΨY

��

Γd(X/S)
f∗ // Γd(Y/S).

◦
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If f is unramified (resp. étale) and U = reg(f) then the canonical mor-
phism

Λ : (X/S)d|Ψ−1
X (U) → Γd(X/S)|U ×Γd(Y/S) (Y/S)d

is a universal homeomorphism (resp. an isomorphism).

Proof. (i) As HomS

(
T, (X/S)d

)
= HomS(T,X)d = Γ1

X/S(T )d by Remark (3.1.5)
we obtain by addition of cycles the morphism ΨX : (X/S)d → Γd(X/S) and this
is clearly an Sd-equivariant morphism as addition of cycles is commutative.

(iii) Follows immediately from Proposition (4.1.3).
(iv) Follows from the definition of Ψ and Corollary (3.3.11) since

(X/S)d
fd

//

��

(Y/S)d

��

Γd(
∐d
i=1X) // Γd(

∐d
i=1 Y )

�

is cartesian.
(ii) We first show that the fibers of Ψ are the Sd-orbits and that this holds after

any base change. Let f : Spec(k) → Γd(X/S) be a morphism. Then f factors
through Γd(Z/k) → Γd(X/S) where Z ↪→ X×SSpec(k) is a closed subspace integral
over k.

As Γd commutes with base change, we can replace S with Spec(k). Furthermore,
using the unramified part of (iv), we can replace X with Z. We can thus assume
that S = Spec(k) and that X = Z = Spec(B). Then (X/k)d = Spec

(
Tdk(B)

)
and

Γd(X/k) = Spec
(
TSdk(B)

)
= Symd(X/k). As the fibers of (X/k)d → Symd(X/k)

are the Sd-orbits it follows that the same holds for Ψ.
If U ↪→ (X/S)d is an open (resp. closed subset) then Ψ−1

(
Ψ(U)

)
=
⋃
σ∈Sd

σU .
As this also holds after any base change T → Γd(X/S) it follows that Ψ is univer-
sally closed and universally open.

We will now show that ΨX is affine. As ΨX is universally closed it then follows
that ΨX is integral by [EGAIV, Prop. 18.12.8]. As affineness is local in the étale
topology we can assume that S is affine. Let f : X ′ → X be an étale covering such
that X ′ is a disjoint union of affine schemes and in particular an AF-scheme. By
Proposition (3.3.15) the push-forward morphism f∗ : Γd(X ′/S)|reg(f) → Γd(X/S)
is an étalecover. Using (iv) and replacing X with X ′ we can thus assume that X
is AF. Proposition (3.1.10) then shows that Γd(X/S) is covered by open subsets
Γd(U/S) where U is affine. Finally ΨU is affine as (U/S)d is affine. �

Definition (4.1.6). Let X/S be a separated algebraic space, T an S-space and
α ∈ ΓdX/S(T ) a family of cycles. Let t ∈ T be a point and let k be an algebraic
closure of its residue field k. We say that α is non-degenerated in a point t ∈ T
if the support of the cycle αt ×k k consists of d distinct points. Here αt ×k k
denotes the family given by the composition of Spec(k) → Spec(k) → T and α.
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The non-degeneracy locus is the set of points t ∈ T such that α is non-degenerate
in t.

Definition (4.1.7). We let Γd(X/S)nondeg ⊆ Γd(X/S) denote the subset of non-
degenerate families.

Proposition (4.1.8). The subset Γd(X/S)nondeg ⊆ Γd(X/S) is open. The mor-
phism ΨX : (X/S)d → Γd(X/S) is étale of rank d! over Γd(X/S)nondeg and the
addition morphism + : Γd(X/S)×SΓe(X/S) → Γd+e(X/S) is étale of rank ((d, e))
over Γd+e(X/S)nondeg.

Proof. Let U be the complement of the diagonals of (X/S)d, which is an open
subset. Then Γd(X/S)nondeg = ΨX(U) which is an open subset as ΨX is open.
The last two statements follow from Proposition (4.1.3). �

4.2. The Symd → Γd morphism.

Definition (4.2.1) ([Kol97, Ryd07]). If G is a group and f : X → Y a G-
equivariant morphism, then we say that f is fixed-point reflecting, or fpr, at x ∈ X
if the stabilizer of x coincides with the stabilizer of f(x). The subset of X where
G is fixed-point reflecting is G-stable and denoted fpr(f).

Remark (4.2.2). Let X/S be a separated algebraic space. There is then a uniform
geometric and categorical quotient Symd(X/S) := (X/S)d/Sd, cf. [Ryd07]. Fur-
thermore we have that q : (X/S)d → Symd(X/S) is integral, universally open and
a topological quotient, i.e., it satisfies (ii) of Proposition (4.1.5). Moreover (iii) and
the étale part of (iv) also holds for q instead of Ψ if we replace reg(f) with fpr(f),
cf. [Ryd07].

As ΨX : (X/S)d → Γd(X/S) is Sd-equivariant and Symd(X/S) is a categorical
quotient, we obtain a canonical morphism SGX : Symd(X/S) → Γd(X/S) such
that ΨX = SGX ◦ q.

Lemma (4.2.3). Let f : X → Y be a morphism of algebraic spaces and let α ∈
Γd(X/S) be a point. Then α is quasi-regular with respect to f if and only if fd is
fixed-point reflecting at Ψ−1

X (α) with respect to the action of Sd.

Proof. Let k be the algebraic closure of the residue field k(α). The supports of α
and f∗α are finite disjoint unions of points. Thus α : Spec(k) → Γd(X/S) and
f∗α : Spec(k) → Γd(Y/S) factors as

Spec(k) →
n∏
i=1

Γdi(xi/k) → Γd(X/S)

and

Spec(k) →
m∏
j=1

Γei(yj/k) → Γd(Y/S)
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where xi and yj are points of X ×S Spec(k) and Y ×S Spec(k) respectively and
k(xi) = k(yj) = k. Every point of (X/S)d (resp. (Y/S)d) above α (resp. f∗α) is
thus such that, after a permutation, the first d1 (resp. e1) projections agree, the next
d2 (resp. e2) projections agree, etc, but no other two projections are equal. Thus
the stabilizers of the points of Ψ−1

X (α) (resp. Ψ−1
Y (f∗α)) are Sd1 ×Sd2 × · · · ×Sdn

(resp. Se1 ×Se2 × · · · ×Sem). Equality holds if and only if f is quasi-regular. �

Proposition (4.2.4). Let f : X → Y be an étale morphism of algebraic spaces.
Then Ψ−1

X

(
reg(f)

)
= fpr(fd), and we have a cartesian diagram

(X/S)d|fpr(fd)

q
//

fd

��

Symd(X/S)|fpr(fd)
SGX //

fd/Sd

��

Γd(X/S)|reg(f)

f∗

��

(Y/S)d
q

// Symd(Y/S)
SGY //

�

Γd(Y/S)

�

In particular fd/Sd is étale over the open subset q
(
fpr(fd)

)
= SG−1

X

(
reg(f)

)
.

Proof. As f is unramified reg(f) = qreg(f) by Proposition (3.3.6), the first state-
ment follows from Lemma (4.2.3). The outer square is cartesian by Proposi-
tion (4.1.5) (iv) and as q is a uniform quotient the formation of the quotient com-
mutes with étale base change which shows that the right square is cartesian. It
follows that the left square is cartesian too. �

Corollary (4.2.5). Let X/S be a separated algebraic space. The canonical mor-
phism SGX : Symd(X/S) → Γd(X/S) is a universal homeomorphism with trivial
residue field extensions. If S has pure characteristic zero or X/S is flat, then SGX

is an isomorphism.

Proof. Using Proposition (4.2.4) and the covering in Proposition (3.4.2) we can as-
sume thatX = Spec(B) and S = Spec(A) are affine. Then (X/S)d = Spec

(
TdA(B)

)
,

Γd(X/S) = Spec
(
ΓdA(B)

)
and Symd(X/S) = Spec

(
TSdA(B)

)
are all affine. As

ΓdA(B) → TSdA(B) ↪→ TdA(B) is integral by Proposition (4.1.5) (ii), we have that
SGX : Spec

(
TSdA(B)

)
→ Spec

(
ΓdA(B)

)
is integral.

The geometric fibers of both ΨX and q : (X/S)d → Symd(X/S) are the geo-
metric orbits of (X/S)d. Thus SGX is universally bijective and hence a universal
homeomorphism. That SGX is an isomorphism when S is purely of characteristic
zero or X/S is flat follows from paragraph (1.3.2) as X and S are affine.

Let a ∈ Symd(X/S) be any point, b = SGX(a) ∈ Γd(X/S) and s its image in S.
We have a commutative diagram

Symd
(
Xs/k(s)

) SGXs

∼=
//

��

Γd
(
Xs/k(s)

)
∼=

��

Symd(X/S)×S k(s)
SGX×S idk(s)

// Γd(X/S)×S k(s)

◦
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which gives a commutative diagram of residue fields

k(a)

◦

k(b)? _
∼=oo

k(a)
� ?

OO

k(b).? _oo

� ?

∼=

OO

and thus k(a) = k(b). �

Proposition (4.2.6). Let X/S be a separated algebraic space. The canonical mor-
phism SGX : Symd(X/S) → Γd(X/S) is an isomorphism over Γd(X/S)nondeg.

Proof. Let U be the complement of the diagonals in (X/S)d. Then ΨX(U) =
Γd(X/S)nondeg and Sd acts freely on U . By Proposition (4.1.8) the morphism ΨX

is étale of rank d! over Γd(X/S)nondeg. It is further well-known that q : (X/S)d →
Symd(X/S) is étale of rank d! over q(U). In fact, Symd(X/S)|q(U) is the quotient
sheaf in the étale topology of the étale equivalence relation Sd × U //

// U . �

4.3. Properties of Γd(X/S) and the push-forward.

Proposition (4.3.1). Let S be an algebraic space and let X be an algebraic space
separated over S. Consider for a morphism the property of being

(i) quasi-compact
(ii) finite type
(iii) finite presentation
(iv) locally of finite type
(v) locally of finite presentation
(vi) flat
(vii) finite
(viii) integral
(ix) affine
(x) quasi-affine

If X → S has one of these properties then so does Γd(X/S) → S.

Proof. If X → S is quasi-compact then (X/S)d → S is quasi-compact. As there is
a surjective morphism ΨX : (X/S)d → Γd(X/S) it follows that Γd(X/S) is quasi-
compact over S. This shows (i). As Γd(X/S) is separated, (ii) and (iii) follows
from (i), (iv) and (v). It is thus enough to show (iv)–(x).

As the question is local over S we can assume that S is affine. If X → S is
affine (resp. quasi-affine) then Γd(X/S) is affine (resp. quasi-affine) by Proposi-
tions (3.1.4) and (3.1.7). If X → S is finite (resp. integral), then X → S is affine
and Γd(X/S) → S is finite (resp. integral) by Proposition (1.3.7).

By Proposition (3.4.2) any point of Γd(X/S) has an étale neighborhood V such
that V is an open subset of Γd(U/S) where U is an affine scheme and U → X
étale. If V → S is locally of finite type (resp. locally of finite presentation, resp.
flat) for any such neighborhood V then it follows by [EGAIV, Lem. 17.7.5] and
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[EGAIV, Cor. 2.2.11 (iv)] that Γd(X/S) is locally of finite type (resp. locally of finite
presentation, resp. flat) over S. Replacing X with U we can thus assume that X is
affine. The proposition now follows from Proposition (1.3.7) and paragraph (1.2.12).

�

Corollary (4.3.2). Let S and X be algebraic spaces. If f : X → S is flat with
geometric reduced fibers then Γd(X/S) → S is flat with geometric reduced fibers. In
particular, if in addition S is reduced then Γd(X/S) is reduced.

Proof. Proposition (4.3.1) shows that Γd(X/S) → S is flat. It is thus enough
to show that Γd(Xk/k) reduced for any algebraic closed field k and morphism
Spec(k) → S. As Xk is reduced by hypothesis and hence also (Xk/k)d it follows
that Symd(Xk/k) is reduced and Γd(Xk/k) = Symd(Xk/k) by Corollary (4.2.5).
The last statement follows by [Pic98, Prop. 5.17]. �

Proposition (4.3.3). Let S and X be algebraic spaces. If f : X → S is smooth
of relative dimension 0 (resp. 1, resp. at most 1) then Γd(X/S) → S is smooth of
relative dimension 0 (resp. d, resp. at most d).

Proof. As Γd(X/S) → S is flat and locally of finite presentation by Proposi-
tion (4.3.1), it is enough to show that its geometric fibers are regular [EGAIV,
Thm. 17.5.1]. Thus we can assume that S = Spec(k) where k is algebraically
closed. Let y ∈ Γd(X/k). Then by Proposition (3.2.3), the formal local ring
ÔΓd(X/k),y is the completion at a point of the scheme

∏n
i=1 Γdi(X̂xi/k) where

x1, x2, . . . , xn are points of X and d = d1 + d2 + · · · + dn. If f has relative di-
mension 0 at xi then OX,xi = k and if f has relative dimension 1 at xi then
ÔX,xi

= k[[t]], cf. [EGAIV, Prop. 17.5.3]. The proposition now easily follows if
we can show that Γe

(
Spec(k[t])/Spec(k)

)
is smooth of relative dimension e. But

Γek(k[t]) = TSek(k[t]) = k[s1, s2, . . . , se] where s1, s2, . . . , se are the elementary sym-
metric functions. �

Remark (4.3.4). If X/S is smooth of relative dimension ≥ 2 then Γd(X/S) is
not smooth for d ≥ 2. This can be seen by an easy tangent space calculation.
If X/S is smooth of relative dimension 2 then on the other hand Hilbd(X/S) is
smooth and gives a resolution of Γd(X/S) [Fog68, Cor. 2.6 and Thm. 2.9]. Moreover
Hilbd(X/S) → Γd(X/S) is a blow-up in this case [Hai98, ES04].

Proposition (4.3.5). If f : X → Y has one of the following properties, then so
has fd/Sd : Symd(X/S) → Symd(Y/S):

(i) quasi-compact
(ii) closed
(iii) open
(iv) universally closed
(v) universally open
(vi) open immersion
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(vii) affine
(viii) quasi-affine
(ix) integral

If f has one of the above properties or one of the following

(x) closed immersion
(xi) immersion

then so has f∗ : Γd(X/S) → Γd(Y/S).

Proof. Use that ΨX and q : (X/S)d → Symd(X/S) are universally closed, univer-
sally open, quasi-compact and surjective for (i)-(v). Property (vi) is well-known.
For (vii) reduced to Y/S affine using Proposition (3.4.2) and then use that Γd(X/S)
and Symd(X/S) are affine if X/S is affine. The combination of (i), (vi) and (vii)
gives (viii). Finally (ix) follows from (vii) and (iv). The last two properties for f∗
follow from Proposition (3.1.7). �

Remark (4.3.6). If f has one of the properties (x) or (xi), then fd/Sd need not
have that property. If f has one of the properties

(i) finite
(ii) locally of finite type
(iii) locally of finite presentation
(iv) unramified
(v) flat
(vi) étale

then neither fd/Sd nor f∗ need to have that property.

Corollary (4.3.7). The addition morphism Γd(X/S) ×S Γe(X/S) → Γd+e(X/S)
is integral and universally open.

Proof. The morphism XqX → X is finite and étale and hence integral and univer-
sally open. Thus Γd+e(X qX/S) → Γd+e(X/S) is integral and universally open by
Proposition (4.3.5). As the addition morphism is the composition of the open and
closed immersion Γd(X/S) ×S Γe(X/S) ↪→ Γd+e(X qX/S) and the push-forward
along X qX → X the corollary follows. �

Appendix A. Appendix

A.1. The (AF) condition. The (AF) condition has frequently been used as a nat-
ural setting for a wide range of problems. It guarantees the existence of finite quo-
tients [SGA1, Exp. V], push-outs [Fer03] and the Hilbert scheme of points [Ryd08b].
Moreover, under the (AF) condition, étale cohomology can be calculated using Čech
cohomology [Art71, Cor. 4.2], [Sch03].
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Definition (A.1.1). We say that a scheme X/S is AF if it satisfies the following
condition.

(AF)
Every finite set of points x1, x2, . . . , xn ∈ X over the same point
s ∈ S is contained in an open subset U ⊆ X such that U → S is
quasi-affine.

Remark (A.1.2). Let X/S and Y/S be AF-schemes. Then X ×S Y/S is an AF-
scheme. If S′ → S is any morphism, then X ×S S′/S′ is an AF-scheme. This is
obvious as the class of quasi-affine morphisms is stable under products and base
change. It is also clear that the (AF) condition is local on S and that the subset U
in the condition can be chosen such that U is an affine scheme. Moreover, if S is
quasi-separated, then we can replace the condition that U → S is quasi-affine with
the condition that U is affine.

Proposition (A.1.3). Let X be an S-scheme. If X has an ample invertible sheaf
OX(1) relative to S then X/S is an AF-scheme. In particular, it is so if X/S is
(quasi-)affine or (quasi-)projective.

Proof. Follows immediately from [EGAII, Cor. 4.5.4] since we can assume that
S = Spec(A) is affine. �

Proposition (A.1.4). Let X/S be an AF-scheme. Then X/S is separated.

Proof. Let z be a point in the closure of ∆X/S(X), where ∆X/S : X ↪→ X ×S X
is the diagonal morphism, and let x1, x2 ∈ X be its two projections. Choose an
affine neighborhood U containing x1 and x2. Then ∆U/S : U ↪→ U ×S U is closed
and ∆U/S is the pull-back of ∆X/S along the open immersion U ×S U ⊂ X ×S X.
Taking closure commutes with restricting to open subsets and thus z ∈ U ⊂ X.
This shows that ∆X/S(X) is closed and hence that X/S is separated. �

The following conjecture was proved by Kleiman [Kle66].

Theorem (A.1.5) (Chevalley’s conjecture). Let X/k be a proper regular algebraic
scheme. Then X is projective if and only if X/k is an AF-scheme.

It is however not true that a proper singular scheme always is projective if it is
AF. In fact, there are singular, proper but non-projective AF-surfaces [Hor71].

A.2. A theorem on integral morphisms.

Definition (A.2.1). We say that a morphism f : X → Y has topologically finite
fibers if the underlying topological space of every fiber is a finite set. We say that
f has universally topologically finite fibers if the base change of f by any morphism
Y ′ → Y has topologically finite fibers, equivalently the underlying topological space
of every fiber is a finite set and each residue field extension has finite separable
degree.

The purpose of this section is to prove the following theorem:
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Theorem (A.2.2). Let f : X → Y and g : Y → S be morphisms of algebraic
spaces. If g ◦ f is integral with topologically finite fibers and g is separated then the
“schematic” image Y ′ of f exists and Y ′ → S is integral with topologically finite
fibers.

Let us first note that this is easy to proof when g is locally of finite type:

Proposition (A.2.3). Let X and Y be schemes locally of finite type and separated
over the base scheme S. Let f : X → Y and g : Y → S be S-morphisms. If g ◦ f
is finite then the schematic image Y ′ of f exists and Y ′ → S is finite.

Proof. As g◦f is separated, f is separated. As g◦f is quasi-compact and universally
closed and g is separated, f is quasi-compact and universally closed. Thus the image
Y ′ exists [EGAI, Prop. 6.10.5] and X → Y ′ is surjective. As g ◦ f is universally
closed andX → Y ′ is surjective it follows that Y ′ → S is universally closed. Further
it is immediately seen that Y ′ → S has discrete fibers. Thus Y ′ → S is quasi-finite,
universally closed and separated. By Deligne’s theorem [EGAIV, Cor. 18.12.4] this
implies that Y ′ → S is finite. �

Remark (A.2.4). It is easy to generalize Proposition (A.2.3) to the case where X
and Y are algebraic spaces. In [Knu71, Thm. 6.15] Deligne’s theorem is proven for
algebraic spaces under a finite presentation hypothesis. The full version of Deligne’s
theorem for algebraic spaces is given in [LMB00, Thm. A.2].

Remark (A.2.5). Now instead assume as in Theorem (A.2.2) that X and Y are
arbitrary schemes and g ◦f is integral with topologically finite fibers. The first part
of the proof of Proposition (A.2.3) then shows as before that the schematic image
Y ′ exists and that Y ′ → S is separated and universally closed. It is further easily
seen that every fiber Y ′

s is a discrete finite topological space.
Under the hypothesis that Y/S is an AF-scheme it easily follows that Y ′ → S is

integral. In fact, then Y ′/S is AF and any neighborhood of Y ′
s in Y ′ contains an

affine neighborhood of Y ′
s . Thus Y ′ → S is affine by [EGAIV, Lem. 18.12.7.1] and

therefore integral by [EGAIV, Prop. 18.12.8].
In general, note that Y ′

s is affine and hence integral over k(s) as a morphism is
integral if and only if it is universally closed and affine, cf. [EGAIV, Prop. 18.12.8].
Theorem (A.2.2) thus follows by the following conjecture of Grothendieck (for
schemes):

Conjecture (A.2.6) ([EGAIV, Rem. 18.12.9]). If X → S is a separated, univer-
sally closed morphism of algebraic spaces, such that Xs is integral, then X → S is
integral.

This conjecture will be proved in [Ryd08a]. In the remainder of this appendix,
we will give an independent proof of Theorem (A.2.2) without using Grothendieck’s
conjecture. We first establish the following preliminary results.

(i) If X → Y is integral, X is a semi-local scheme and Y is henselian, then X
is henselian, cf. Proposition (A.2.7).
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(ii) Affineness is descended by (not necessarily quasi-compact) flat morphisms
if we a priori know that the morphism in question is quasi-compact and
quasi-separated, cf. Proposition (A.2.8).

(iii) A criterion for an algebraic space to be a scheme, cf. Lemma (A.2.12).

Proposition (A.2.7). If A is semi-local and henselian and B is an integral semi-
local A-algebra, then B is henselian. In particular B is a finite direct product of
local henselian rings.

Proof. Follows immediately from [Ray70, Ch. XI, §2, Prop. 2]. �

Proposition (A.2.8). Let f : X → Y and g : Y ′ → Y be morphisms of schemes
with g faithfully flat. Let f ′ : X ′ → Y ′ be the base-change of f along g. Then

(i) f is a homeomorphism if f is quasi-compact and f ′ is a homeomorphism.
(ii) f is an isomorphism if and only if f is quasi-compact and f ′ is an iso-

morphism.
(iii) f is affine if and only if f is quasi-compact and quasi-separated and f ′ is

affine.

Proof. The conditions in (ii) and (iii) are clearly necessary. Assume that f ′ is a
homeomorphism (resp. an isomorphism, resp. affine). Let Y ′′ =

∐
y∈Y Spec(OY,y)

and choose for every y ∈ Y a point y′ ∈ g−1(y). If we let Y ′′′ =
∐
y∈Y Spec(OY ′,y′)

then f ′′′ is a homeomorphism (resp. an isomorphism, resp. affine) and we can fac-
tor Y ′′′ → Y ′ → Y through the natural faithfully flat and quasi-compact morphism
Y ′′′ → Y ′′. As the statement of the proposition is true when g is quasi-compact
by [EGAIV, Prop. 2.6.2 (iv), Prop. 2.7.1 (viii), (xiii)] it follows that f ′′ is a homeo-
morphism (resp. an isomorphism, resp. affine). Replacing Y ′ with Y ′′ we can thus
assume that Y ′ =

∐
y∈Y Spec(OY,y).

(i) In order to show that f is a homeomorphism it is enough to show that f is
open since it is clearly bijective. As f is generizing, see [EGAI, Def. 3.9.2], it follows
by [EGAI, Thm. 7.3.1] that f is open if and only it is open in the constructible
topology [EGAI, 7.2.11]. But as f is quasi-compact and bijective it follows from
[EGAI, Prop. 7.2.12 (iv)] that f is a homeomorphism in the constructible topology
and in particular open.

(ii) From (i) it follows that f is a homeomorphism and since f ′ is an isomor-
phism, we have that f is an isomorphism on the stalks. This shows that f is an
isomorphism.

(iii) Taking direct images along quasi-compact and quasi-separated morphisms
commutes with flat pull-back by [EGAIV, Lem. 2.3.1]. Thus we have a cartesian
diagram:

X ′ //

��

Spec(f ′∗OX′) //

��

Y ′

��

X //

�

Spec(f∗OX) // Y

�
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Since f ′ : X ′ → Y ′ is affine we have that X ′ → Spec(f ′∗OX′) is an isomorphism
and it is enough to show that X → Spec(f∗OX) is an isomorphism. This follows
from (ii). �

Definition (A.2.9). We say that an algebraic space X is local if there exist a point
x ∈ X such that every closed subset Z ⊆ X contains x.

Remark (A.2.10). If X is a local algebraic space then there is exactly one closed
point x ∈ X. If X is a local scheme then X is the spectrum of a local ring and in
particular affine.

Lemma (A.2.11). Let f : X → Y be a closed surjective morphism of algebraic
spaces. Let y ∈ Y be a closed point such that f−1(y) is discrete and such that
for any x ∈ f−1(y) we can write X = X ′

x q X ′′ where X ′
x is local and contains

x. Then Y = Y ′ q Y ′′ where Y ′ is local and contains y. Furthermore f−1(Y ′) =∐
x∈f−1(y)X

′
x.

Proof. For every x ∈ f−1(y) let X ′
x ⊆ X be a local subspace containing x and

choose X ′′ such that X =
(∐

x∈f−1(y)X
′
x

)
q X ′′. Let Y ′ be the subset of Y

consisting of every generization of y. As f(X ′′) is closed and does not contain y,
it does not intersect Y ′. On the other hand f(X ′

x) is contained in Y ′. Since f
is surjective this shows that f(X ′′) = Y \ Y ′ and f(

⋃
X ′
x) = Y ′. Thus Y ′ and

Y ′′ = Y \ Y ′ are both open and closed. �

Lemma (A.2.12). Let X =
∐
α∈I Xα and Y be algebraic spaces such that Xα is

local with closed point xα and Y is local with closed point y. Let f : X → Y be
a universally closed schematically dominant morphism such that f−1(y) = {xα :
α ∈ I}. If Xα is a henselian scheme for every α ∈ I then Y is affine.

Proof. There is an étale quasi-compact separated surjective morphism g : Y ′ → Y
such that Y ′ is a scheme and such that there is a point y′ ∈ g−1(y) with k(y′) = k(y).
Let X ′ = X ×Y Y ′ with projections h : X ′ → X and f ′ : X ′ → Y ′. Similarly we
let X ′

α = Xα ×Y Y ′ and we have that X ′ =
∐
α∈I X

′
α. As k(y′) = k(y) we have

that f ′−1(y′) = {x′α} such that x′α ∈ X ′
α and h(x′α) = xα.

Since Xα is henselian and h is quasi-finite and separated it follows by [EGAIV,
Thm. 18.5.11 c)] that Spec(OX′

α,x
′
α
) → Xα is finite and that Spec(OX′

α,x
′
α
) ⊆ X ′

is open and closed. Further as Xα is henselian, k(x′α) = k(xα) and X ′
α → Xα is

étale it follows that Spec(OX′
α,x

′
α
) → Xα is an isomorphism. By Lemma (A.2.11)

we then have a decomposition Y ′ = Y ′
1 q Y ′

2 where Y ′
1 is local and f ′−1(Y ′

1) =∐
α Spec(OX′

α,x
′
α
) ∼= X. Thus we can, replacing Y ′ with Y ′

1 , assume that Y ′ is a
local scheme and X ′ ∼= X.

Let Y ′′ = Y ′ ×Y Y ′, which is a quasi-affine scheme, and X ′′ = X ×Y Y ′′ =
X ′ ×X X ′ ∼= X. Lemma (A.2.11) shows as before that Y ′′ is local and hence
affine. Let Y ′ = Spec(A′), Y ′′ = Spec(A′′), X ′ = Spec(B′) and X ′′ = Spec(B′′)
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where B′′ = B′. As A′ ↪→ A′′ is faithfully flat it follows that A′′/A′ is a flat A′-
algebra. Further A′ → B′ is injective sinceX → Y is schematically dominant. Thus
A′′/A′ ↪→ (A′′/A′)⊗A′B′ = B′′/B′ = 0 which shows that A′′ = A′. This shows that
Y is the quotient of the étale equivalence relation Spec(A′′) //

//Spec(A′) where
the two morphisms are the identity. Thus Y = Spec(A′) is a local scheme. �

Proof of Theorem (A.2.2). As g ◦ f is separated, f is separated. As g ◦ f is quasi-
compact and universally closed and g is separated, f is quasi-compact and univer-
sally closed. Thus the image Y ′ exists [EGAI, Prop. 6.10.5] and [Knu71, Prop. 4.6]
and X → Y ′ is surjective. As g ◦ f is universally closed and X → Y ′ is surjective
it follows that Y ′ → S is universally closed. Further it is obvious that Y ′ → S has
topologically finite fibers.

Since the question is local over S, we can assume that S is affine. Then X is
affine and we will show that Y ′ → S is affine. It then follows that Y ′ → S is
integral since OS → g∗OY ′ ↪→ g∗f∗OX is integral.

Using Proposition (A.2.8) we are allowed to replace S with the henselization
Spec(hOS,s) at an arbitrary point s and thus assume that S is local and henselian.
Then by Proposition (A.2.7) X is henselian and a disjoint union of local schemes.

Let x1, x2, . . . , xn be the closed points of X and X = X1 q X2 q · · · q Xn the
corresponding partition into local henselian schemes. Then by Lemma (A.2.11)
Y = Y1 q Y2 q · · · q Ym where Yk is a local space with closed point yk ∈ f(xj) for
some j depending on k. Further Lemma (A.2.12) shows that Yk is a local scheme
and hence affine. �
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FAMILIES OF ZERO-CYCLES AND DIVIDED POWERS: II.
THE UNIVERSAL FAMILY

DAVID RYDH

Abstract. In this paper, we continue the study of the scheme of divided
powers Γd(X/S). In particular, we construct the universal family of Γd(X/S)
as a family of cycles supported on Γd−1(X/S)×S X and discuss the “Hilbert-
Chow” morphism. We also give a description of the k-points of Γd(X/S) as
effective zero-cycles with certain rational coefficients and give an alternative
description of families of zero-cycles as multivalued morphisms. Finally, we
construct sheaves of divided powers and a generalized norm functor.

Introduction

Let X/S be a separated algebraic space. In [I], a natural functor Γd
X/S from

S-schemes to sets parameterizing effective zero-cycles of degree d was introduced
and shown to be an algebraic space — the space of divided powers Γd(X/S). This is
a globalization of the algebra of divided powers and the “correct” Chow scheme of
points onX/S. Indeed, the space of divided powers commutes with base change and
coincides with the symmetric product Symd(X/S) in characteristic zero or when
X/S is flat, e.g., when X = Pn

S . In particular, we obtain a functorial description of
Symd(X/S) in the flat case.

We let Γd
1(X/S) = Γd−1(X/S) ×S X. A geometric point of Γd

1(X/S) is a zero-
cycle of degree d with one marked point. It is thus expected that the addition
morphism ΦX/S : Γd

1(X/S) → Γd(X/S), which forgets the marked point, should
be related to the universal family of Γd(X/S). When the addition morphism ΦX/S

is flat, then it has a tautological family of cycles given by the norm. Iversen [Ive70,
Thm. II.3.4] showed that if ΦX/S is flat, then ΦX/S together with the norm family
is the universal family. It should be noted that ΦX/S is rarely flat, the notable
exception being when X/S is a smooth curve. The main result of this paper is a
generalization of Iversen’s result to arbitrary X/S for which ΦX/S need not be flat.
More precisely, we construct a family of zero-cycles on ΦX/S , that is, a morphism
ϕX/S : Γd(X/S) → Γd(Γd

1(X/S)), and show that it is the universal family.

2000 Mathematics Subject Classification. Primary 14C05; Secondary 14C25.
Key words and phrases. Families of cycles, zero-cycles, divided powers, universal family, Weil

restriction, norm functor, Hilbert scheme.
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Multiplicative polynomial laws. To define the universal family, we need a cou-
ple of results on multiplicative laws. Firstly, we show in §1 that it is enough to
consider the category of polynomial A-algebras in the definition of a multiplicative
law B → C of A-algebras. Secondly, we define the norm law of a locally free alge-
bra in §3. Thirdly, we construct universal shuffle laws in §4. These are canonical
multiplicative laws Γd1

A (B)⊗ Γd2
A (B) → Γd1+d2

A (B) of degrees ((d1, d2)) for positive
integers d1 and d2. Apparently, it is difficult to directly define these laws. It is how-
ever easy to define canonical multiplicative laws TSd1

A (B)⊗TSd2
A (B) → TSd1+d2

A (B)
and we use these laws to define the universal shuffle laws. The universal shuffle law
with d1 = d− 1 and d2 = 1 will be of particular interest as this law gives a descrip-
tion of the universal family of Γd

A(B), cf. Proposition (4.10).

The universal family. From the functorial description of Γd(X/S) we have that
the identity on Γd(X/S) corresponds to a family of cycles on X parameterized by
Γd(X/S) — the universal family. The image of the universal family is a closed
subspace Zuniv of Γd(X/S) ×S X which is integral over Γd(X/S). The nilpotent
structure of this subspace is difficult to describe and we do not accomplish this.
However, in §5 we show that Zuniv is contained in the closed subscheme Γd

1(X/S) :=
Γd−1(X/S)×SX ↪→ Γd(X/S)×SX which has the same underlying topological space
as Zuniv. In fact, we construct a family of cycles on Γd

1(X/S) → Γd(X/S) and show
that this induces the identity on Γd(X/S). This result is a globalization of the
universal shuffle law in §4 described above. When Γd

1(X/S) → Γd(X/S) is flat and
generically étale then the scheme Γd

1(X/S) completely determines the universal
family.

Relation with the Hilbert scheme. In §6 we briefly mention the natural mor-
phism from the Hilbert scheme of d points onX to Γd(X/S). This morphism takes a
flat family to its determinant law and is known as the Grothendieck-Deligne norm
map. When Γd

1(X/S) is flat and generically étale over Γd(X/S), the morphism
Hilbd(X/S) → Γd(X/S) is an isomorphism. In particular, it is an isomorphism
over the non-degeneracy locus Γd(X/S)nondeg and an isomorphism when X/S is a
family of smooth curves.

Composition and products of families. In Sections 7 and 8 we define and
give the basic properties of compositions and products of families. To define the
product we have to pass to the flat case and use symmetric products, similarly as
when defining the multiplicative shuffle laws.

Points of Γd(X/S). In §9 we describe the k-points of Γd(X/S). If k is a perfect
field, then the k-points of Γd(X/S) correspond to effective zero-cycles of degree d
on Xk with integral coefficients. For an arbitrary field k there is a similar corre-
spondence if we also allow certain rational coefficients. The denominators of these
coefficients are powers of the characteristic of k and the maximal exponent allowed
is explicitly determined. This result also follows from [Kol96, Thm. I.4.5], using
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that the k-points of the space of divided powers and the Chow variety coincide, but
our proof is more direct.

Multi-morphisms. LetX be a scheme such that any set of d points is contained in
an affine open subset, e.g., let X be quasi-projective. There is then another striking
description of families of zero-cycles of degree d on X parameterized by any space
T , that is, of morphisms T → Γd(X/S). We show that a family can be described
as a multi-morphism f : T → X of degree d. This consists of a multivalued map
f : T → X together with a semi-local multiplicative law θ : OX → f∗OT . The
formalism is very close to that of ordinary morphisms of schemes. The condition
on X is used to ensure that for every point t ∈ T the set f(t) ⊆ X is contained
in an affine subset. Similarly, a morphism of algebraic spaces f : T → X cannot
be described as a morphism of locally ringed spaces unless every point in X has an
affine neighborhood, that is, unless X is a scheme.

Norm functor and Weil restriction. Let f : X → Y be a morphism. The
Weil restriction RX/Y is a functor from X-schemes to Y -schemes defined by the
property HomY (T,RX/Y (W )) = HomX(T ×Y X,W ). The existence of the Weil
restriction of W , under suitable conditions on f and W , can be established using
Hilbert schemes [FGA, BLR90, Ryd08]. The norm functor NX/Y is a closely related
functor which can be defined not only for X-schemes but also for sheaves on X.
The existence of the norm functor is shown using a space or a sheaf of divided
powers. The classical setting is when X/Y is flat of constant rank d and L is an
invertible sheaf on X [EGAII, §6.5]. For affine schemes and X/Y flat, the norm
functor has been studied intensively by Ferrand [Fer98] and we generalize some of
these results.

Notation and conventions. We denote a closed immersion of schemes or alge-
braic spaces with X ↪→ Y . When A and B are rings or modules we use A ↪→ B
for an injective homomorphism. We let N denote the set of non-negative integers
0, 1, 2, . . . and use the notation ((a, b)) =

(
a+b

a

)
for binomial coefficients.
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1. Determination of a multiplicative law

Recall [Rob63] that a polynomial law F : M → N is a set of maps FA′ :
M ⊗A A′ → N ⊗A A′ for every A-algebra A′ which are natural with respect to
A-algebra homomorphisms. The law F is homogeneous of degree d if FA′(a′x′) =
a′dFA′(x′) for every A-algebra A′ and elements a′ ∈ A′ and x′ ∈ M ⊗A A′. If
M and N are A-algebras, then we say that F is multiplicative if FA′(1) = 1 and
FA′(x′y′) = FA′(x′)FA′(y′) for every A-algebra A′ and every x′, y′ ∈M ⊗A A′.

In some cases, cf. §§3–4, it is not clear that a natural map M → N extends
functorially to any base change. The following proposition shows that it is enough
to consider polynomial base changes.

Proposition (1.1). Let M and N be A-modules.
(i) In the definition of polynomial laws we can replace the category A–Alg

of A-algebras with the full subcategory of polynomial rings over A. To
be precise, there is a one-to-one correspondence between polynomial laws
F : M → N and sets of maps

Fn : M [t1, t2, . . . , tn] → N [t1, t2, . . . , tn], n ∈ N
such that Fm◦(idM⊗ϕ) = (idN⊗ϕ)◦Fn for any A-algebra homomorphism
ϕ : A[t1, t2, . . . , tn] → A[t1, t2, . . . , tm]. This correspondence is given by
F 7→ (FA[t1,t2,...,tn])n∈N.

(ii) If (Fn) is homogeneous of degree d, that is, if Fn(az) = adFn(z) for every
n ≥ 0, a ∈ A[t1, t2, . . . , tn] and z ∈M [t1, t2, . . . , tn], then the corresponding
polynomial law F is homogeneous of degree d.

In particular, in the definition of (homogeneous) polynomial laws, it is enough to
consider smooth A-algebras.
Proof. (i) It is immediately seen that to give a set of maps {Fn}n for n ∈ N com-
muting with A-algebra homomorphisms ϕ as in the proposition is equivalent to give
a single map F ′ : M [t1, t2, . . . ] → N [t1, t2, . . . ] such that for every endomorphism
ϕ of A[t1, t2, . . . ] the diagram

(1.1.1)

M [t1, t2, . . . ]
idM⊗ϕ

//

F ′

��

M [t1, t2, . . . ]

F ′

��

N [t1, t2, . . . ]
idN⊗ϕ

// N [t1, t2, . . . ]

commutes. A map F ′ such that (1.1.1) commutes, gives a unique polynomial law
F : M → N such that F ′ = FA[t1,t2,... ] [Rob63, Prop. IV.4, p. 271]. Moreover, if
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f : ΓA(M) → N is the corresponding homomorphism, then f
(
γd1(x1)× γd2(x2)×

· · · × γdn(xn)
)

is the coefficient of td1
1 t

d2
2 . . . tdn

n in F ′(x1t1 + x2t2 + · · ·+ xntn).
(ii) Let z = x1t1 + x2t2 + · · ·+ xntn ∈M [t1, t2, . . . , tn] be a homogeneous poly-

nomial of degree one. If Fn is homogeneous of degree d then we have that

tdn+1F
′(z) = F ′(tn+1z) = (F ′ ◦ (idM ⊗ ϕ))(z) = (idN ⊗ ϕ)(F ′(z))

where ϕ is given by ti 7→ tn+1ti. It follows that F ′(z) ∈ N [t1, t2, . . . , tn] is homo-
geneous of degree d and thus that f : ΓA(M) → N factors through the projection
ΓA(M) → Γd

A(M). In particular, we have that F is homogeneous of degree d. �

Proposition (1.2). Let B and C be A-algebras. In the correspondence between
polynomial laws F : B → C and sets of maps (Fn) as in Proposition (1.1), mul-
tiplicative polynomial laws correspond to multiplicative maps, i.e., maps (Fn) such
that

(i) Fn(1B) = 1C .
(ii) Fn(xy) = Fn(x)Fn(y), ∀x, y ∈ B[t1, t2, . . . , tn].

In particular, in the definition of a multiplicative polynomial law it is enough to
consider smooth A-algebras.
Proof. If F is a multiplicative law, then Fn = FA[t1,t2,...,tn] is multiplicative by
definition. Conversely, assume that we are given a set (Fn) of multiplicative
maps. This set of maps corresponds to a polynomial law F : B → C such that
Fn = FA[t1,t2,...,tn] by Proposition (1.1). It is clear that F (1B) = 1C . Let A′ be
an A-algebra and x, y ∈ B ⊗A A′. Then there is a positive integer n, a homo-
morphism A[t1, t2, . . . , tn] → A′ and xn, yn ∈ B[t1, t2, . . . , tn] such that xn and
yn are mapped to x and y respectively. The multiplicativity of Fn implies that
FA′(xy) = FA′(x)FA′(y). �

2. Inhomogeneous families

It is sometimes convenient to work with families which do not have constant
degree. We therefore make the following definition:

Definition (2.1). Let X/S be a separated algebraic space. We let Γ?(X/S) =∐
d≥0 Γd(X/S) and let Γ?

X/S(−) = HomS(−,Γ?(X/S)) be the corresponding func-
tor.

Thus, by definition, a morphism α : T → Γ?(X/S) corresponds to an open and
closed partition T =

∐
d≥0 Td and families αd : Td → Γd(X/S). We let

Image(α) =
∐
d≥0

Image(αd) ↪→
∐
d≥0

X ×S Td = X ×S T

and Supp(α) = Image(α)red. We say that the degree of α at t ∈ T is d if α(t) ∈
Γd(X/S).

Proposition (2.2) ([Zip86, Prop. 1.7.9 a)]). Let F : B → C be a multiplicative law
of A-algebras. Then there is an integer n, a complete set of orthogonal idempotents
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e0, e1, . . . , en in C and a canonical decomposition F = F0 +F1 +F2 + · · ·+Fn where
Fd : B → Ced is a homogeneous multiplicative law of degree d. Note that ed = 0
is possible.

Note that conversely if e0, e1, . . . , en is a complete set of orthogonal idempotents
and

(
Fd : B → Ced

)
d=0,1,...,n

are multiplicative laws of degrees 0, 1, . . . , n, then
F = F0 + F1 + · · · + Fn is a multiplicative law. In fact, F (1) =

∑
i ei = 1 and

F (x)F (y) =
∑

i Fi(x)Fi(y) = F (xy).

Theorem (2.3). Let S = Spec(A), X = Spec(B) be affine schemes and let T =
Spec(A′) be an affine S-scheme. Then there is a one-to-one correspondence between
multiplicative laws B → A′ and inhomogeneous families T → Γ?(X/S). This
correspondence takes f : T → Γ?(X/S) onto Γ(f) ◦ (γ0, γ1, γ2, . . . ) : B → A′.
The expression Γ(f) is the induced map Γ(Γ?(X/S)) =

∏
d≥0 Γd

A(B) → Γ(T ) = A′

on global sections.
Proof. As T is quasi-compact, any morphism f : T → Γ?(X/S) factors through
Γ≤n(X/S) =

∐
d≤n Γd(X/S). The theorem thus follows from Proposition (2.2). �

3. Determinant laws and étale families

Let A be a ring, B an A-algebra and M a B-module which is free of rank d as
an A-module. We then have the determinant or norm map

NB/A : B → EndA(M) → EndA(∧dM) = A

where the first map takes b to the endomorphism on M which is multiplication by
B. This map extends to a homogeneous multiplicative polynomial law which we
denote the determinant law. We can also extend this definition to B-modules M
which are locally free of rank d over A taking an open cover of Spec(A). Similarly,
if M is locally free but not of constant rank, then we obtain an inhomogeneous
multiplicative law NB/A : B → A.

Assume now that A is an integral domain with fraction field K, that B is an
A-algebra and that M is a B-module which is of finite type as an A-module but
not necessarily flat. If we let d be the generic rank of M then we have the norm
map

NB/A : B → EndA(M) → EndK(M ⊗A K) → EndK

(
∧d(M ⊗A K)

)
= K

and according to [EGAII, Prop. 6.4.3] the elements NB/A(b) are integral over A. In
particular, if A is in addition integrally closed then NB/A has image A. Under this
assumption this map extends to a determinant law as it is enough to define the mul-
tiplicative polynomial law over the integrally closed polynomial rings A[t1, . . . , tn]
by Proposition (1.2).

Definition (3.1). Let S be an algebraic space and f : X → S affine. Let F be
a quasi-coherent sheaf on X such that f∗F is a finite OS-module and one of the
following conditions holds:

(i) f∗F is a locally free OS-module.
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(ii) S is normal.
To F we associate the canonical family NF : S → Γ?(X/S) given by the determi-
nant law. To abbreviate, we let NX = NOX

when this is defined.

Proposition (3.2). Let S be an algebraic space and let X/S be finite and étale.
Then NX is the unique morphism S → Γ?(X/S) such that Supp(NX) = Xred and
such that the degree of NX at a point s ∈ S is the rank of X/S at s. Furthermore
we have that Image(NX) = X. In particular, the image of NX commutes with
arbitrary base change.

Proof. The question is local on S so we can assume that X/S is of constant rank
d. Let S′ → S be an étale cover such that X ′ = X ×S S

′ → S′ trivializes, i.e.,
such that X ′ = S′qd. It is clear that the only family S′ → Γd(X ′/S′) with support
X ′

red is the family with multiplicity one on each component. This is given by the
morphism S′ ∼= Γ1

S′(S
′)×S′d ↪→ Γd(X ′). The corresponding multiplicative law is

the multiplication map (OS′)d → OS′ which coincides with the determinant law.
Thus NX′ is the unique family with support X ′

red. As the image commutes with
étale base change, the last statement of the proposition follows. �

4. Universal shuffle laws

Recall that the A-algebra Γd
A(B) represents multiplicative polynomial laws of

degree d [Fer98, Prop. 2.5.1]. We thus have a canonical bijection

HomA–Alg

(
Γd

A(B), A′
)
→ PoldA(B,A′) = PoldA′(A′ ⊗A B,A′)

and under this correspondence, the identity on Γd
A(B) corresponds to the universal

law U : Γd
A(B) ⊗A B → Γd

A(B). There is a natural surjection, the canonical
homomorphism of Iversen,

ω : Γd
A(B)⊗A B → Γd−1

A (B)⊗A B

and we will show that U factors through ω. For this purpose, we first construct the
multiplicative shuffle law SL : Γd−1

A (B)⊗A B → Γd
A(B).

(4.1) We recall [I, 1.2.14] that the universal multiplication of laws

ρd1,d2 : Γd1+d2
A (M) → Γd1

A (M)⊗A Γd2
A (M)

is the homomorphism corresponding to the law x 7→ γd1(x)⊗ γd2(x). In particular,
we have that

(4.1.1) ρd1,d2

(
γν(x)

)
=

∑
ν1+ν2=ν

|ν1|=d1, |ν2|=d2

γν1(x)⊗ γν2(x).

(4.2) The shuffle product — For any A-module M , the product of ΓA(M) gives
A-module homomorphisms

× : Γd1
A (M)⊗A Γd2

A (M) → Γd1+d2
A (M).
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The composition of the universal multiplication of laws ρd1,d2 followed by × is
multiplication by ((d1, d2)). In particular, if ((d1, d2)) is invertible inA, then x⊗y 7→
((d1, d2))−1x×y is a retraction of ρd1,d2 . If B is an A-algebra, then × is Γd1+d2

A (B)-
linear.

(4.3) The multiplicative shuffle law — Let M be a flat A-module. The product
on ΓA(M) is then identified with the shuffle product :

× : TSd1
A (M)⊗A TSd2

A (M) → TSd1+d2
A (M)

which is given by

x× y =
∑

σ∈Sd1,d2

σ(x⊗ y)

where the sum is taken in Td1+d2
A (M). If B = M is a flat A-algebra we can replace

the sum with a product. This gives a multiplicative map

(4.3.1) SL : TSd1
A (B)⊗A TSd2

A (B) → TSd1+d2
A (B)

defined by

SL(z) =
∏

σ∈Sd1,d2

σ(z).

Indeed, the set Sd1,d2 is a set of representatives of the left cosets of the subgroup
Sd1 × Sd2 ↪→ Sd1+d2 . If z ∈ TSd1

A (B) ⊗A TSd2
A (B) then σ(z) = σ′(z) if σ and

σ′ belongs to the same left coset. As left multiplication on Sd1+d2 permutes the
cosets, it is clear that SL(z) is invariant under Sd1+d2 .

The composition of ρd1,d2 followed by SL is taking ((d1, d2))th powers and SL
extends to a multiplicative law which is homogeneous of degree ((d1, d2)). In fact,
by Proposition (1.2) it is enough to show that SL extends functorially to

SLn : TSd1
A (B)⊗A TSd2

A (B)[t1, t2, . . . , tn] → TSd1+d2
A (B)[t1, t2, . . . , tn]

which is easily seen.

Definition (4.4). Let B be a flat A-algebra. The shuffle homomorphism is the
homomorphism

Λd1,d2 : Γ((d1,d2))

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
→ Γd1+d2

A (B)

which corresponds to the shuffle law constructed in (4.3).

Proposition (4.5). Let d1, d2 be integers and N = ((d1, d2)). The shuffle homo-
morphism, defined in (4.4) for flat A-algebras B, extends uniquely to a homomor-
phism

Λd1,d2 : ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
→ Γd1+d2

A (B).
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for every A-algebra B such that for any homomorphism B → C of A-algebras the
following diagram is commutative

ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
��

Λ
d1,d2
B // Γd1+d2

A (B)

��

ΓN

Γ
d1+d2
A (C)

(
Γd1

A (C)⊗A Γd2
A (C)

) Λ
d1,d2
C // Γd1+d2

A (C).

Proof. If C is an arbitrary A-algebra and B is a flat A-algebra with a surjection
B � C then the vertical arrows of the square are surjective and the upper arrow
Λd1,d2

B is given by Definition (4.4). We will verify that the composition of the
upper and right arrows factors through the left arrow and thus induces a unique
homomorphism Λd1,d2

C . As the diagram is commutative for flat A-algebras, it is then
easily seen that this definition of Λd1,d2

C is independent on the choice of flat resolution
B � C and that the diagram becomes commutative for any homomorphismB → C.

Let I be the kernel of B � C. The kernel of the left arrow in the diagram

ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
� ΓN

Γ
d1+d2
A (C)

(
Γd1

A (C)⊗A Γd2
A (C)

)
is the Γd1+d2

A (B)-module generated by the elements

γa
(
(γb1(i)× f)⊗ (γb2(j)× g)

)
× h

with a ≥ 1, b1 + b2 ≥ 1, i, j ∈ I, f ∈ Γd1−b1
A (B), g ∈ Γd2−b2

A (B) and h ∈
ΓN−a

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗AΓd2
A (B)

)
by [I, 1.2.10]. Furthermore, replacing A with a faith-

fully flat extension we can assume that f, g and h are of the form f = γd1−b1(x),
g = γd2−b2(y) and h = γN−a(z) where x, y ∈ B and z ∈ Γd1

A (B)⊗A Γd2
A (B) [Fer98,

Lem. 2.3.1]. Finally, replacing A with A[t, u, v], it is enough to show that the
elements

γN
(
γd1(i+ tx)⊗ γd2(j + uy) + vz

)
γN

(
γd1(tx)⊗ γd2(uy) + vz

)
of ΓN

Γ
d1+d2
A (B)

(
Γd1

A (B)⊗A Γd2
A (B)

)
have the same image in Γd1+d2

A (C). This follows

by an easy computation. �

Corollary (4.6). There exists a canonical multiplicative law F : Td
A(B) → Γd

A(B),
homogeneous of degree d!, such that the composition Td

A(B) → Γd
A(B) → Td

A(B)
maps z ∈ Td

A(B) onto
∏

σ∈Sd
σ(z).

Proof. Let SLd1,d2 : Γd1
A (B) ⊗ Γd2

A (B) → Γd1+d2
A (B) be the multiplicative law

corresponding to Λd1,d2 . Let FB : Td
A(B) → Γd

A(B) be the composition of the
laws SL1,1 ⊗A Td−2

A (B), SL2,1 ⊗A Td−3
A (B), . . . , SLd−1,1. This is a multiplica-

tive law of degree d!. Let P be a flat A-algebra with a surjection P � B. Let
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FP : Td
A(P ) → Γd

A(P ) be the multiplicative law constructed similarly. Then there
is a commutative diagram

Td
A(P ) // //

FP

��

Td
A(B)

FB

��

Γd
A(P ) // // Γd

A(B).

◦

As FP (z) =
∏

σ∈Sd
σ(z) ∈ TSd

A(P ) ∼= Γd
A(P ) for any z ∈ Td

A(P ) by construction, it
follows that for any z ∈ Td

A(B), the image of FB(z) in Td
A(B) is

∏
σ∈Sd

σ(z). �

Corollary (4.7). Let ϕ : Γd
A(B) → TSd

A(B) be the canonical homomorphism.
There is a canonical multiplicative law F : TSd

A(B) → Γd
A(B) of degree d! such

that ϕ ◦ F and F ◦ ϕ are the trivial laws of degree d!. In particular, if x ∈ ker(ϕ)
then xd! = 0 and if y ∈ TSd

A(B) then yd! ∈ im(ϕ).

(4.8) Iversen’s canonical homomorphism — Next, we consider the canonical ho-
momorphism defined by Iversen in [Ive70, Prop. I.1.5]. This is the homomorphism

ω : Γd
A(B)⊗A B → Γd−1

A (B)⊗A B

given by ρd−1,1 ⊗ idB followed by the multiplication map. In particular ω(γd(f)⊗
g) = γd−1(f)⊗ fg. Furthermore, we let

u : Γd
Γd

A(B)

(
Γd

A(B)⊗A B
) ∼=−→ Γd

A(B)⊗A Γd
A(B) → Γd

A(B)

be the composition of the canonical base-change isomorphism followed by the mul-
tiplication map. This is the homomorphism corresponding to the universal law U
given in the beginning of this section.

Proposition (4.9) ([Ive70, Prop. I.1.5]). The homomorphism ω is surjective.

Proof. It is enough to show that elements of the form
(
γd−1−k(1)× x

)
⊗ 1, where

0 ≤ k ≤ d − 1 and x ∈ Γk
A(B), are in the image of ω. When k = 0 this is clear.

We proceed by induction on k. The element
(
γd−k(1) × x

)
⊗ 1 ∈ Γd

A(B) ⊗A B is
mapped onto an element of the form(

γd−1−k(1)× x
)
⊗ 1 +

∑
α

(
γd−k(1)× yα

)
⊗ zα

by the formula (4.1.1). By the induction hypothesis it follows that the second term
belongs to the image of ω and hence so does the first term. �

The following Proposition generalizes [Ive70, Prop. I.3.1].

Proposition (4.10). We have that u = Λd−1,1 ◦ Γd
A(ω).

Proof. Let u′ = Λd−1,1 ◦ Γd(ω). As u and u′ are Γd
A(B)-algebra homomorphisms,

it is enough to show that u and u′ coincides on elements of the form γd1(1⊗ b1)×
· · ·×γdk(1⊗bk). Replacing A with the polynomial ring A[t1, t2, . . . , tk], it is further
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enough to show that u and u′ coincides on the element γd(1⊗ b′) = γd
(
1⊗ (t1b1 +

t2b2 + · · · + tkbk)
)
. This is clear as ω(1 ⊗ b′) = 1 ⊗ b′ and Λd−1,1(γd(1 ⊗ b′)) =

γd(b′). �

5. The universal family

To abbreviate, we use the notation

Γd
1(X/S) = Γd−1(X/S)×S X.

as in the introduction. This should be thought of as the space parameterizing zero-
cycles of degree d with one marked point. The addition morphism Γd

1(X/S) →
Γd(X/S), which we will denote by Φd

X/S , corresponds to forgetting the marking
of the point. We will denote the projection on the marked point Γd

1(X/S) → X
by πd. When X/S is affine, we let ϕX/S be the family of zero-cycles of degree d
on Γd

1(X/S) parameterized by Γd(X/S) given by the shuffle homomorphism Λd−1,1

of Proposition (4.5). If a geometric point α ∈ Γd(X/S) corresponds to the cycle
x1 + x2 + · · · + xd then (ϕX/S)α corresponds to the cycle (x2 + · · · + xd−1, x1) +
· · ·+ (x1 + · · ·+ xd−1, xd).

(5.1) Let X/S and U/T be separated algebraic spaces. For any commutative
diagram

(5.1.1)

U
f
//

  B
BB

BB
BB

B XT
//

��

X

��

T
g
// S

�

there is a natural commutative diagram

(5.1.2)

Γd
1(U/T )

η
//

ΦU/T ''OOOOOOOOOOO
(f∗)∗Γd

1(XT /T ) //

��

Γd
1(XT /T )

(ΦX/S)T

��

Γd(U/T )
f∗ // Γd(XT /T )

�

Proposition (5.2). Let X/S be a separated algebraic space. There is a unique
family of cycles ϕX/S of degree d on Φd

X/S such that for any commutative dia-
gram (5.1.1) with T and U affine, the pull-back of the family ϕX/S to Γd(U/T )
coincides with the push-forward of ϕU/T along η.

Proof. In what follows, all spaces are over T . If f : U → XT is any étale morphism
then we let Γd(U)reg := Γd(U/T )|reg(f) be the regular locus [I, Cor. 3.3.11]. When
f : U → XT is étale then the morphism η of diagram (5.1.2) is an isomorphism over
Γd(U)reg by [I, Cor. 3.3.11]. We let Γd

1(U)reg = Φ−1
U

(
Γd(U)reg

)
. If

∐
α Uα → XT is
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an étale cover, then in the diagram∐
α,β Γd

1(Uα ×XT
Uβ)reg

//
//

Φd
Uα×XT

Uβ
|reg

��

∐
α Γd

1(Uα)reg //

Φd
Uα
|reg

��

Γd
1(XT )

Φd
XT

��∐
α,β Γd(Uα ×XT

Uβ)reg
//
//
∐

α Γd(Uα)reg // Γd(XT )

the natural squares are cartesian [I, Cor. 3.3.11] and the horizontal sequences are
étale equivalence relations [I, Cor. 3.3.16]. If we choose a covering such that the
Uα’s are affine, then we have families ϕd

Uα×Uβ
|reg and ϕd

Uα
|reg on each component

of the two leftmost vertical arrows. By étale descent, we obtain a family ϕd
XT

on
the rightmost arrow. From the compatibility of ϕd with respect to base change and
morphisms stated in Proposition (4.5), we can glue the families ϕd

XT
for every T to

a family ϕd
X with the ascribed properties. �

Proposition (5.3). The morphism (ΦX/S , πd) : Γd
1(X/S) → Γd(X/S) ×S X is a

closed immersion.

Proof. Follows from Proposition (4.9). �

Proposition (5.4). Let X/S be a separated algebraic space. The family of zero-
cycles

(
Γd

1(X/S), ϕX/S

)
is a representative for the universal family of Γd(X/S).

Proof. We have to prove that the composition of the maps

ϕX/S : Γd(X/S) → Γd
(
Γd

1(X/S)/Γd(X/S)
)

Γd(ΦX/S , πd) : Γd
(
Γd

1(X/S)
)
↪→ Γd

(
Γd(X/S)×S X

)
π : Γd

(
Γd(X/S)×S X

)
= Γd(X/S)×S Γd(X/S) → Γd(X/S)

is the identity. This follows from Proposition (4.10). �

Remark (5.5). In general, we do not have that Γd
1(X/S) = Image(ϕX/S). It is

easily seen however that Γd
1(X/S)red = Supp(ϕX/S).

Proposition (5.6). The universal family Φd
X/S : Γd

1(X/S) → Γd(X/S) is étale of
rank d over Γd(X/S)nondeg.

Proof. This is a special case of [I, Prop. 4.1.8]. �

Corollary (5.7). Let X/S be a separated algebraic space, T an S-space and α ∈
Γd

X/S(T ) a family of cycles. If α is non-degenerate at t ∈ T then there is an open
neighborhood U 3 t such that Image(α|U ) → U is étale of degree d. In particular,
the non-degeneracy locus of α is open in T . Moreover, α|U is given by the canonical
family NImage(α|U ) and the image of α|U commutes with arbitrary base change.

Proof. Follows immediately from Propositions (3.2) and (5.6). �
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Proposition (5.8). Let X/S be a separated family of smooth curves, i.e., X/S is
a separated algebraic space, smooth of relative dimension one. Then the universal
family Φd

X/S is locally free of rank d and generically étale.

Proof. The spaces Γd
1(X/S) and Γd(X/S) are smooth of relative dimension d over

S [I, Prop. 4.3.3]. In particular, they are flat over S and we can check the statements
about Φd

X/S on the fibers. Replacing S with a point s we can thus assume that S is a
point. Then Γd(X/S) and Γd

1(X/S) are regular and in particular Cohen-Macaulay.
As Φd

X/S is finite it follows that Φd
X/S is flat, cf. [EGAIV, Prop. 15.4.2], and hence

locally free. Moreover the connected components of (X/S)d are irreducible and their
generic points are outside the diagonals. Thus Φd

X/S is generically étale of rank d,
cf. Proposition (5.6). It follows that Φd

X/S is locally free of constant rank d. �

6. The Grothendieck-Deligne norm map

In this section we briefly discuss the natural morphism Hilbd(X/S) → Γd(X/S)
taking a flat subscheme to its norm family. We will call this map the Grothendieck-
Deligne norm map as it is introduced in [FGA, No. 221, §6] and [Del73, 6.3.4].
This morphism is closely related to the Hilbert-Chow morphism [GIT, 5.4] and the
Hilbert-Sym morphism [Nee91] as discussed in [III].

Definition (6.1). Let f : X → S be a separated algebraic space and T an S-
space. Let Qcohpf(X/S)(T ) be the set of isomorphism classes of quasi-coherent
finitely presented OX -modules which are flat and have proper support over T . We
let Qcohpfd(X/S)(T ) be the subset of Qcohpf(X/S)(T ) consisting of modules G
with support finite over T such that f∗G is locally free of constant rank d.

The usual pull-back makes Qcohpf(X/S) and Qcohpfd(X/S) into contravariant
functors. It can be shown that Qcohpf(X/S) is the coarse functor to an algebraic
stack [LMB00, Thm. 4.6.2.1] but we will not use this.

We have natural transformations

Hilbd(X/S) → Qcohpfd(X/S)

Quotd(F/X/S) → Qcohpfd(X/S)

Qcohpfd(X/S) → Γd(X/S)

where the first two are forgetful morphisms and the last is given by G 7→ NG . Here
NG is the canonical family determined by G defined in (3.1). This gives morphisms
Hilbd(X/S) → Γd(X/S) and Quotd(F/X/S) → Γd(X/S).

When the canonical family is flat of rank d and generically étale, the morphism
Hilbd(X/S) → Γd(X/S) is an isomorphism [Ive70, Thm. II.3.4]. In particular
Hilbd(X/S) → Γd(X/S) is an isomorphism over Γd(X/S)nondeg and an isomorphism
if X/S is a family of smooth curves, cf. Propositions (5.6) and (5.8)



14 DAVID RYDH

7. Composition of families and étale projections

(7.1) Universal composition of laws — Consider the law M 7→ Γe
A(Γd

A(M)) given
by x 7→ γe(γd(x)). This law is homogeneous of degree de and thus gives a homo-
morphism

κd,e : Γde
A (M) → Γe

A(Γd
A(M)).

Let M , N and P be A-modules. Given polynomial laws F : M → N and G : N →
P homogeneous of degrees d and e respectively, we form the composite polynomial
law G◦F : M → P . If f : Γd

A(M) → N , g : Γe
A(N) → P and g∗f : Γde

A (M) → P
are the corresponding homomorphisms, we have that g ∗ f = g ◦ Γe(f) ◦ κd,e.

When M , N and P are A-algebras, then κd,e is an algebra homomorphism as
the polynomial law defining κd,e is multiplicative. When B is an A-algebra and C
a B-algebra, it is also convenient to let κd,e be the natural map

Γde
A (C) → Γe

A(Γd
A(C)) → Γe

A(Γd
B(C)).

This is the universal composition of a multiplicative law F : C → B over B
which is homogeneous of degree d and a multiplicative law G : B → A which is
homogeneous of degree e.

Definition (7.2). Let X/Y and Y/S be separated algebraic spaces. Let T be
an S-space and α ∈ Γd

X/Y (Y ×S T ) and β ∈ Γe
Y/S(T ) be families of cycles. Let

Zα = Image(α) ↪→ X ×S T and Zβ = Image(β) ↪→ Y ×S T . Composing the
corresponding laws, we obtain a morphism

T → Γde(Zα ×Y×ST Zβ/T ) ↪→ Γde(X ×S T/T )

and we let β ∗ α ∈ Γde
X/S(T ) be the corresponding family. By definition Image(β ∗

α) ↪→ Image(α)×Y×ST Image(β). It is clear that the composition (α, β) → β ∗α is
functorial in T and hence we obtain a natural transformation

∗ : Γe
Y/S(−)× Γd

X/Y (Y ×S −) → Γde
X/S(−).

of functors from S-schemes to sets. We define β ∗ α for inhomogeneous families
similarly.

Proposition (7.3). Let X/Y , Y/S be separated algebraic spaces. Let T be an
S-space and let α ∈ Γ?

X/Y (Y ×S T ) and β ∈ Γ?
Y/S(T ) be families of cycles.

(i) If f : X → X ′ is a Y -morphism, then

f∗(β ∗ α) = β ∗ f∗α.

(ii) Let g : Y ′ → Y be an S-morphism and g′ : X ′ → X be the pull-back of g
along X/Y . Let β′ ∈ Γ?

Y ′/S(T ) be a family of cycles. Then

(g∗β′) ∗ α = g′∗(β
′ ∗ g∗α)

(iii) If α′ ∈ Γ?
X/Y (Y ×S T ) and β′ ∈ Γ?

Y/S(T ) are families of cycles, then

(β + β′) ∗ α = β ∗ α+ β′ ∗ α
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β ∗ (α+ α′) = β ∗ α+ β ∗ α′.

Proof. (i) and (ii) are easily verified and (iii) follows from (i) and (ii). �

Remark (7.4). Let S = Spec(k) where k is an algebraically closed field. Let X/Y
and Y/S be algebraic spaces with families of cycles α and β of degrees d and e
respectively. Then β = y1 + y2 + · · ·+ ye and β ∗ α = αy1 + αy2 + · · ·+ αye

.
The following proposition also follows from the existence of product families in

Section 8.

Proposition (7.5). Let f : X → S be a separated morphism, let g : Y → S be
a finite and étale morphism and let α : S → Γ?(X/S) be a family of zero-cycles.
Then NY/S ∗ g∗α = α ∗ NX×SY/X .

Proof. It is enough to show the equality after a faithfully flat base change. We
can thus assume that Y = Sqn is a trivial cover. Then both sides of the identity
are equal to α1 + α2 + · · · + αn where αi is the family α on the ith component of
X ×S Y = Xqn. �

Proposition (7.6). Let Y → S be a finite étale morphism and X → Y a separated
morphism. Then the morphism of presheaves

Γ?
X/Y (Y ×S −) → Γ?

X/S(−)

given by α 7→ NY×S−∗α, is an isomorphism. In particular, if Y and S are connected
then the degree of any family α′ ∈ Γ?

X/S(T ) is a multiple of the rank of Y → S.

Proof. As the presheaves are sheaves in the étale topology, we can replace S with
an étale cover and assume that Y = Sqn is a trivial étale cover. We then have a
corresponding decomposition X =

∐n
i=1Xi and any family α′ ∈ Γ?

X/S(T ) decom-
poses as a sum α′ =

∑n
i=1 α

′
i where α′i is supported on Xi×S T . This gives a family

α = (α′i) ∈ Γ?
X/Y (Y ×S T ) which composed with the canonical family NY×ST is

α′. �

For completeness, we mention the globalization of (7.1).

Definition (7.7) (Universal composition of families). Let X/Y and Y/S be sep-
arated algebraic spaces and let d and e be positive integers. Consider the natural
projection morphisms

Γe(Γd(X/Y )/S)×S Γd(X/Y )×Y X

→ Γe(Γd(X/Y )/S)×S Γd(X/Y ) → Γe(Γd(X/Y )/S).

On the first morphism, we have the family idΓe(Γd(X/Y )/S) ×S Φd
X/Y and on the

second we have the family Φe
Γd(X/Y )/S . The composition of these families gives a

morphism
κ′ : Γe(Γd(X/Y )/S) → Γde(Γd(X/Y )×Y X/S).
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We let
κd,e

X/Y/S : Γe(Γd(X/Y )/S) → Γde(X/S)

be κ′ followed by the push-forward along the projection on the second factor.

Proposition (7.8). Let X/Y , Y/S be separated algebraic spaces, T an S-space
and let α ∈ Γd

X/Y (Y ×S T ) and β ∈ Γe
Y/S(T ) be families of cycles. Then

β ∗ α = κd,e ◦ Γe(α) ◦ (β, idT ).

Proof. Replacing X and Y with X ×S T and Y ×S T we can assume that T = S.
Let β̃ be the pull-back of the universal family Φe

Γd(X/Y )/S along Γe(α) ◦ β. Note

that κ′ ◦ Γe(α) ◦ β corresponds to the family β̃ ∗ Φd
X/Y . As β̃ is the push-forward

of β along the closed immersion α : Y → Γd(X/Y ), we have that β̃ ∗ Φd
X/Y is

the push-forward of β ∗ α along α ×Y idX : X ↪→ Γd(X/Y ) ×Y X. As κd,e is
the push-forward of κ′ along the projection Γd(X/Y ) ×Y X → X, this ends the
demonstration. �

8. Products of families

Given two families α : T → Γd(X/S) and β : T → Γe(Y/S) we construct a
product family α × β : T → Γde(X ×S Y/S). If α =

∑
i αi and β =

∑
j βj then

α× β =
∑

i,j αi × βj . Moreover, α× β = α ∗ (β ×S X) = β ∗ (α×S Y ).

Lemma (8.1). Let X/S and Y/S be separated algebraic spaces. There is a natural
action of Sd ×Se on (X/S)d ×S (Y/S)e permuting the factors. Let Symd,e(X,Y )
be the geometric quotient [Ryd07]. If either both X/S and Y/S are flat or S is a
Q-scheme, then

Symd,e(X,Y ) = Symd(X/S)×S Syme(Y/S) = Γd(X/S)×S Γe(Y/S).

Proof. Let n = d + e and consider the action of Sn on (X q Y/S)n. For any
decomposition n = d′ + e′ there is an open and closed subset (Xd′ × Y e′)q((d,e))

which is invariant under the action of Sn. The quotient of this subset is the quotient
ofXd′×Y e′ by Sd′×Se′ . IfX/S and Y/S are flat or S is a Q-scheme, then Γ = Sym
and we have that

Symn(X q Y ) =
∐

d′+e′=n

Symd′(X/S)×S Syme′(Y/S).

The identity of the lemma then follows. �

Consider the morphism

τ : (X/S)d × (Y/S)e → (X ×S Y )de

given by (πi, πj)1≤i≤d, 1≤j≤e. The composition of τ with the quotient map (X ×S

Y )de → Symde(X ×S Y ) is invariant under the action of Sd ×Se. Thus, under the
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assumptions of the lemma, there is an induced morphism

ρ : Symd(X/S)×S Syme(Y/S) → Symde(X ×S Y/S).

Proposition (8.2). The morphism ρ takes a pair of families (α, β) to the family
α ∗ (β ×S X) = β ∗ (α×S Y ).

Proof. Working étale-locally, we can assume that S = Spec(A), X = Spec(B) and
Y = Spec(C) are affine. As TSd

A(B)⊗A TSe
A(C) → Td

A(B)⊗A Te
A(C) is injective by

the lemma, it is enough to show that the description of the morphism ρ is correct for
families factoring through (X/S)d → Symd(X/S) and (Y/S)e → Syme(Y/S). Let a
and b be T -points of (X/S)d and (Y/S)e. Then a (resp. b) corresponds to sections
x1, x2, . . . , xd (resp. y1, y2, . . . , ye) of X ×S T/T (resp. Y ×S T/T ). The image
by τ of (a, b) is a T -point of (X ×S Y )de corresponding to the sections (xi, yj)ij .
Passing to the quotient, (a, b) is mapped to the pair of families (

∑
i xi,

∑
j yj) and

the image of this pair under ρ is
∑

ij(xi, yj). As the composition commutes with
addition of cycles, it is now enough to show the equality for d = e = 1 and this case
is trivial. �

Theorem (8.3). There is a canonical morphism Γd(X/S)×SΓe(Y/S) → Γde(X×S

Y/S) taking (α, β) to α× β := α ∗ (β ×S X) = β ∗ (α×S Y ).

Proof. Working étale-locally, we can assume that S, X and Y are affine. Let
X ↪→ X ′ and Y ↪→ Y ′ be closed immersions into schemes which are flat over
S. We have two morphisms Γd(X/S) ×S Γe(Y/S) → Γde(X ×S Y/S) given by
(α, β) 7→ α ∗ (β ×S X) and (α, β) 7→ β ∗ (α×S Y ) respectively. To show that these
coincide, it is enough to show that the compositions of these two morphisms with
Γde(X ×S Y/S) ↪→ Γde(X ′ ×S Y

′/S) coincide. This follows from Proposition (8.2)
as the composition commutes with push-forward. �

9. Families of zero-cycles over reduced parameter spaces

The geometric points of Γd(X/S) correspond to cycles of degree d. To be pre-
cise, if k is an algebraically closed field and s is a k-point of S, then the k-points of
Γd(X/S) over s corresponds to the effective zero-cycles of degree d on (Xs)red [I,
Cor. 3.1.9]. To determine the k-points for an arbitrary field k, we have to charac-
terize the k-points which descends to k. If k is perfect, these points are the ones
corresponding to cycles invariant under the action of the Galois group Gal(k/k).
The k-points of Γd(X/S) are thus effective zero-cycles of degree d on (Xs)red where
the degree is counted with multiplicity. The inseparable case is slightly more com-
plicated.

Definition (9.1). Let k ↪→ K be a finite algebraic extension. There is then a
canonical factorization into a separable extension k ↪→ ks and a purely inseparable
extension ks ↪→ K. The separable degree of K/k is [ks : k] and the inseparable
degree is [K : ks]. The exponent of K/k is the smallest positive integer n such that
Knk is separable over k, i.e., the smallest positive integer n such that Kn ⊆ ks.
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We let the quasi-degree of K/k be the product of the separable degree and the
exponent. We let the inseparable discrepancy be the quotient of the inseparable
degree with the exponent.

Remark (9.2). If k is of characteristic zero, then the inseparable degree, the expo-
nent and the inseparable discrepancy are all one. If k is of characteristic p, then
the inseparable degree, the exponent and the inseparable discrepancy are powers
of p. Let ds be the separable degree, di the inseparable degree, pe the exponent,
d = [K : k] the degree, dq the quasi-degree and δ the inseparable discrepancy. Then

d = dsdi, di = peδ, dq = dsp
e, d = dqδ.

The inseparable discrepancy is one if and only if ks ↪→ K is generated by one
element, or equivalently, if and only if k ↪→ K is generated by one element.

Example (9.3). The standard example of a field extension with exponent different
from the inseparable degree is the following: Let k = Fp(s, t) and K = k1/p =
k(s1/p, t1/p). Then K/k has inseparable degree p2 and exponent p.

Lemma (9.4). Let k ↪→ K be a finite algebraic extension of fields of characteristic
p. The exponent of K/k is the smallest power pe such that kp−e

↪→ kp−e

K is
separable.

Proof. Standard results on p-bases, cf. [Mat86, Thm. 26.7], show that if k ↪→ k′

is a separable algebraic extension then kp−e

k′ = k′p
−e

. Thus kp−e

↪→ kp−e

K is
separable if and only if kp−e

s ↪→ kp−e

s K is separable. This is equivalent to Kpe ⊆ ks,
i.e., that K/k has exponent at most pe. �

The following proposition is a reinterpretation of [Kol96, Thm. I.4.5] as will be
seen in Proposition (9.13).

Proposition (9.5). Let k ↪→ K be a finite algebraic extension with quasi-degree d.
Then k is equal to the intersection of all purely inseparable extensions k′/k such
that k′ ↪→ Kk′ has degree at most d.

Proof. Let ds and pe be the separable degree and exponent of K/k. Let k1 be the
intersection of all fields k′ such that k′/k is purely inseparable and k′ ↪→ Kk′ has
degree at most d = dsp

e. If k 6= k1 we can find an element x ∈ k1 \ k such that
xp ∈ k. Let k′ be a maximal purely inseparable extension of k such that x /∈ k′.
Then kp−e

k′ ⊆ k′(xp−e

) by [Kol96, Main Lemma I.4.5.5]. In particular the degree
of kp−e

k′/k′ is at most pe. Note that by Lemma (9.4) we have that kp−e

↪→ kp−e

K
is separable and hence has degree ds. Thus Kk′/k′ has degree at most dsp

e. This
implies that x /∈ k1 which is a contradiction. �

Proposition (9.6). Let k ↪→ K be a finite field extension. Then Γd(K/k) has at
most one k-point. It has a k-point if and only if the quasi-degree of K/k divides d.
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This k-point corresponds to the composition of the polynomial laws

Finsep : K → ks, b 7→ bd/ds

Fsep : ks → k, b 7→ Nks/k(b)

where ds is the separable degree of K/k and Nks/k : ks → k is the norm, cf. §3. In
particular, there is a k-point if [K : k] | d.
Proof. Let ds and pe be the separable degree and the exponent of K/k and ks

its separable closure. By Proposition (7.6) there is a one-to-one correspondence
between k-points of Γd(K/k) and ks-points of Γd/ds(K/ks). Replacing k with ks

and d with d/ds we can thus assume that K/k is separably closed.
Let F : K → k be a polynomial law, homogeneous of degree d. Then Kpe ⊆ k

and as F is multiplicative we have that F (b)pe

= F
(
bp

e)
=

(
bp

e)d
for any b ∈ K.

As pth roots are unique in k it follows that F (b) = bd ∈ k. As K/k is purely
inseparable, it follows that pe | d. �

Definition (9.7). Let X/S be a separated algebraic space. Given a family of zero-
cycles α on X/S parameterized by an S-space T , we define the multiplicity of α at
a point x ∈ X×S T , denoted multx(α), as follows. Let t ∈ T be the image of x in T .
The pull-back of the family to k(t) is then supported at Image(αt) = Supp(αt) =
{x1, x2, . . . , xn} and given by the morphism

αt : Spec
(
k(t)

)
→ Γd

(
Supp(αt)

)
=

∐
d1+d2+···+dn=d

n
×

i=1
Γdi

(
Spec(k(xi))

)
.

As each of the schemes Γdi
(
Spec(k(xi))

)
has at most one k(t)-point by Propo-

sition (9.6), the morphism αt is uniquely determined by the decomposition d =
d1 + d2 + · · ·+ dn. The multiplicity at xi is defined to be di/[k(xi) : k(t)] and zero
at points outside Supp(α). As the support commutes with base change we have
that

Supp(α) = {x ∈ X ×S T : multx(α) > 0}.

Definition (9.8). Let X/S be a separated algebraic space and let T be a S-space.
Given a family of zero-cycles α on X/S parameterized by T , we let its fundamental
cycle [α] be the cycle on X ×S T with coefficients in Q given by

[α] =
∑

x∈X×S(Tmax)

multx(α)
[
{x}

]
where Tmax is the set of generic points of T .

Proposition (9.9). Let X/S be a separated algebraic space and T a reduced S-
space. A family of zero-cycles α ∈ Γd

X/S(T ) is then uniquely determined by its
fundamental cycle [α]. Moreover Supp(α) = Supp

(
[α]

)
.

Proof. As every component of Z = Supp(α) dominates a component of T [I,
Thm. 2.4.6], the support of [α] coincides with the support of α. As T is reduced,
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the morphism α : T → Γd(X/S) is determined by its restriction to the generic
points of T . If ξ ∈ Tmax then αξ : k(ξ) → Γd(Supp(αξ)) is determined by the
multiplicities at the points of Supp(αξ) by Proposition (9.6). �

Definition (9.10). Let k be a field and X/k a separated algebraic space. Let Z be
a zero-cycle on X with coefficients in Q. The degree of Z at a point z ∈ Supp(Z)
is the product of the multiplicity of Z at z and [k(z) : k]. We say that Z is
quasi-integral if for any z ∈ Supp(Z) the following two equivalent conditions are
satisfied

(i) The product of multz(Z) and the inseparable discrepancy of k(z)/k is an
integer.

(ii) The degree of Z at z is an integer multiple of the quasi-degree of k(z)/k.
Note that if k is perfect then Z is quasi-integral if and only if it has integral

coefficients.

Proposition (9.11). Let k be a field and X/k a separated algebraic space. There is
a one-to-one correspondence between k-points of Γd(X/k) and quasi-integral effec-
tive zero-cycles on X of degree d. This correspondence takes a family of zero-cycles
α onto its fundamental cycle [α].

Proof. Follows from the definitions and Proposition (9.6). �

Definition (9.12). Let k be a field and X/k a separated algebraic space. Let
Z =

∑n
i=1 ai[Zi] be a zero-cycle on X with coefficients in Q. For a field extension

k′/k we define the cycle Zk′ on Xk′ = X ×k Spec(k′) as

Zk′ =
n∑

i=1

ai[Zi ×k Spec(k′)]

where [Zi ×k Spec(k′)] is the fundamental cycle of Zi ×k Spec(k′), i.e., the sum of
the irreducible components of Zi ×k Spec(k′) weighted by the lengths of the local
rings at their generic points.

If α ∈ Γd(X/k) and k′/k is a field extension, then [α]k′ = [αk′ ].

Proposition (9.13) ([Kol96, Thm. I.4.5]). Let k be a field and X/k a separated
algebraic space. Let Z be a zero-cycle on X with coefficients in Q. Then Z is quasi-
integral if and only if k is the intersection of all purely inseparable field extensions
k′ ⊇ k such that Zk′ has integral coefficients.

Proof. Follows immediately from Proposition (9.5). �

Remark (9.14). It is reasonable that an effective zero-cycle on X with integral
coefficients should give a family of zero-cycles on X/k. The above proposition
explains why fractional coefficients are also sometimes allowed. Indeed, let Z be an
effective zero-cycle on Xk with integral coefficients and let α be the corresponding
point in Γd(X/k). If k′/k is a field extensions such that Z decends to X×k Spec(k′)
with integral coefficients, then α is defined over k′. Thus the residue field of α
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has at least to be small enough to be contained in all such field extensions k′.
Proposition (9.13) states that the residue field is not smaller than this.

10. Families of zero-cycles as multivalued morphisms

In this section, we give an alternative description of families of zero-cycles on
AF-schemes as “multi-morphisms”.

Definition (10.1). A multivalued map f : X → Y is a map which to every x ∈ X
assigns a finite subset f(x) ⊆ Y . The inverse image of W ⊆ Y with respect to f is

f−1(W ) = {x ∈ X : f(x) ⊆W}.

A multivalued map f : X → Y of topological spaces is continuous if f−1(U) is
open for every open subset U ⊆ Y . A multivalued map f : X → Y is of degree at
most d if |f(x)| ≤ d for every x ∈ X.

Note that it is allowed for f(x) to be the empty set.

Definition (10.2). Let X be a topological space. A d-cover of X is an open cover
{Uα} of X such that any set of at most d points of X is contained in one of the
Uα’s. A d-sheaf on X is a presheaf F on X such that

F(U) //
∏

α F(Uα) //
//
∏

α,β F(Uα ∩ Uβ)

is exact for any open subset U ⊆ X and every d-cover {Uα} of U . In other words, a
d-sheaf is a sheaf in the Grothendieck topology on X where the covers are d-covers.
A 1-sheaf is an ordinary sheaf.

Definition (10.3). Let f : X → Y be a continuous multivalued map of degree at
most d. If F is a presheaf of sets on X we let f∗F be the presheaf U 7→ F(f−1(U))
for every open subset U ⊆ Y . If F is a k-sheaf then f∗F is a dk-sheaf. If F
is a dk-sheaf of sets on Y we let f∗F be the associated k-sheaf to the presheaf
U 7→ lim−→V⊇f(U)

F(V ), where U ⊆ X is open and the limit is over all open subsets
V ⊆ Y containing f(U). If F is a presheaf on X and Z ⊆ X is a finite subset, we
denote by

FZ = lim−→
V⊇Z

F(V )

the stalk at Z.
It is not difficult to see, as in the single-valued case, that if f : X → Y is a

continuous multivalued map of degree at most d, then f∗ and f∗ are adjoint functors
between the categories of k-sheaves on X and kd-sheaves on Y and (f∗F)x = Ff(x).

Definition (10.4). Let X and Y be ringed spaces. A multi-morphism from X to
Y is a pair (f, θ) consisting of a multivalued continuous map f : X → Y and a
multiplicative law (of presheaves) θ : OY → f∗OX over Z. We say that (f, θ) is of
degree d if θ is homogeneous of degree d.
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Remark (10.5). An ordinary morphism of ringed spaces is a multi-morphism of
degree 1. Given multi-morphisms f : X → Y and g : Y → Z we can form the
composition g ◦ f : X → Z. If f and g has degrees d and e respectively, then g ◦ f
has degree de.

Proposition (10.6). Let (f, θ) : X → Y be a multi-morphism of ringed spaces.
There is a canonical partition X =

∐
d≥0Xd of open and closed subsets Xd ⊆ X

such that f |Xd
is a multi-morphism of degree d.

Proof. This follows easily from Proposition (2.2). �

Definition (10.7). Let A be a semi-local ring and B be a local ring. A mul-
tiplicative Z-law A → B is called semi-local if the kernel of the composite law
A→ B → B/mB is the Jacobson radical of A.

Note that if Y is an AF-scheme and Z ⊆ Y is finite, then the stalk OY,Z is
semi-local.

Definition (10.8). Let X and Y be schemes. A multi-morphism from X to Y is a
multi-morphism of ringed spaces (f, θ) such that OY,f(x) is semi-local and the law
θ]

x : OY,f(x) → OX,x is semi-local for every x ∈ X.

Remark (10.9). If f : X → Y and g : Y → Z are multi-morphisms of schemes,
then g ◦ f : X → Z is a multi-morphism of schemes if OZ,g(f(x)) is semi-local for
every x ∈ X.

Proposition (10.10). Let (f, θ) : X → Y be a multi-morphism of schemes. If
(f, θ) has degree d, then the multivalued map f is of degree at most d. In particular,
there is a one-to-one correspondence between multi-morphisms of degree one and
ordinary morphisms of schemes.

Proof. If θ is of degree d then so is θ]
x. The kernel of OY,f(x) → OX,x/mx is by

assumption the Jacobson radical r of OY,f(x). Let B = OY,f(x)/r. We thus have a
non-degenerate multiplicative law B → k(x) of degree d. This law factors through
a homomorphism B → B⊗Z k(x) � B′ where B′ is a product of at most d fields [I,
Thm. 2.4.6]. As B → k(x) is non-degenerate, we have by definition that B → B′

is injective and thus B is a product of at most d fields. �

Definition (10.11). Let f = (f, θ) : X → Y be a multi-morphism of schemes
and let n be a positive integer. We denote by n · f the multi-morphism (f, θn)
from X to Y where θn is the homomorphism θ followed by taking the nth power.
If f has degree d then n · f has degree nd. More generally, if f1, f2 : X → Y are
multi-morphisms, we can define their sum f1 +f2 : X → Y as the multi-morphism
(f1 ∪ f2, θ1θ2). If OY,f1(x)∪f2(x) is semi-local, this is a multi-morphism of schemes.
If f1 and f2 have degrees d1 and d2 respectively, then f1 + f2 has degree d1 + d2.

Definition (10.12). Let X and Y be S-schemes with structure morphisms ϕX :
X → S and ϕY : Y → S. We say that a multi-morphism (f, θ) : X → Y
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is an S-multi-morphism if ϕY ◦ f = ϕX as multivalued maps and θ : OY →
f∗OX is a ϕ∗Y OS-law. Here the ϕ∗Y OS-algebra structure on f∗OX is given by the
homomorphism OS → (ϕX)∗OX = (ϕY )∗f∗OX and adjointness.

Proposition (10.13). Let ϕX : X → S and ϕY : Y → S be S-schemes. If
f : X → Y is an S-multi-morphism of degree d, then ϕY ◦ f = d · ϕX .

Proof. The law defining ϕY ◦ f is ψ : OS → (ϕY )∗OY → (ϕY )∗f∗OX . As
(ϕY )∗OY → (ϕY )∗f∗OX is an OS-law, it follows that ψ is the dth power of
OS → (ϕX)∗OX . �

It is not true, unless X is reduced, that if f : X → Y is a multi-morphism
of S-schemes such that ϕY ◦ f = d · ϕX , then f is a S-multi-morphism. This is
demonstrated by the following example.

Example (10.14). Let A = Z[x], B = A[y], C = A[ε]/ε2. Then it can be shown
that

Γ2
Z(B) =

Z[xp, xs, yp, ys, x× y]
(x× y)2 − xsys(x× y) + xpy2

s + x2
syp − 4xpyp

where xp = γ2(x), xs = x × 1, yp = γ2(y) and ys = y × 1. Let F : B → C be
a multiplicative Z-law of degree 2 and let f : Γ2

Z(B) → C be the corresponding
homomorphism. That the composite law A → B → C is a 7→ a2 · 1C is equivalent
to f(γ2(x)) = x2 and f(xs) = 2x. This implies that(

f(x× y)− xf(ys)
)2 = 0.

In particular, f(yp) = f(ys) = 0 and f(x × y) = ε defines a homomorphism such
that A→ B → C is taking squares. It is clear that F is not an A-law as this would
imply that f(x× y) = xf(ys) = 0.

Theorem (10.15). Let X/S be any scheme and Y/S be an AF-scheme. There is
a one-to-one correspondence between S-multi-morphisms f : X → Y and families
of zero-cycles, i.e., morphisms α : X → Γ?(Y/S). In this correspondence a family
of cycles α corresponds to the multi-morphism (f, θ) such that

(i) For every x ∈ X, the image f(x) is the projection of the support Supp(α×X

Spec(k(x))) ↪→ Y ×S Spec(k(x)) onto Y .
(ii) For any affine open subsets V ⊆ S and U ⊆ Y ×S V , the law

θ(U) : OY (U) → OX(f−1(U))

corresponds to the morphism

α|Γ?(U/V ) : α−1(Γ?(U/V )) → Γ?(U/V ).

Proof. To begin with, note that for any open U ⊆ Y , we have that f−1(U) =
α−1(Γ≥1(U/S)). In particular, f is continuous. It is further clear that θ is a
morphism of presheaves and that θ]

x is the law corresponding to Spec(OX,x) →
Γd(Spec(OY,f(x))) where d is the degree of α at x. This law is semi-local by the
definition of f .



24 DAVID RYDH

We will now construct an inverse to the mapping α → (f, θ). For this, we can
assume that S is affine and that θ is homogeneous of degree d. As Y is an AF-
scheme, there is an open affine cover {Uβ} of Y such that any d points of Y lie in
some Uβ . This induces an open affine cover {Γd(Uβ/S)} of Γd(Y/S) [I, Prop. 3.1.10].
The laws θ(Uβ) correspond to morphisms αβ : f−1(Uβ) → Γd(Uβ/S). The semi-
locality of θ ensures that if x ∈ f−1(Uβ) then the projection of Supp(αβ)x onto Uβ

is f(x). In particular, α−1
β

(
Γd(Uβ′/S)

)
= f−1(Uβ ∩ Uβ′). Thus the αβ ’s glue to a

morphism α : X → Γd(Y/S) which corresponds to (f, θ). �

Remark (10.16). Let X/S, Y/S and T/S be schemes. Given two multi-morphisms
f : T → X and g : T → Y over S, there is an induced multi-morphism (f, g) :
T → X ×S Y . This is given by taking the product α × β of the corresponding
families α and β. If f and g have degrees d and e, then (f, g) has degree de and
the composition of (f, g) and the first (resp. second) projection is e · f (resp. d · g).
In particular, π1 ◦ (f, g) = f and π2 ◦ (f, g) = g as topological maps.

11. Sheaves of divided powers

Let X/S be a separated algebraic space and let F be a quasi-coherent OX -
module. In this section we construct a canonical quasi-coherent sheaf Γd(F) on
Γd(X/S). This is a globalization of the construction of the Γd

A(B)-module Γd
A(M)

for an A-algebra B and a B-module M . The sheaf Γd(F) has been constructed by
Deligne when X/S is flat [Del73, 5.5.29].

Proposition (11.1). Let X/S be a separated algebraic space and let F be a quasi-
coherent OX-module. There is then a canonical quasi-coherent sheaf Γd(F) on
Γd(X/S). If f : X ′ → X is étale, then there is a canonical isomorphism

Γd(f−1F)|reg(f) → (f∗|reg)−1 Γd(F).

If X/S is affine, then Γd(F) is canonically isomorphic to Γd
OS

(F).

Proof. We will construct Γd(F) through étale descent via the étale equivalence
relation ∐

α,β

Γd(Uα ×X Uβ/S)|reg //
//

∐
α

Γd(Uα/S)|reg // Γd(X/S)

for an étale covering {Uα → X} [I, 3.3.16.1]. If the Uα’s are affine then so are the
Uα ×X Uβ ’s. The proposition thus follows after we have showed that

(11.1.1) Γd
OS

(f−1F)|reg(f) → (f∗|reg)−1Γd
OS

(F)

is an isomorphism for any étale morphism f : X ′ → X of affine schemes. Let
Y = V(F) = Spec(S(F)). Then

(11.1.2) Γd(Y ×X X ′/S)|reg(f) → (f∗|reg)−1Γd(Y/S)

is an isomorphism [I, Cor. 3.3.11]. As F is a direct summand of OY , it follows
from (11.1.2) that (11.1.1) is an isomorphism. �
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12. Weil restriction and the norm functor

In this section, we globalize and generalize the results of Ferrand on the norm
functor [Fer98]. Let Spec(B) → Spec(A) be a finite faithfully flat and finitely
presented morphism of constant rank d. In this situation Ferrand constructs a
norm functor NB/A from B-modules to A-modules which is uniquely determined
by the following properties:

(i) NB/A(B) = A and the image of the multiplication by b in B is the multi-
plication by NB/A(b) in A, cf. §3.

(ii) The norm functor commutes with base change, i.e., for any A-algebra A′,
denoting B′ = B ⊗A A′, we have that the functors

M 7→ NB/A(M)⊗A A′ and M 7→ NB′/A′(M ⊗B B′)

are isomorphic.

The functoriality gives a polynomial law ν : M → NB/A(M), homogeneous of
degree d, which is compatible with the polynomial law NB/A. If C is a B-algebra
then NB/A(C) is an A-algebra. Ferrand constructs NB/A(M) as the tensor product
Γd

A(M)⊗Γd
A(B) A where the Γd

A(B)-algebra structure of A is given by the determi-
nant law NB/A : B → A.

Given algebraic spaces X/S and Y/S together with a family of cycles α : Y →
Γ?(X/S) we will construct a norm functor Nα : CX → CY . Here C is one of the
following fibered categories over the category of algebraic spaces:

• The category of quasi-coherent modules QCoh.
• The category of affine schemes Aff .
• The category of separated algebraic spaces AlgSp.

In Ferrand’s setting, S = Y is affine, X/S is finite flat of constant rank d and
α = NX/S is the canonical family given by the determinant, cf. Definition (3.1).
We construct the generalized norm functor in the obvious way:

Definition (12.1). With notation as above, we let Nα(W ) = α∗Γ?(W/S) where
W ∈ CX . If W is an algebraic space, we let να(W ) be the induced family of cycles
να(W ) : Nα(W ) → Γ?(W/S) as in the diagram below:

Γ?(W/S)

��

Nα(W )
να(W )
oo

��

Γ?(X/S) Y.
αoo

�

When W is a quasi-coherent OX -module, we let να(W ) be the induced homomor-
phism Γ?(W ) → α∗Nα(W ) on Γ?(X/S).

Remark (12.2). When W/X is étale (or unramified) it is possible to define a “reg-
ular norm functor” using Nα(W )reg = α∗

(
Γ?(W/S)reg

)
.
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Remark (12.3). If Z/S is a third space and β : Z → Γe(Y/S) is a family of cycles,
there is a functorial morphism Nβ(Nα(W )) → Nα◦β(W ) but this is not always an
isomorphism, cf. [Fer98, Ex. 4.4].

When W/X is a space, it is useful to think of Nα(W ) as the pull-back of W
along the multi-morphism α as in the following diagram:

W

��

Nα(W )
να(W )
oo_ _ _

��

X Y.
αoo_ _ _ _

Proposition (12.4). With notation as above, let W/X be a space and Y ′ be a
Y -scheme. The Y ′-points of Nα(W ) corresponds to the set of liftings of the family
of cycles α×Y Y

′ to a family of cycles β : Y ′ → Γ?(W/S). In other words, it is the
set of liftings of the multi-morphism α×Y Y

′ to a multi-morphism β in the diagram

W

��

Nα(W )
να(W )
oo_ _ _

��

Nα(W )×Y Y ′oo

��

X Y
αoo_ _ _ _ Y ′.oo

β

jjU U U U U U U U U U U U

If α is non-degenerate, the lifting β is non-degenerate and the Y ′-points of Nα(W )
correspond to sections of W → X over Image(α) ×Y Y ′ ↪→ X ×S Y ′. If W/X
is unramified, the Y ′-points of Nα(W )reg correspond to sections of W → X over
Image(α×Y Y ′).

Proof. The correspondence follows from the construction of Nα(W ). The last two
assertions are immediate consequences of the definitions of non-degenerate families
and regular families [I, Defs. 4.1.6 and 3.3.3] taking into account that Image(α×Y

Y ′) = Image(α)×Y Y ′ when α is non-degenerate, cf. Corollary (5.7). �

Definition (12.5). Let X → Y and W → X be morphism of algebraic spaces.
The Weil restriction RX/Y (W ) is the functor from Y -schemes to sets that takes
an Y -scheme Y ′ to the set of sections of W ×Y Y ′ → X ×Y Y ′.

Corollary (12.6) ([Fer98, Prop. 6.2.2]). Let X → Y be a morphism and α : Y →
Γ?(X/Y ) a family of cycles. Let W be an algebraic space separated over X. There is
then a canonical morphism RX/Y (W ) → Nα(W ) which is functorial in W . Assume
that X → Y is finite and étale and that α = NX/Y is the canonical family given by
the determinant. Then the above functor is an isomorphism.

Proof. Follows immediately from Proposition (12.4) as α is non-degenerate and
hence Image(α×Y Y ′) = Image(α)×Y Y ′ = X ×Y Y ′. �

Corollary (12.7). Let f : X → Y be a finitely presented morphism such that
there exists a family of zero-cycles α : Y → Γ?(X/Y ) with Supp(α) = Xred, e.g., f
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finite and flat, or Y normal and f finite and open. If W is an étale and separated
scheme over X, then Nα(W )reg coincides with the Weil restriction RX/Y (W ). In
particular, the canonical morphism RX/Y (W ) → Nα(W ) is an open immersion.

Proof. Note that Image(α ×Y Y ′) has the same support as X ×Y Y ′. As W/X is
étale, any section of W/X over Supp(α ×Y Y ′) thus lifts to a unique section over
X ×Y Y ′. �

Example (12.8). The following counter-example, due to Ferrand [Fer98, 6.4],
shows that even if W/X is finite and étale and X/Y is finite and flat, but not
étale, it may happen that Nα(W )reg ⊆ Nα(W ) is not an isomorphism and that
Nα(W ) → Y is not étale.

Let X = Spec(L) → Y = Spec(K) correspond to an inseparable field extension
K ⊆ L of degree d. Let W = Xqd. Then there is a closed point in Nα(W )
with residue field L. This point corresponds to the family s1 + s2 + · · ·+ sl where
si : Spec(L) → W is the inclusion of the ith copy. Thus Nα(W ) → Y is not étale
and as Nα(W )reg → Y is étale the subset Nα(W )reg ⊆ Nα(W ) is proper.
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HILBERT AND CHOW SCHEMES OF POINTS, SYMMETRIC
PRODUCTS AND DIVIDED POWERS

DAVID RYDH

Abstract. Let X be a quasi-projective S-scheme. We explain the relation
between the Hilbert scheme of d points on X, the dth symmetric product
of X, the scheme of divided powers of X of degree d and the Chow scheme
of zero-cycles of degree d on X with respect to a given projective embedding
X ↪→ P(E). The last three schemes are shown to be universally homeomor-
phic with isomorphic residue fields and isomorphic in characteristic zero or
outside the degeneracy loci. In arbitrary characteristic, the Chow scheme co-
incides with the scheme of divided powers for a sufficiently ample projective
embedding.

Introduction

Let X be a quasi-projective S-scheme. The purpose of this article is to explain
the relation between

a) The Hilbert scheme of points Hilbd
(
X/S) parameterizing zero-dimensional

subschemes of X of degree d.
b) The dth symmetric product Symd(X/S).
c) The scheme of divided powers Γd(X/S) of degree d.
d) The Chow scheme Chow0,d

(
X ↪→ P(E)

)
parameterizing zero dimensional

cycles of degree d on X with a given projective embedding X ↪→ P(E).
If X/S is not quasi-projective then none of these objects need exist as schemes
but the first three do exist in the category of algebraic spaces separated over S
[Ryd08, Ryd07b, I]. Classically, only the Chow variety of X ↪→ P(E) is defined but
we will show that for zero-cycles there is a natural Chow scheme whose underlying
reduced scheme is the Chow variety.

There are canonical morphisms

Hilbd(X/S) → Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(Ek)

)
where k ≥ 1 and X ↪→ P(Ek) is the Veronese embedding. The last two of these
are universal homeomorphisms with trivial residue field extensions and are iso-
morphisms if S is a Q-scheme. If S is arbitrary and X/S is flat then the second
morphism is an isomorphism. For arbitrary X/S the third morphism is not an

2000 Mathematics Subject Classification. 14C05, 14L30.
Key words and phrases. Divided powers, symmetric powers, Chow scheme, Hilbert scheme,

Weighted projective spaces.

1



2 DAVID RYDH

isomorphism. In fact, the Chow scheme may depend on the chosen embedding as
shown by Nagata [Nag55]. However, we will show that the third morphism is an
isomorphism for sufficiently large k. Finally, we show that all three morphisms are
isomorphisms outside the degeneracy locus.

The comparison between the last three schemes uses weighted projective struc-
tures. Given a projective embedding X ↪→ P(E), there is an induced weighted pro-
jective structure on the symmetric product Symd(X). This follows from standard
invariant theory, using the Segre embedding (X/S)d ↪→ P(E⊗d). In characteris-
tic zero, this weighted projective structure on Symd(X) is actually projective, i.e.,
all generators have degree one. In positive characteristic, the weighted projective
structure is “almost projective”: the sheaf O(1) on Symd(X) is ample and gener-
ated by its global sections. This is a remarkable fact as for a general quotient, the
sheaf O(1) of the weighted projective structure is usually not even invertible.

Since O(1) is generated by its global sections, we obtain a projective morphism
Symd(X) → P(TSdOS

(E)). In characteristic p, the ample sheaf O(1) is not always
very ample, and thus this morphism is usually not a closed immersion. It is however
a universal homeomorphism onto its image — the Chow variety. In summary, the
reason that the Chow variety depends on the choice of projective embedding is that
it is the image of an invariant object, the symmetric product, under a projective
morphism induced by an ample sheaf which is not always very ample.

Given a projective embedding X ↪→ P(E), the scheme of divided powers Γd(X)
has a similar weighted projective structure with similar properties. We define the
Chow scheme to be the image of the analogous morphism Γd(X) → P(ΓdOS

(E)).
For a sufficiently ample projective embedding, e.g., take the Veronese embedding
X ↪→ P(Sk(E)) for a sufficiently large k, this morphism is a closed immersion. In
particular, it follows that Γd(X) is projective.
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1. The algebra of divided powers and symmetric tensors

We begin this section by briefly recalling the definition of the algebra of divided
powers ΓA(M) and the multiplicative structure of ΓdA(B). We then give a sufficient
and necessary condition for ΓdA(M) to be generated by γd(M). This generalizes
the sufficiency condition given by Ferrand [Fer98, Lem. 2.3.1]. The condition is
essentially that every residue field of A should have at least d elements. Similar
conditions on the residue fields reappear in Sections 3.1 and 5.2. Finally, we recall
some explicit degree bounds on the generators of ΓdA(A[x1, x2, . . . , xr]).

1.1. Divided powers and symmetric tensors. This section is a quick review
of the results needed from [Rob63, Rob80]. Also see [Fer98, I].

Notation (1.1.1). Let A be a ring and M an A-algebra. We denote the dth tensor
product of M over A by TdA(M). We have an action of the symmetric group Sd

on TdA(M) permuting the factors. The invariant ring of this action is the algebra
of symmetric tensors which we denote by TSdA(M). By TA(M) and TSA(M) we
denote the graded A-modules

⊕
d≥0 TdA(M) and

⊕
d≥0 TSdA(M) respectively.

(1.1.2) Let A be a ring and let M be an A-module. Then there exists a graded A-
algebra, the algebra of divided powers, denoted ΓA(M) =

⊕
d≥0 ΓdA(M) equipped

with maps γd : M → ΓdA(M) such that, denoting the multiplication with × as
in [Fer98], we have that for every x, y ∈M , a ∈ A and d, e ∈ N

Γ0
A(M) = A, γ0(x) = 1, Γ1

A(M) = M, and γ1(x) = x(1.1.2.1)

γd(ax) = adγd(x)

γd(x+ y) =
∑
d1+d2=d

γd1(x)× γd2(y)

γd(x)× γe(x) =
(
d+ e

d

)
γd+e(x)

Using (1.1.2.1) we identify A with Γ0
A(M) and M with Γ1

A(M). If (xα)α∈I is a set
of elements of M and ν ∈ N(I) then we let

γν(x) = ×
α∈I

γνα(xα)
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which is an element of ΓdA(M) with d = |ν| =
∑
α∈I να.

(1.1.3) Functoriality — ΓA(·) is a covariant functor from the category of A-
modules to the category of graded A-algebras [Rob63, Ch. III §4, p. 251].

(1.1.4) Base change — If A′ is an A-algebra then there is a natural isomor-
phism ΓA(M)⊗A A′ → ΓA′(M ⊗A A′) mapping γd(x)⊗A 1 to γd(x⊗A 1) [Rob63,
Thm. III.3, p. 262].

(1.1.5) Multiplicative structure — When B is an A-algebra then the multiplica-
tion of B induces a multiplication on ΓdA(B) which we will denote by juxtaposi-
tion [Rob80]. This multiplication is such that γd(x)γd(y) = γd(xy).

(1.1.6) Universal property — If M is an A-module, then the A-module ΓdA(M)
represents polynomial laws which are homogeneous of degree d [Rob63, Thm. IV.1,
p. 266]. If B is an A-algebra, then the A-algebra ΓdA(B) represents multiplicative
polynomial laws which are homogeneous of degree d [Fer98, Prop. 2.5.1].

(1.1.7) Basis — If (xα)α∈I is a set of generators of M , then
(
γν(x)

)
ν∈N(I) is a set

of generators of ΓA(M). If (xα)α∈I is a basis of M then
(
γν(x)

)
ν∈N(I) is a basis of

ΓA(M) [Rob63, Thm. IV.2, p. 272].

(1.1.8) Presentation — Let M = G/R be a presentation of the A-module M .
Then ΓA(M) = ΓA(G)/I where I is the ideal of ΓA(G) generated by the images in
ΓA(G) of γd(x) for every x ∈ R and d ≥ 1 [Rob63, Prop. IV.8, p. 284].

(1.1.9) Γ and TS — The homogeneous polynomial law M → TSdA(M) of degree d
given by x 7→ x⊗Ad = x⊗A · · ·⊗Ax corresponds by the universal property (1.1.6) to
an A-module homomorphism ϕ : ΓdA(M) → TSdA(M) [Rob63, Prop. III.1, p. 254].

WhenM is a free A-module then ϕ is an isomorphism [Rob63, Prop. IV.5, p. 272].
The functors ΓdA and TSdA commute with filtered direct limits [I, 1.1.4, 1.2.11]. Since
any flat A-module is the filtered direct limit of free A-modules [Laz69, Thm. 1.2], it
thus follows that ϕ : ΓdA(M) → TSdA(M) is an isomorphism for any flat A-module
M .

Moreover by [Rob63, Prop. III.3, p. 256], there is a diagram of A-modules

TSdA(M) � � // TdA(M)

����

ΓdA(M)

OO

SdA(M)oo

such that going around the square is multiplication by d!. Thus if d! is invertible
then ΓdA(M) → TSdA(M) is an isomorphism. In particular, this is the case when A
is purely of characteristic zero, i.e., contains the field of rationals.



HILBERT AND CHOW SCHEMES, SYM. PRODUCTS AND DIV. POWERS 5

Let B be an A-algebra. As the law B → TSdA(B) given by x 7→ x⊗Ad is multi-
plicative, it follows that the homomorphism ϕ : ΓdA(B) → TSdA(B) is an A-algebra
homomorphism. In Section 4.1 we study the properties of ϕ more closely.

1.2. When is ΓdA(M) generated by γd(M)? ΓdA(M) is not always generated by
γd(M) but a result due to Ferrand [Fer98, Lem. 2.3.1], cf. Proposition (1.2.4), shows
that there is a finite free base change A ↪→ A′ such that ΓdA′(M ⊗AA′) is generated
by γd(M⊗AA′). We will prove a slightly stronger statement in Proposition (1.2.2).

We let
(
γd(M)

)
denote the A-submodule of ΓdA(M) generated by the subset

γd(M).

Lemma (1.2.1). Let A be a ring and M an A-module. There is a commutative
diagram (

γdA(M)
)
⊗A A′

ϕ

��

// ΓdA(M)⊗A A′

∼=ψ

��
◦(

γdA′(M ⊗A A′)
)

⊆ ΓdA′(M ⊗A A′)

where ψ is the canonical isomorphism of (1.1.4). If A → A′ is a surjection or a
localization then ϕ is surjective. In particular, if in addition

(
γdA′(M ⊗A A′)

)
=

ΓdA′(M ⊗A A′) then
(
γdA(M)

)
⊗A A′ → ΓdA(M)⊗A A′ is surjective.

Proof. The morphism ϕ is well-defined as ψ
(
γd(x)⊗A a′

)
= a′γd(x⊗A 1) if x ∈M

and a′ ∈ A′. If A′ = A/I then ϕ is clearly surjective. If A′ = S−1A is a localization
then ϕ is surjective since any element of M ⊗AA′ can be written as x⊗A (1/f) and
ϕ
(
γd(x)⊗A 1/fd

)
= γd

(
x⊗A (1/f)

)
. �

Proposition (1.2.2). Let M be an A-module. The A-module ΓdA(M) is generated
by the subset γd(M) if the following condition is satisfied

(*) For every p ∈ Spec(A) the residue field k(p) has at least d elements or Mp

is generated by one element.
If M is of finite type, then this condition is also necessary.

Proof. Lemma (1.2.1) gives that
(
γdA(M)

)
= ΓdA(M) if and only if

(
γdAp

(Mp)
)

=
ΓdAp

(Mp) for every p ∈ Spec(A). We can thus assume that A is a local ring and
only need to consider the condition (*) for the maximal ideal m. If M is generated
by one element then it is obvious that

(
γdA(M)

)
= ΓdA(M).

Further, any element in ΓdA(M) is the image of an element in ΓdA(M ′) for some
submodule M ′ ⊆ M of finite type. It is thus sufficient, but not necessary, that
ΓdA(M ′) is generated by γd(M ′) for every submodule M ′ ⊆M of finite type. We can
thus assume that M is of finite type. Lemma (1.2.1) applied with A � A/m = k(m)
together with Nakayama’s lemma then shows that

(
γdA(M)

)
= ΓdA(M) if and only

if
(
γdA/m(M/mM)

)
= ΓdA/m(M/mM). We can thus assume that A = k is a field.

We will prove by induction on e that Γek(M) is generated by γe(M) when 0 ≤
e ≤ d if and only if either rkM ≤ 1 or |k| ≥ e. Every element in Γek(M) is a linear
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combination of elements of the form

γν(x) = γν1(x1)× γν2(x2)× · · · × γνm(xm).

where xi ∈M and |ν| = e. By induction γν2(x2)×· · ·×γνm(xm) ∈
(
γe−ν1(M)

)
and

we can thus assume that m = 2 and it is enough to show that γi(x) × γe−i(y) ∈(
γe(M)

)
for every x, y ∈ M and 0 ≤ i ≤ e if and only if either rkM ≤ 1 or

|k| ≥ e. If x and y are linearly dependent this is obvious. Thus we need to show
that for x and y linearly independent, we have that γi(x)×γe−i(y) ∈

(
γe(kx⊕ky)

)
if and only if |k| ≥ e. A basis for Γek(kx ⊕ ky) is given by z0, z1, . . . , ze where
zi = γi(x)× γe−i(y), see (1.1.7). For any a, b ∈ k we let

ξa,b := γe(ax+ by) =
e∑
i=0

γi(ax)× γe−i(by) =
e∑
i=0

aibe−izi.

Then
(
γek(kx⊕ ky)

)
= Γek(kx⊕ ky) if and only if

∑
(a,b)∈k2 kξa,b =

⊕e
i=0 kzi. Since

ξλa,λb = λeξa,b this is equivalent to
∑

(a:b)∈P1
k
kξa,b =

⊕e
i=0 kzi. It is thus necessary

that
∣∣P1
k

∣∣ = |k| + 1 ≥ e + 1. On the other hand if a1, a2, . . . , ae ∈ k∗ are distinct
then ξa1,1, ξa2,1, . . . , ξae,1, ξ1,0 are linearly independent. In fact, this amounts to
(1, ai, a2

i , a
3
i , . . . , a

e
i )i=1,2,...,e and (0, 0, . . . , 0, 1) being linearly independent in ke+1.

If they are dependent then there exist a non-zero (c0, c1, . . . , ce−1) ∈ ke such that
c0 + c1ai + c2a

2
i + · · ·+ ce−1a

e−1
i = 0 for every 1 ≤ i ≤ e but this is impossible

since c0 + c1x+ · · ·+ ce−1x
e−1 = 0 has at most e− 1 solutions. �

Lemma (1.2.3). Let Λd = Z[T ]/Pd(T ) where Pd(T ) is the unitary polynomial∏
0≤i<j≤d(T

i− T j)− 1. Then every residue field of Λd has at least d+ 1 elements.
In particular, if A is any algebra, then A ↪→ A′ = A⊗Z Λd is a faithfully flat finite
extension such that every residue field of A′ has at least d+ 1 elements.

Proof. The Vandermonde matrix (T ij)0≤i,j≤d is invertible in EndΛd
(Λd+1

d ) since it
has determinant one. Let k be a field and ϕ : Λd → k be any homomorphism. If t =
ϕ(T ) then (tij)0≤i,j≤d is invertible in Endk(kd+1) and it follows that 1, t, t2, . . . , td

are all distinct and hence that k has at least d+ 1 elements. �

Proposition (1.2.4). [Fer98, Lem. 2.3.1] Let Λd be as in Lemma (1.2.3). If A is
a Λd-algebra then ΓdA(M) is generated by γd(M). In particular, for every A there
is a finite faithfully flat extension A → A′, independent of M , such that ΓdA′(M

′)
is generated by γd(M ′).

Proof. Follows immediately from Proposition (1.2.2) and Lemma (1.2.3). �

1.3. Generators of the ring of divided powers. In this section we will recall
some results on the degree of the generators of ΓdA(B). For our purposes the results
of Fleischmann [Fle98] is sufficient and we will not use the more precise and stronger
statements of [Ryd07a] even though some bounds would be slightly improved then.
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Definition (1.3.1) (Multidegree). Let B = A[x1, x2, . . . , xr]. We define the mul-
tidegree of a monomial xα ∈ B to be α. This makes B into a Nr-graded ring

B =
⊕
α∈Nr

Bα =
⊕
α∈Nr

Axα

Let M be the A-module basis of B consisting of the monomials. Recall from
paragraph (1.1.7) that a basis of ΓA(B) is given by the elements γν(x) = ×α γνα(xα)
for ν ∈ N(M). We let mdeg

(
γk(xα)

)
= kα and mdeg(f × g) = mdeg(f) + mdeg(g)

for f, g ∈ ΓA(B). Then

mdeg
(
×
α
γνα(xα)

)
=

∑
xα∈M

να mdeg(xα) =
∑
α∈Nr

ναα.

We let ΓdA(B)α be the A-module generated by basis elements γν(x) of multidegree
α. This makes ΓdA(B) =

⊕
α∈Nr ΓdA(B)α into a Nr-graded ring.

Definition (1.3.2) (Degree). Let B = A[x1, x2, . . . , xr] =
⊕

k≥0Bk with the usual
grading, i.e., Bk are the homogeneous polynomials of degree k. The graded A-
algebra C =

⊕
k≥0 ΓdA(Bk) is a subalgebra of ΓdA(B). If an element f ∈ ΓdA(B)

belongs to Ck = ΓdA(Bk) we say that f is homogeneous of degree k. The degree
of an arbitrary element f ∈ ΓdA(B) is the smallest natural number n such that
f ∈ ΓdA (

⊕n
k=0Bk).

Remark (1.3.3). Let B = A[x0, x1, . . . , xr] and let C =
⊕

k≥0 ΓdA(Bk) be the
graded subring of ΓdA(B). The degree in the previous definition is such that there
is a relation between the degree of elements in C and the degree of an element in
the graded localization C(γd(s)) for s ∈ B1. To see this, note that

C(γd(s)) = ΓdA
(
B(s)

)
= ΓdA

(
A[x0/s, . . . , xr/s]

)
.

We let A[x0/s, . . . , xr/s] be graded such that xi/s has degree 1. An element
f ∈ ΓdA(A[x0/s, . . . , xr/s]) of degree n can then be written as g/γd(s)n where
g ∈ ΓdA(Bn) is homogeneous of degree n.

Theorem (1.3.4) ([Ric96, Prop. 2], [Ryd07a, Cor. 8.4]). If d! is invertible in A
then ΓdA(A[x1, . . . , xr]) is generated by the elementary multisymmetric functions
γd1(x1)×γd2(x2)×· · ·×γdr (xr)×γd−d1−d2−···−dr (1), di ∈ N and d1+d2+· · ·+dr ≤ d.

Theorem (1.3.5) ([Fle98, Thm. 4.6, 4.7], [Ryd07a, Cor. 8.6]). For an arbitrary
ring A, the A-algebra ΓdA(A[x1, . . . , xr]) is generated by γd(x1), γd(x2), . . . , γd(xr)
and the elements γk(xα)×γd−k(1) with kα ≤ (d−1, d−1, . . . , d−1). Further, there
is no smaller multidegree bound and if d = ps for some prime p not invertible in A,
then ΓdA(A[x1, . . . , xr]) is not generated by elements of strictly smaller multidegree.

Theorems (1.3.4) and (1.3.5) give the following degree bound:
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Corollary (1.3.6). Let A be a ring and B = k[x1, x2, . . . , xr]. Then ΓdA(B) is
generated by elements of degree at most max

(
1, r(d − 1)

)
. If d! is invertible in A,

then ΓdA(B) is generated by elements of degree one.

2. Weighted projective schemes and quotients by finite groups

In this section we review the definition and the basic results on weighted projec-
tive schemes. We will in particular focus on weighted projective structures which
are covered in degree one. By this, we mean that the sections of O(1) give an affine
cover of the weighted projective scheme. We then recall the construction, using
invariant theory, of a geometric quotient of a projective scheme by a finite group.
Finally, we discuss the failure of a geometric quotient to commute with arbitrary
base change and closed immersions.

2.1. Remarks on projectivity. We will follow the definitions in EGA. In par-
ticular, very ample, ample, quasi-projective and projective will have the meanings
of [EGAII, §4.4, §4.6, §5.3, §5.5]. By definition, a morphism q : X → S is quasi-
projective if it is of finite type and there exists an invertible OX -sheaf L ample
with respect to q. Note that this does not imply that X is a subscheme of PS(E)
for some quasi-coherent OS-module E . However, if S is quasi-compact and quasi-
separated then there is a quasi-coherent OS-module of finite type E and an immer-
sion X ↪→ P(E) [EGAII, Prop. 5.3.2]. Similarly, a projective morphism is always
quasi-projective and proper but the converse only holds if S is quasi-compact and
quasi-separated.

Furthermore, if q : X → S is a projective morphism and L a very ample
invertible sheaf on X then L does not necessarily correspond to a closed embedding
into a projective space over S. We always have a closed embedding X ↪→ P(q∗L)
as q is proper [EGAII, Prop. 4.4.4] but q∗L need not be of finite type. If S is
locally noetherian however, then q∗L is of finite type [EGAIII, Thm. 3.2.1]. If S
is quasi-compact and quasi-separated then we can find a sub-OS-module of finite
type E of q∗L such that we have a closed immersion i : X ↪→ P(E) and such that
L = i∗OP(E)(1).

We will also need the following stronger notion of projectivity introduced by
Altman and Kleiman in [AK80, §2]. Our definition differs slightly from theirs as
we do not require strongly projective morphisms to be of finite presentation.

Definition (2.1.1). A morphism X → S is strongly projective (resp. strongly
quasi-projective) if it is of finite type and factors through a closed immersion (resp.
an immersion) X ↪→ PS(L) where L is a locally free OS-module of constant rank.

Remark (2.1.2). A strongly (quasi-)projective morphism is (quasi-)projective and
the converse holds when S is quasi-compact, quasi-separated and admits an ample
sheaf, e.g., S affine [AK80, Ex. 2.2 (i)]. In fact, in this case there is an embedding
X ↪→ PnS and thus the notions of projective and strongly projective also agree with
the definitions in [Har77].
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2.2. Weighted projective schemes.

Definition (2.2.1). Let S be a scheme. A weighted projective scheme over S is an
S-scheme X together with a quasi-coherent graded OS-algebra A of finite type, not
necessarily generated by degree one elements, such that X = ProjS(A). We let as
usual OX(n) = Ã(n) for any n ∈ Z.

If A is generated by degree one elements then the sheaves OX(n) are invertible
for any integer n and very ample if n is positive. Furthermore, there is then a
canonical isomorphism OX(m) ⊗OX

OX(n) = OX(m + n). All these properties
may fail if A is not generated by degree one elements.

It can however be shown, cf. Corollary (2.2.4), that if S is quasi-compact then
q : X → S is projective. To be precise, there is a positive integer n such thatOX(n)
is invertible, the homomorphism q∗An → OX(n) is surjective and in : X → P(An)
is a closed immersion. In particular, OX(n) = i∗nOP(An)(1) is very ample. Another
consequence is that if X is a weighted projective scheme over an arbitrary scheme
S then X → S is proper.

We will give a demonstration of the projectivity of X → S when S is quasi-
compact and also show some properties of the sheaves OX(n). The results are
somewhat weaker than those in [BR86, §4] but we also give stronger results when
X is covered in degree one.

The following lemma is an explicit form of [EGAII, Lem. 2.1.6].

Lemma (2.2.2). If B is a graded A-algebra generated by elements f1, f2, . . . , fs ∈
B of degrees d1, d2, . . . , ds and l is the least common multiple of d1, d2, . . . , ds then

(i) Bn+l = (BnBl) for every n ≥ (s− 1)(l − 1).
(ii) Bkn = (Bn)k for every k ≥ 0 if n = al with a ≥ s− 1.

Proof. Clearly Bk is generated by fa1
1 fa2

2 . . . fas
s such that

∑
i aidi = k. Let gi =

f
l/di

i ∈ Bl. If k ≥ s(l − 1) + 1 and f = fa1
1 fa2

2 . . . fas
s ∈ Bk then gi|f for some i

which shows (i). (ii) follows easily from (i). �

Proposition (2.2.3) (cf. [BR86, Cor. 4A.5, Thm. 4B.7]). Let A be a ring and
let B be a graded A-algebra generated by a finite number of elements f1, f2, . . . , fs
of degrees d1, d2, . . . , ds. Let l be the least common multiple of the di’s. Let S =
Spec(A), X = Proj(B) and OX(n) = B̃(n). Then

(i) X =
⋃
f∈Bn

D+(f) if n = al and a ≥ 1.
(ii) OX(n) is invertible if n = al and a ∈ Z.
(iii) OX(n) is ample and generated by global sections if n = al and a ≥ 1.
(iv) The canonical homomorphism OX(al) ⊗ OX(n) → OX(al + n) is an iso-

morphism for every a, n ∈ Z.
(v) If n = al with a ≥ 1 then there is a canonical morphism in : X →

P(Bn). If a ≥ max {1, s− 1} then in is a closed immersion and OX(n) =
i∗nOP(Bn)(1) is very ample relative to S.

(vi) OX(n) is generated by global sections if n ≥ (s− 1)(l − 1).



10 DAVID RYDH

Proof. (i) is trivial as X =
⋃s
i=1 D+(fi) =

⋃s
i=1 D+

(
f
al/di

i

)
if a ≥ 1, cf [EGAII,

Cor. 2.3.14]. Note that if f ∈ Bl then

(2.2.3.1) Bf =
(
B(f) ⊕B(1)(f) ⊕ · · · ⊕B(l − 1)(f)

)
[f, f−1].

Thus Γ
(
D+(f),OX(al)

)
= B(al)(f) = B(f)f

a is a free B(f)-module of rank one
which shows (ii).

(iii) If a ≥ 1 then
(
D+(f)

)
f∈Bal

is an affine cover ofX. AsOX(al) is an invertible
sheaf it is thus generated by global sections and ample by definition, cf. [EGAII,
Def. 4.5.3 and Thm. 4.5.2 a′)].

(iv) It is enough to show that the homomorphism OX(al)⊗OX(n) → OX(al+n)
is an isomorphism locally over D+(f) with f ∈ Bl. Locally this homomorphism is
B(al)(f)⊗B(f)B(n)(f) → B(al+n)(f) which is an isomorphism by equation (2.2.3.1)

(v) If n = al with a ≥ 1 then by (i) the morphism in : X → P(Bn) is everywhere
defined. If in addition a ≥ s− 1 then B(n) is generated by degree one elements by
Lemma (2.2.2) (ii). Thus we have a closed immersionX = Proj(B) ∼= Proj(B(n)) ↪→
P(Bn).

(vi) Assume that n ≥ (s − 1)(l − 1), then Bn+kl = (BnBkl ) for any positive
integer k by Lemma (2.2.2) (i). If f ∈ Bl and b ∈ B(n)(f), then b = b′/fk for some
b′ ∈ Bn+kl =

(
BnB

k
l

)
and thus b ∈

(
B(f)Bn

)
. This shows that OX(n) is generated

by global sections as Bn ⊆ Γ
(
D+(f),OX(n)). �

Corollary (2.2.4) ([EGAII, Cor. 3.1.11]). If S is quasi-compact and X = ProjS(A)
is a weighted projective scheme then there exists a positive integer n such that
X → P(An) is everywhere defined and a closed immersion. In particular X is
projective and OX(n) is very ample relative to S.

Proof. Let {Si} be a finite affine cover of S and let Ai = Γ(Si,OS) and Bi =
Γ(Si,A). Then as Bi is a finitely generated graded Ai-algebra, there is by Propo-
sition (2.2.3) a positive integer ni such that X ×S Si → P

(
(Bi)ni

)
is defined and a

closed immersion. Choosing n as the least common multiple of the ni’s we obtain
a closed immersion X ↪→ P(An). �

Remark (2.2.5). Note that (2.2.3) (iv), (v), (vi) implies that the following are
equivalent:

(i) OX(n) is invertible for all 0 < n < l.
(ii) OX(n) is invertible for all n.
(iii) OX(n) is very ample for all sufficiently large n.

As (i) is easily seen to not hold in many examples in particular (iii) is not always
true.

The following condition will be important later on as it is satisfied for Symd(X/S)
for X/S quasi-projective. Note that in the remainder of this section we do not
assume that A is finitely generated. In particular, ProjS(A) need not be a weighted
projective space.
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Definition (2.2.6). Let S be a scheme, A a graded quasi-coherent OS-algebra and
X = ProjS(A). If there is an affine cover (Sα) of S such that X ×S Sα is covered
by

⋃
f∈Γ(Sα,A1)

D+(f), then we say that X/S is covered in degree one.

Proposition (2.2.7). Let A be a ring and let B be a graded A-algebra generated
by elements of degree ≤ d. Let S = Spec(A), X = Proj(B) and OX(n) = B̃(n). If
X/S is covered in degree one then

(i) X =
⋃
f∈Bn

D+(f) if n ≥ 1.
(ii) OX(n) is invertible for n ∈ Z and ample and generated by global sections

if n ≥ 1.
(iii) OX(m)⊗OX(n) ∼= OX(m+ n) for every m,n ∈ Z.
(iv) The canonical morphism in : X → P(Bn) is defined for every n ≥ 1. If

n ≥ d then in is a closed immersion and OX(n) = i∗nOP(Bn)(1) is very
ample relative S.

Proof. (i) is equivalent to X/S being covered in degree one. Using the cover X =⋃
f∈B1

D+(f) instead of the coverX =
⋃
f∈Bl

D+(f) we may then prove (ii) and (iii)
exactly as (ii), (iii) and (iv) in Proposition (2.2.3).

(iv) Let n ≥ d and let B′ be the sub-A-algebra of B generated by Bn. It is enough
to show that the inclusion B′ ↪→ B induces an isomorphism Proj(B) ∼= Proj(B′).
We will show this using the cover X =

⋃
f∈B1

D+(fn). Let f ∈ B1 and g ∈ B(fn)

such that g = b/fnk for some b ∈ Bnk. To show that g ∈ B′(fn) we can assume that
b = b1b2 . . . bs is a product of elements of degrees di ≤ d, as every element of Bnk
are sums of such. Then g =

(∏s
i=1 bif

n−di
)
/fns which is an element of B′(fn). �

Corollary (2.2.8). Let S be any scheme and A a graded quasi-coherent OS-algebra
such that A is generated by elements of degree at most d. Let X = Proj(A),
OX(n) = Ã(n) and assume that X/S is covered in degree one. Then

(i) OX(n) = OX(1)⊗n is invertible for every n ∈ Z.
(ii) If n ≥ 1 then OX(n) is ample and q∗An → OX(n) is surjective.
(iii) For every n ≥ 1 the canonical morphism in : X → P(An) is everywhere

defined. If n ≥ d it is a closed immersion.

In particular, if X = ProjS(A) also is a weighted projective scheme, i.e., if A is of
finite type, then X is projective.

Example (2.2.9) (Standard weighted projective spaces). Let A = k be an al-
gebraically closed field of characteristic zero and B = k[x0, x1, . . . , xr]. Choose
positive integers d0, d1, . . . , dr and consider the action of G = µd0 × · · · × µdr

∼=
Z/d0Z× · · · × Z/drZ on B given by (n0, n1, . . . , nr) · xi = ξni

di
xi where ξdi is a dith

primitive root of unity. Then BG = k[xd00 , x
d1
1 , . . . , x

dr
r ] and Proj

(
BG

)
is a weighted

projective space of type (d0, d1, . . . , dr).
It can be seen, cf. Proposition (2.3.4), that Proj

(
BG

)
is the geometric quotient

of Proj(B) = Pr by G. More generally, if S is a noetherian scheme and X/S is
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projective with an action of a finite group G linear with respect to a very ample
sheaf OX(1), then a geometric quotient X/G exists and can be given a structure
as a weighted projective scheme.

The weighted projective space Proj
(
BG

)
is often denoted P(d0, d1, . . . , dr). It

can also be constructed as the quotient of Ar+1− 0 by Gm where Gm acts on Ar+1

by λ ·xi = λdixi. The closed points of P(d0, d1, . . . , dr) are thus {x = (x0 : x1 : · · · :
xr)} = kr+1/ ∼ where x ∼ y if there is a λ ∈ k∗ such that λdixi = yi for every i.

2.3. Quotients of projective schemes by finite groups. LetX be an S-scheme
and G a discrete group acting on X/S, i.e., there is a group homomorphism G →
AutS(X). In the category of ringed spaces we can construct a quotient Y = (X/G)rs
as following. Let Y as a topological space be X/G with the quotient topology, and
quotient map q : X → Y . Further let the sheaf of sections OY be the subsheaf
(q∗OX)G ↪→ q∗OX of G-invariant sections. Note that G acts on q∗OX since for any
open subset U ⊆ Y the inverse image q−1(U) is G-stable and hence has an induced
action of G. Thus we obtain a ringed S-space (Y,OY ) together with a morphism
of ringed S-spaces q : X → Y . The ringed space (Y,OY ) is not always a scheme,
in fact not always even a locally ringed space. But when it exists as a scheme it is
called the geometrical quotient and is also the categorial quotient in the category of
schemes over S. For general existence results we refer to [Ryd07b]. The existence of
a geometric quotient of an affine schemes by a finite group is not difficult to show:

Proposition (2.3.1) ([SGA1, Exp. V, Prop. 1.1, Cor. 1.5]). Let S be a scheme, A
a quasi-coherent sheaf of OS-algebras and X = SpecS(A). An action of G on X/S
induces an action of G on A. If G is a finite group then Y = SpecS

(
AG

)
is the

geometric quotient of X by G. If S is locally noetherian and X → S is of finite
type, then Y → S is of finite type.

From this local result it is not difficult to show the following result:

Theorem (2.3.2) ([SGA1, Exp. V, Prop. 1.8]). Let f : X → S be a morphism
of arbitrary schemes and G a finite discrete group acting on X by S-morphisms.
Assume that every G-orbit of X is contained in an affine open subset. Then the
geometrical quotient q : X → Y = X/G exists as a scheme.

It can also be shown, from general existence results, that if X/S is separated
then this is also a necessary condition [Ryd07b, Rmk. 4.9].

Remark (2.3.3). If X → S is quasi-projective, then every G-orbit is contained in
an affine open set. In fact, we can assume that S = Spec(A) is affine and thus
that we have an embedding X ↪→ PnS . For any orbit Gx we can then choose a
section f ∈ OPn(m) for some sufficiently large m such that V(f) does not intersect
Gx. The affine subset D(f) then contains the orbit Gx. More generally [EGAII,
Cor. 4.5.4] shows that every finite set, in particulary every G-orbit, is contained in
an affine open set if X/S is such that there exists an ample invertible sheaf on X
relative to S.
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In Corollary (2.3.6) we will show that if S is a noetherian scheme and X → S
is (quasi-)projective, then so is X/G→ S. In fact if X is projective we will give a
weighted projective structure on X/G.

Proposition (2.3.4). Let S be a scheme and let A =
⊕

d≥0Ad be a graded quasi-
coherent OS-algebra, generated by degree one elements. Let G be a finite group
acting on A by graded OS-algebra automorphisms. Then G acts on X = ProjS(A)
linearly with respect to OX(1). As X admits a very ample invertible sheaf relative
to S, a geometric quotient Y = X/G exists, cf. Remark (2.3.3). There is an
isomorphism Y ∼= ProjS

(
AG

)
and under this isomorphism, the quotient map q :

X → Y is induced by AG ↪→ A.

Proof. Everything is local over S so we can assume that S = Spec(A), A = B̃
and X = Proj(B). We can cover X by G-stable affine subsets of the form D+(f)
with f ∈ BG homogeneous. In fact, if Z is a G-orbit of X then the demonstration
of [EGAII, Cor. 4.5.4] shows that there is a homogeneous f ′ ∈ B such that Z ⊆
D+(f ′). If we let f =

∏
σ∈G σ(f ′), then Z ⊆ D+(f) and f ∈ BG is homogeneous.

Over such an open set we have that

X|D+(f)/G = Spec
((
B(f)

)G)
= Spec

(
(BG)(f)

)
= Proj

(
BG

)
|D+(f).

It is thus clear that Y = Proj
(
BG

)
. �

Remark (2.3.5). Note that AG is not always generated by AG1 even though A is
generated by A1. Also, if S = Spec(A) is affine and A = B̃, we may not be able to
cover X = Proj(B) with G-stable affine subsets of the form D+(f) with f ∈ BG1 .
This is demonstrated by example (2.2.9) if we choose di > 1 for some i.

Corollary (2.3.6) ([Knu71, Ch. IV, Prop. 1.5]). Let S be noetherian, X → S
be projective (resp. quasi-projective) and G a finite group acting on X by S-
morphisms. Then the geometrical quotient X/G is projective (resp. quasi-projective).

Proof. Let X ↪→ (X/S)m = X ×S X ×S · · · ×S X be the closed immersion given
by x → (σ1x, σ2x, . . . , σmx) where G = {σ1, σ2, . . . , σm}. As X → S is quasi-
projective and S is noetherian, there is an immersion X ↪→ PS(E) for some quasi-
coherent OS-module of finite type E , see [EGAII, Prop. 5.3.2]. This immersion
together with the immersion X ↪→ (X/S)m given above, gives a G-equivariant
immersion X ↪→

(
PS(E)/S

)n if we let G permute the factors of
(
PS(E)/S

)n. Fol-
lowing this immersion by the Segre embedding we get a G-equivariant immersion
f : X ↪→ PS(E⊗m) where G acts linearly on PS(E⊗m), i.e., by automorphisms of
E⊗m.

Let Y = f(X) be the schematic image of f . As Y is clearly G-stable we have an
action of G on Y and a geometric quotient q : Y → Y/G. Then, as X ↪→ Y is an
open immersion and q is open, we have that X/G = (Y/G)|q(Y ). Thus it is enough
to show that Y/G is projective. Let A = S(E⊗m)/I such that Y = Proj(A). Then
there is an action of G on A1 which induces the action Y . By Proposition (2.3.4)
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we have that Y/G = Proj
(
AG

)
. The scheme Y/G is a weighted projective scheme

as AG is an OS-algebra of finite type by Proposition (2.3.1). It then follows by
Corollary (2.2.4) that Y/G is projective. �

2.4. Finite quotients, base change and closed subschemes. A geometric quo-
tient is always uniform, i.e., it commutes with flat base change [GIT, Rmk. (7), p. 9].
It is also a universal topological quotient, i.e., the fibers corresponds to the orbits
and the quotient has the quotient topology and this holds after any base change.
However, in positive characteristic a geometric quotient is not necessarily a univer-
sal geometric quotient, i.e., it need not commute with arbitrary base change. This
is shown by the following example:

Example (2.4.1). Let X = Spec(B), S = Spec(A), S′ = Spec(A/I) with A =
k[ε]/ε2 where k is a field of characteristic p > 0, B = k[ε, x]/(ε2, εx) and I = (ε).
We have an action of G = Z/p = 〈τ〉 on B given by τ(x) = x + ε and τ(ε) = ε.
Then τ(xn) = xn for all n ≥ 2 and thus BG = k[ε, x2, x3]/(ε2, εx2, εx3). Further,
we have that (B ⊗A A′)G = k[x] and BG ⊗A A′ = k[x2, x3].

Recall that a morphism of schemes is a universal homeomorphism if the under-
lying morphism of topological spaces is a homeomorphism after any base change.

Proposition (2.4.2) ([EGAIV, Cor. 18.12.11]). Let f : X → Y be a morphism
of schemes. Then f is a universal homeomorphism if and only if f is integral,
universally injective and surjective.

Proposition (2.4.3). Let X/S be a scheme with an action of a finite group G such
that every G-orbit of X is contained in an affine open subset. Let S′ → S be any
morphism and let X ′ = X ×S S′. Then geometric quotients q : X → X/G and
r : X ′ → X ′/G exists. Let (X/G)′ = (X/G)×S S′. As r is a categorical quotient
we have a canonical morphism X ′/G → (X/G)′. This morphism is a universal
homeomorphism.

Proof. The geometric quotients q and r exists by Theorem (2.3.2). As q and r
are universal topological quotients it follows that X ′/G → (X/G)′ is universally
bijective. As X ′ → X ′/G is surjective and X ′ → (X/G)′ is universally open it
follows that X ′/G→ (X/G)′ is universally open and hence a universal homeomor-
phism. �

If G acts on X and U ⊆ X is a G-stable open subscheme, then U/G is an
open subscheme of X/G. In fact, U/G is the image of U by the open morphism
q : X → X/G. If Z ↪→ X is a closed G-stable subscheme, then Z/G is not always
the image of Z by q. In fact, Z/G need not even be a subscheme of X/G. We have
the following result:

Proposition (2.4.4). Let G be a finite group, X/S a scheme with an action of
G such that the geometric quotient q : X → X/G exists. Let Z ↪→ X be a
closed G-stable subscheme. Then the geometric quotient r : Z → Z/G exist. Let
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q(Z) be the scheme-theoretic image of the morphism Z ↪→ X → X/G. As r is
a categorical quotient, the morphism Z → q(Z) ↪→ X/G factors canonically as
Z → Z/G → q(Z) ↪→ X/G. The morphism Z/G → q(Z) is a schematically
dominant universal homeomorphism.

Proof. As Z/G and q(Z) both are universal topological quotients of Z, the canonical
morphism Z/G→ q(Z) is universally bijective. Since Z → q(Z) is universally open
and Z → Z/G is surjective we have that Z/G→ q(Z) is universally open and thus
a universal homeomorphism. Further as Z → q(Z) is schematically dominant the
morphism Z/G→ q(Z) is also schematically dominant. �

Corollary (2.4.5). Let G and X/S be as in Proposition (2.4.4). There is a canon-
ical universal homeomorphism (Xred)/G→ (X/G)red.

We can say even more about the exact structure of Z/G → q(Z). For ease of
presentation we state the result in the affine case.

Proposition (2.4.6). Let A be a ring with an action by a finite group G and
let I ⊂ A be a G-stable ideal. Let X = Spec(A) and Z = Spec(A/I). Then
Z/G = Spec

(
(A/I)G

)
and q(Z) = Spec

(
AG/IG

)
. We have an injection AG/IG ↪→

(A/I)G. If f ∈ (A/I)G then there is an n | card(G) such that fn ∈ AG/IG. To be
more precise we have that

(i) If A is a Z(p)-algebra with p a prime, e.g., a local ring with residue field k
or a k-algebra with char k = p, then n can be chosen as a power of p.

(ii) If A is purely of characteristic zero, i.e., a Q-algebra, then AG/IG ↪→
(A/I)G is an isomorphism.

Proof. Let f ∈ A such that its image f ∈ A/I is G-invariant. To show that
f
n ∈ AG/IG for some positive integer n it is enough to show that f

n ∈ AG/IG⊗ZZp

for every p ∈ Spec(Z). As Z → Zp is flat, we have that

AG ⊗Z Zp = (A⊗Z Zp)G

IG ⊗Z Zp = (I ⊗Z Zp)G

AG/IG ⊗Z Zp = (A⊗Z Zp)G/(I ⊗Z Zp)G

(A/I)G ⊗Z Zp = (A/I ⊗Z Zp)G.

Thus we can assume that A is a Zp-algebra.
Let q be the characteristic exponent of Zp/pZp, i.e., q = p if p = (p), p > 0 and

q = 1 if p = (0). Choose positive integers k and m such that card(G) = qkm and
q - m if q 6= 1. Then choose a Sylow subgroup H of G of order qk, or H = (e) if
q = 1, and let σ1H,σ2H, . . . , σmH be its cosets. Then

g =
1
m

m∑
i=1

∏
σ∈σiH

σ(f)

is G-invariant and its image g ∈ AG/IG maps to f
qk

∈ (A/I)G. �



16 DAVID RYDH

Proposition (2.4.6) can also be extended to the case where G is any reductive
group [GIT, Lem. A.1.2].

Remark (2.4.7). Let X/S be a scheme with an action of a finite group G with
geometric quotient q : X → X/G. Then

(i) If S is a Q-scheme and S′ → S is any morphism then (X ×S S′)/G =
X/G×S S′.

(ii) If S is arbitrary and U ⊆ X is an open immersion then U/G = q(U).
(iii) If S is a Q-scheme and Z ↪→ X is a closed immersion then Z/G = q(Z).
(iv) If S is a Q-scheme then (X/G)red = Xred/G.

(ii) follows from the uniformity of geometric quotients, (i) and (iv) follows from
the universality of geometric quotients in characteristic zero and (iii) follows from
Proposition (2.4.6).

Statement (iii) can also be proven as follows. We can assume that X = Spec(A)
is affine. Then the homomorphism AG ↪→ A has an AG-module retraction, the
Reynolds-operator R, given by R(a) = 1

card(G)

∑
σ∈G σ(a). This implies that AG ↪→

A is universally injective, i.e., injective after tensoring with any A-module M . In
particular AG ↪→ A is cyclically pure, i.e., IGA = I, where IG = I ∩ AG, for any
ideal I ⊆ A. If we let S = Spec

(
AG

)
and S′ = Spec

(
AG/IG

)
then Z = X ×S S′ =

Spec(A/I) and (iii) follows from (i).

3. The parameter spaces

In this section we define the symmetric product Symd(X/S), the scheme of di-
vided powers Γd(X/S), and the Chow scheme of zero-cycles Chow0,d(X ↪→ P(E)).
We show that when X/S is a projective bundle, then Symd(X/S) is projective and
we essentially obtain a bound on the generators of the natural weighted projective
structure, cf. Theorem (3.1.12). As a corollary, we show that if X/S is projec-
tive then so is Γd(X/S), cf. Theorem (3.2.10). If A is a graded OS-algebra and
X = Proj(A) then Γd(X/S) = Proj(

⊕
k≥0 Γd(Ak)) in analogy with the description

Symd(X) = Proj(
⊕

k≥0 TSd(Ak)). The Chow scheme of X = Proj(A) is defined as
the projective scheme corresponding to the subalgebra of

⊕
k≥0 Γd(Ak) generated

by degree one elements. The reduction of this scheme is the classical Chow variety.

3.1. The symmetric product.

Definition (3.1.1). Let X be a scheme over S and d a positive integer. We let
the symmetric group on d letters Sd act by permutations on (X/S)d = X×SX×S
· · · ×S X. When X/S is separated, the geometric quotient of (X/S)d by the action
of Sd exists as an algebraic space [Ryd07b] and we denote it by Symd(X/S) :=
(X/S)d/Sd. The scheme (or algebraic space) Symd(X/S) is called the dth sym-
metric product of X over S and is also denoted Symmd(X/S), (X/S)(d) or X(d) by
some authors.
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Definition (3.1.2). Let X/S be a scheme. We say that X/S is AF if the following
condition is satisfied:

(AF) Every finite set of points x1, x2, . . . , xn over the same point s ∈ S
is contained in an affine open subset of X.

Remark (3.1.3). If X has an ample sheaf relative to S, then X/S is AF, cf. [EGAII,
Cor. 4.5.4]. It is also clear from [EGAII, Cor. 4.5.4] that if X/S is AF then so is
X ×S S′/S′ for any base change S′ → S. It can further be seen that if X/S is AF
then X/S is separated.

Remark (3.1.4). Let X/S be an AF-scheme and let d be a positive integer. By
Theorem (2.3.2) the geometric quotient Symd(X/S) is then a scheme. Let (Sα)
be an affine cover of S and let (Uαβ) be an affine cover of X ×S Sα such that
any set of d points of X lying over the same point s ∈ Sα is included in some
Uαβ . Then (Uαβ/Sα)d is an open cover of (X/S)d by affine schemes. Thus∐
α,β Symd(Uαβ/Sα) → Symd(X/S) is an open covering by affines.
In the remainder of this section we will study the symmetric product when

S = Spec(A) is an affine scheme and X/S is projective. We will use the following
notation:

Notation (3.1.5). Let A be a ring and let B =
⊕

k≥0Bk be a graded A-algebra
finitely generated by elements in degree one. Let S = Spec(A) and X = Proj(B)
with very ample sheaf OX(1) = B̃(1) and canonical morphism q : X → S.

Further we let C =
⊕

k≥0 TdA(Bk) ⊂ TdA(B). Then (X/S)d = Proj(C) and
Proj(C) ↪→ P(C1) = P

(
TdA(B1)

)
is the Segre embedding of (X/S)d corresponding

to the embedding X = Proj(B) ↪→ P(B1). The permutation of the factors induces
an action of the symmetric group Sd on C and we let D = CSd =

⊕
k≥0 TSdA(Bk)

be the graded invariant ring.
By Proposition (2.3.4) we have that Symd(X/S) := Proj(C)/Sd = Proj(D). If A

is noetherian, then D is finitely generated and Symd(X/S) is a weighted projective
space. In general, however, we do not know that D is finitely generated. We
do know that Symd(X/S) → S is universally closed though, as (X/S)d → S is
projective.

Lemma (3.1.6). Let x1, x2, . . . , xd ∈ X be points such that q(x1) = q(x2) = · · · =
q(xd) = s. Then there exists a positive integer n and an element f ∈ Bn ⊆
Γ
(
X,OX(n)

)
such that x1, x2, . . . , xd ∈ Xf = D+(f). If the residue field k(s) has

at least d elements then it is possible to take n = 1.

Proof. The existence of f for some n follows from [EGAII, Cor. 4.5.4]. For the last
assertion, assume that k(s) has at least d elements. As we can lift any element
f ∈ Bn ⊗A k(s) to an element f ∈ Bn after multiplying with an invertible element
of k(s), we can assume that A = k(s). Replacing B with the symmetric algebra
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S(B1) = k[t0, t1, . . . , tr] we can further assume that B is a polynomial ring and
X = Prk(s).

An element of B1 = Γ
(
X,OX(1)

)
is then a linear form f = a0t0+a1t1+· · ·+artr

with ai ∈ k(s) and can be thought of as a k(s)-rational point of (Prk(s))
∨. The linear

forms which are zero in one of the xi’s form a proper closed linear subset of all linear
forms. Thus if k(s) is infinite then there is a k(s)-rational point corresponding to
a linear form non-zero in every xi. If k = k(s) is finite, then at most (|k|r − 1)/|k∗|
linear forms are zero at a certain xi and equality holds when xi is k-rational. Thus
at most

d(|k|r − 1)/(|k| − 1) ≤ (|k|r+1 − |k|)/(|k| − 1)

= (|k|r+1 − 1)/(|k| − 1)− 1

linear forms contain at least one of the x1, x2, . . . , xd and hence there is at least one
linear form which does not vanish on any of the points. �

Proposition (3.1.7). The product Xd = X×SX×S · · ·×SX is covered by Sd-stable
affine open subsets of the form Xf×SXf×S · · ·×SXf where f ∈ Bn ⊆ Γ

(
X,OX(n)

)
for some n. If every residue field of S has at least d elements then the open subsets
with f ∈ B1 ⊆ Γ

(
X,OX(1)

)
cover Xd.

Proof. Follows immediately from Lemma (3.1.6). �

Corollary (3.1.8). The symmetric product Symd(X/S) is covered by open affine
subsets Symd

(
Xf/S

)
with f ∈ Bn ⊆ Γ

(
X,OX(n)

)
for some n. If every residue field

of S has at least d elements then those affine subsets with n = 1 cover Symd(X/S).

Corollary (3.1.9). The symmetric product Y = Symd(X/S) = Proj(D) is covered
by Yg where g ∈ D1 ⊆ Γ

(
Y,OY (1)

)
, i.e., Y = Proj(D) is covered in degree one.

Proof. Let A ↪→ A′ be a finite flat extension such that every residue field of A′ has
at least d elements, e.g., the extension A′ = A⊗Z Λd suffices by Lemma (1.2.3). Let
B′ = B ⊗A A′ and C ′ = C ⊗A A′ and let D′ = D ⊗A A′ =

⊕
n≥0 TSdA(Bn)⊗A A′.

Then D′ =
⊕

n≥0 TSdA′(B
′
n) as A ↪→ A′ is flat. Note that if f ′ ∈ B′n then g′ =

f ′⊗f ′⊗· · ·⊗f ′ ∈ D′
n and Symd(X ′

f ′/S) = D+(g′) as open subsets of Symd(X ′/S′).
Thus Corollary (3.1.8) shows that

√
D′

1D
′
+ = D′

+. As Spec(A′) → Spec(A) is
surjective it follows that

√
D1D+ = D+. �

We now use the degree bound on the generators of TSdA(A[x1, . . . , xr]) obtained
in Corollary (1.3.6) to get something very close to a degree bound on the generators
of D =

⊕
k≥0 TSdA(Bk) when B = A[x0, x1, . . . , xr] is the polynomial ring.

Proposition (3.1.10). Let N be a positive integer and D≤N be the subring of
D =

⊕
k≥0 TSdA(Bk) generated by elements of degree at most N . Then the inclusion

D≤N ↪→ D induces a morphism ψN : Proj(D) → Proj(D≤N ). Further we have
that:
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(i) If B = A[x0, x1, . . . , xr] is a polynomial ring and N ≥ r(d− 1) then ψN is
an isomorphism.

(ii) If A is purely of characteristic zero, i.e., a Q-algebra, then ψN is an iso-
morphism for any N .

Proof. By Corollary (3.1.9) the morphism ψN is everywhere defined for N ≥ 1. Let
A ↪→ A′ be a finite flat extension such that every residue field of A′ has at least d
elements, e.g., A′ = A ⊗Z Λd as in Lemma (1.2.3). If we let C ′ = C ⊗A A′ then
we have that D′ = D ⊗A A′ = C ′Sd and D′

≤N = D≤N ⊗A A′ as A ↪→ A′ is flat.
If ψ′N : Proj(D′) → Proj(D′

≤N ) is an isomorphism then so is ψN as A ↪→ A′ is
faithfully flat. Replacing A with A′, it is thus enough to prove the corollary when
every residue field of S has at least d elements. Hence we can assume that we have
a cover of Proj(D) by D+

(
f⊗d

)
with f ∈ B1 by Corollary (3.1.8).

We have that D(f⊗d) = TSdA(B(f)) and this latter ring is generated by elements
of degree ≤ max{r(d − 1), 1} for arbitrary A and by elements of degree one when
A is purely of characteristic zero by Corollary (1.3.6). As noted in Remark (1.3.3)
this implies that D(f⊗d) = (D≤N )(f⊗d) which shows (i) and (ii). �

Corollary (3.1.11). Let N be a positive integer and DN be the subring of D(N) =⊕
k≥0 TSdA(BNk) generated by TSdA(BN ). Then the inclusion DN ↪→ D(N) induces

a morphism ψN : Proj(D) → Proj(DN ). Further we have that:

(i) If B = A[x0, x1, . . . , xr] is a polynomial ring and N ≥ r(d− 1) then ψN is
an isomorphism.

(ii) If A is purely of characteristic zero, i.e., a Q-algebra, then ψN is an iso-
morphism for any N .

Proof. Let D≤N be the subring of D =
⊕

k≥0 TSdA(Bk) generated by elements of
degree at most N . As Proj(D) is covered in degree one by Corollary (3.1.9) then so
is Proj(D≤N ). In fact, as Proj(D) → Spec(A) is universally closed, it follows that
Proj(D) → Proj(D≤N ) is surjective. By Proposition (2.2.7) (iv) it then follows that
DN ↪→ (D≤N )(N) induces an isomorphism Proj(D(N)

≤N ) → Proj(DN ). The corollary
thus follows from Proposition (3.1.10). �

Theorem (3.1.12). Let S be any scheme and E a quasi-coherent OS-sheaf of finite
type. Then for any N ≥ 1, there is a canonical morphism

Symd(P(E)/S) → P
(
TSdOS

(SNE)
)
.

If L is a locally free OS-sheaf of constant rank r + 1 then the canonical morphism
Symd(P(L)/S) ↪→ P

(
TSdOS

(SNL)
)

is a closed immersion for N ≥ r(d − 1). In
particular, it follows that Symd(P(L)/S) → S is strongly projective.

Proof. The existence of the morphism follows by Corollary (3.1.11). Part (i) of the
same corollary shows that Symd(P(L)/S) ↪→ P

(
TSdOS

(SNL)
)

is a closed immersion
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when N ≥ r(d − 1). As SNL is locally free of constant rank it follows by para-
graph (1.1.7) that TSdOS

(SNL) is locally free of constant rank which shows that
Symd(P(L)/S) is strongly projective. �

In section 3.3, we will show that the canonical morphism Symd(P(E)/S) →
P
(
TSdOS

(SNE)
)

is a universal homeomorphism onto its image which is defined to
be the Chow scheme Chow0,d

(
P(E)

)
.

3.2. The scheme of divided powers. Let S be any scheme and A a quasi-
coherent sheaf of OS-algebras. As the construction of ΓdA(B) commutes with local-
ization with respect to multiplicatively closed subsets of A we may define a quasi-
coherent sheaf of OS-algebras ΓdOS

(A). We let Γd(Spec(A)/S) = Spec
(
ΓdOS

(A)
)
.

The scheme Γd(X/S) is thus defined for any scheme X affine over S. Similarly we
obtain for any homomorphism of quasi-coherent OS-algebras A → B a morphism
of schemes Γd(Spec(B)/S) → Γd(Spec(A)/S). This defines a covariant functor
X 7→ Γd(X/S) from affine schemes over S to affine schemes over S.

It is more difficult to define Γd(X/S) for any X-scheme S since ΓdA(B) does not
commute with localization with respect to B. In fact, it is not even a B-algebra.
In [I, 3.1] a certain functor ΓdX/S is defined which is represented by Γd(X/S) when
X/S is affine. When X/S is quasi-projective, or more generally an AF-scheme, cf.
Definition (3.1.2), then ΓdX/S is represented by a scheme [I, Thm. 3.1.11]. If X/S
is a separated algebraic space, then ΓdX/S is represented by a separated algebraic
space [I, Thm. 3.4.1].

The object representing ΓdX/S will be denoted by Γd(X/S). We briefly state
some facts about Γd(X/S) used in the other sections. We then show that Γd(X/S)
is (quasi-)projective when X/S is (quasi-)projective.

(3.2.1) The space of divided powers — For any algebraic scheme X separated
above S, there is an algebraic space Γd(X/S) over S with the following properties:

(i) For any morphism S′ → S, there is a canonical base-change isomorphism
Γd(X/S)×S S′ ∼= Γd(X ×S S′/S′).

(ii) If X/S is an AF-scheme, then Γd(X/S) is an AF-scheme.
(iii) If A is a quasi-coherent sheaf on S such that X = SpecS(A) is affine S,

then Γd(X/S) = SpecS
(
ΓdOS

(A)
)

is affine over S.
(iv) If X =

∐n
i=1Xi then Γd(X/S) is the disjoint union∐

d1,d2,...,dn≥0
d1+d2+···+dn=d

Γd1(Xi/S)×S Γd2(X2/S)×S · · · ×S Γdn(Xn/S).

(v) If X → S has one of the properties: finite type, finite presentation, locally
of finite type, locally of finite presentation, quasi-compact, finite, integral,
flat; then so has Γd(X/S) → S.

This is Thm. 3.1.11, Prop. 3.1.4, Prop. 3.1.8 and Prop. 4.3.1 of [I].
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(3.2.2) Push-forward of cycles — Let f : X → Y be any morphism of algebraic
schemes separated over S. There is then a natural morphism, push-forward of
cycles, f∗ : Γd(X/S) → Γd(Y/S) which for affine schemes is given by the covariance
of the functor ΓdA(·). If f : X → Y is an immersion (resp. a closed immersion,
resp. an open immersion) then f∗ : Γd(X/S) → Γd(Y/S) is an immersion (resp.
closed immersion, resp. open immersion) [I, Prop. 3.1.7].

(3.2.3) Addition of cycles — Let d, e be positive integers. The composition of
the open and closed immersion Γd(X/S) ×S Γe(X/S) ↪→ Γd+e(X q X/S) given
by (3.2.1) (iv) and the push-forward Γd+e(X q X/S) → Γd+e(X/S) along the
canonical morphism X qX → X is called addition of cycles [I, Def. 4.1.1].

(3.2.4) The Sym-Gamma morphism — Let X/S be a separated algebraic space
and let (X/S)d = X ×S X ×S · · · ×S X. There is an integral surjective morphism
ΨX : (X/S)d → Γd(X/S), given by addition of cycles, invariant under the permu-
tation of the factors. This gives a factorization (X/S)d → Symd(X/S) → Γd(X/S)
and we denote the second morphism by SGX [I, Prop. 4.1.5].

(3.2.5) Local description of the scheme of divided powers — If U ⊆ X is an open
subset, then we have already seen that Γd(U/S) ⊆ Γd(X/S) is an open subset.
Moreover, there is a cartesian diagram

(U/S)d

��

// Symd(U/S)

��

SGU // Γd(U/S)

��

(X/S)d // Symd(X/S)
SGX //

�

Γd(X/S).

�

If X/S is an AF-scheme, then there are Zariski-covers S =
⋃
Sα and X =

⋃
Uα of

affine schemes such that Γd(X/S) =
⋃

Γd(Uα/Sα). This gives a local description
of the SG-map. For an arbitrary separated algebraic space X/S there is a similar
étale-local description of SG. If U → X is an étale morphism, then there is a
cartesian diagram

(U/S)d|fpr

��

// Symd(U/S)|fpr

��

// Γd(U/S)|reg

��

(X/S)d // Symd(X/S) //

�

Γd(X/S)

�

where the vertical arrows are étale [I, Prop. 4.2.4]. Here fpr and reg denotes the
open locus where the corresponding maps are fixed-point reflecting and regular. If∐
Uα → X is an étale cover, then

∐
Γd(Uα/S)|fpr → Γd(X/S) is an étale cover.

Thus, we have an étale-local description of SG in affine schemes.
We now give a similar treatment of Γd(X/S) for X = Proj(B) projective as that

given for Symd(X/S) in the previous section.
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Proposition (3.2.6). Let S = Spec(A) where A is affine and let X = Proj(B)
where B is a graded A-algebra finitely generated in degree one. Then Γ(X/S) is
covered by open subsets of the form Γd(Xf/S) with f ∈ Bn for some n. If every
residue field of S has at least d elements, then is enough to consider open subsets
with n = 1.

Proof. Follows from Proposition (3.1.7) using that ΨX((Xf/S)d) = Γd(Xf/S). �

Proposition (3.2.7). Let A be a ring and B a graded A-algebra finitely generated
in degree one. Let W = Proj

(⊕
k≥0 ΓdA(Bk)

)
. Then W is covered by the open

subsets of the form Wγd(b) where b ∈ Bn for some n. If every residue field of
S = Spec(A) has at least d elements, then is enough to consider open subsets with
b ∈ B1.

Proof. Let F be a graded flat A-algebra with a surjection F � B. Consider the
induced surjective homomorphism

⊕
k≥0 ΓdA(Fk) �

⊕
k≥0 ΓdA(Bk) and the corre-

sponding closed immersion W ↪→ W ′ = Proj
(⊕

k≥0 ΓdA(Fk)
)
. The open subset of

W ′ = Symd(Proj(F )/S) given by γd(f) = 0, where f ∈ Fn, coincides with the
open subset Symd(Proj(F )f/S). These subsets cover W ′ by Corollary (3.1.8). The
proposition follows immediately. �

Corollary (3.2.8). Let S be any scheme and let A be a graded quasi-coherent
OS-algebra of finite type generated in degree one. Then Γd

(
Proj(A)/S

)
and W =

Proj
(⊕

k≥0 ΓdA(Ak)
)

are canonically isomorphic. Under this isomorphism, the open
subset Γd

(
Proj(A)f

)
is identified with Wγd(f) for any homogeneous element f ∈ A.

Proof. By Propositions (3.2.6) and (3.2.7) the open subsets Γd
(
Spec

(
A(f)

))
and

Wγd(f) for f ∈ An, covers Γd(Proj(A)) and W respectively. As these subsets are
canonically isomorphic the corollary follows. �

Proposition (3.2.9). Let S be any scheme and let A be a graded quasi-coherent
OS-algebra of finite type generated in degree one. Let D =

⊕
k≥0 ΓdA(Ak). Let N be

a positive integer and let DN be the subring of D(N) =
⊕

k≥0 ΓdA(ANk) generated
by ΓdA(AN ). The inclusion DN ↪→ D(N) induces a morphism ψN : Proj(D) →
Proj(DN ). Furthermore

(i) If A is locally generated by at most r + 1 elements and N ≥ r(d− 1) then
ψN is an isomorphism.

(ii) If S is purely of characteristic zero, i.e., a Q-scheme, then ψN is an iso-
morphism for every N .

Proof. The statements are local on S so we may assume that S = Spec(A) is
affine and A = B̃ where B is a graded A-algebra finitely generated in degree one.
Choose a surjection B′ = A[x0, x1, . . . , xr] � B. Let D =

⊕
k≥0 ΓdA(Bk), D′ =⊕

k≥0 ΓdA(B′k) and let DN and D′
N be the subrings of D(N) and D′(N) generated
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by degree one elements. Then we have a commutative diagram

(3.2.9.1)

D′
N

// //
� _

��

DN� _

��

D′(N) // // D(N).

◦

By Corollary (3.1.11) the inclusion D′
N ↪→ D′(N) induces a morphism

ψ′N : Proj
(
D′(N)

)
→ Proj(D′

N )

having properties (i) and (ii). From the commutative diagram (3.2.9.1) it follows
that the inclusion DN ↪→ D(N) induces a morphism ψN : Proj(D(N)) → Proj(DN )
with the same properties. �

Theorem (3.2.10). If X → S is strongly projective (resp. strongly quasi-projective)
then Γd(X/S) → S is strongly projective (resp. strongly quasi-projective). If X → S
is projective (resp. quasi-projective) and S is quasi-compact and quasi-separated
then Γd(X/S) → S is projective (resp. quasi-projective).

Proof. In the strongly projective (resp. strongly quasi-projective) case we imme-
diately reduce to the case where X = PS(L) for some locally free OS-module L
of finite rank r + 1, using the push-forward (3.2.2), and the result follows from
Theorem (3.1.12).

If S is quasi-compact and quasi-separated and X → S is projective (resp. quasi-
projective) then there is a closed immersion (resp. immersion) X ↪→ PS(E) for some
quasi-coherent OS-module E of finite type. It is enough to show that Γ(PS(E)) is
projective. As Γ(PS(E)) = Proj

(⊕
k≥0 Γd(Sk(E)

)
by Corollary (3.2.8), this follows

from Proposition (3.2.9) and the quasi-compactness of S. �

3.3. The Chow scheme. Let k be a field and let E be a vector space over k with
basis x0, x1, . . . , xn. Let E∨ be the dual vector space with dual basis y0, y1, . . . , yn.
Let X = P(E) = Pnk . If k′/k is a field extension then a point x : Spec(k′) → X
is given by coordinates (x0 : x1 : · · · : xn) in k′. To x we associate the Chow form
Fx(y0, y1, . . . , yn) =

∑n
i=0 xiyi ∈ k′[y0, y1, . . . , yn] which is defined up to a constant.

A zero-cycle onX = Pnk is a formal sum of closed points. To any zero-dimensional
subscheme Z ↪→ X we associate the zero-cycle [Z] defined as the sum of its points
with multiplicities. If Z =

∑
j aj [zj ] is a zero-cycle on X and k′/k a field extension

then we let Zk′ = Z ×k k′ =
∑
j aj [zj ×k k′]. It is clear that if Z ↪→ X is a

zero-dimensional subscheme then [Z]×k k′ = [Z ×k k′].
We say that a cycle is effective if its coefficients are positive. The degree of a

cycle Z =
∑
j aj [zj ] is defined as deg(Z) =

∑
j aj deg

(
k(zj)/k

)
. It is clear that

deg(Zk′) = deg(Z) for any field extension k′/k.
Let Z be an effective zero-cycle on X and choose a field extension k′/k such that

Zk′ =
∑
j aj [z

′
j ] is a sum of k′-points, i.e., k(z′j) = k′. We then define its Chow

form as FZ =
∏
j F

aj

z′j
. It is easily seen that
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(i) FZ does not depend on the choice of field extension k′/k.
(ii) FZ has coefficients in k.
(iii) The degree of FZ coincides with the degree of Z.
(iv) Z is determined by FZ .

Further, if k is perfect there is a correspondence between zero-cycles of degree d on
X and Chow forms of degree d, i.e., homogeneous polynomials, F ∈ k[y0, y1, . . . , yn]
which splits into d linear forms after a field extension. The Chow forms of degree d
with coefficients in k is a subset of the linear forms on P

(
Sd(E∨)

)
and thus a subset

of the k-points of P
(
Sd(E∨)∨

)
= P

(
TSd(E)

)
.

(3.3.1) The Chow variety — Classically it is shown that for r ≥ 0 and d ≥ 1
there is a closed subset of P

(
Tr+1(TSd(E))

)
parameterizing r-cycles of degree d

on P(E). The Chow variety Chowr,d
(
P(E)

)
is then taken as the reduced scheme

corresponding to this subset. More generally, if S is any scheme and L is a locally
free sheaf then there is a closed subset of PS

(
Tr+1(TSd(L))

)
parameterizing r-cycles

of degree d on PS(L).
We will now show that the classical Chow variety parameterizing zero-cycles of

degree d has a canonical closed subscheme structure. We begin with the case where
S is the spectrum of a field.

(3.3.2) The Chow scheme for P(E)/k — Let k′/k be a field extension such that k′

is algebraically closed. As (P(E)/k)d → Symd(P(E)/k) is integral, it is easily seen
that a k′-point of Symd(P(E)/k) corresponds to an unordered tuple (x1, x2, . . . , xd)
of k′-points of P(E). Assigning such a tuple the Chow form of the cycle [x1]+[x2]+
· · ·+ [xd] gives a map Hom

(
k′,Symd(P(E)/k)

)
→ Hom

(
k′,P(TSd(E))

)
. It is easily

seen to be compatible with the homomorphism of algebras⊕
k≥0

Sk
(
TSd(E)

)
→

⊕
k≥0

TSd
(
Sk(E)

)
and thus extends to a morphism of schemes

Symd
(
P(E)/k

)
→ P

(
TSd(E)

)
.

It is further clear that the image of this morphism consists of the Chow forms of
degree d and that Symd

(
P(E)/k

)
→ P

(
TSd(E)

)
is universally injective and hence

a universal homeomorphism onto its image as Symd
(
P(E)/k

)
is projective. We let

Chow0,d

(
P(E)

)
be the scheme-theoretical image of this morphism.

More generally, we define Chow0,d

(
P(L)/S

)
for any locally free sheaf L on S as

follows:

Definition-Proposition (3.3.3). Let S be a scheme and L a locally free OS-sheaf
of finite type. Then the homomorphism

⊕
k≥0 SkTSdOS

(L) →
⊕

k≥0 TSdOS
(SkL)

induces a morphism

ϕL : Symd
(
P(L)/S

)
→ P

(
TSdOS

(L)
)
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which is a universal homeomorphism onto its image. We let Chow0,d

(
P(L)

)
be its

scheme-theoretic image.

Proof. The question is local so we can assume that S = Spec(A) and L = M̃
where M is a free A-module of finite rank. Corollary (3.1.11), with N = 1 and
B =

⊕
k≥0 SkM , shows that

⊕
k≥0 SkTSdA(M) →

⊕
k≥0 TSdA(SkM) induces a well-

defined morphism Symd
(
P(L)/S

)
→ P

(
TSdOS

(L)
)
.

To show that Symd
(
P(L)/S

)
→ P

(
TSdOS

(L)
)

is a universal homeomorphism onto
its image it is enough to show that it is universally injective as Symd

(
P(L)/S

)
→ S

is universally closed. As L is flat over S the symmetric product commutes with base
change and it is enough to show that Symd

(
P(L)/S

)
→ P

(
TSdOS

(L)
)

is injective
when S is a field. This was discussed above. �

If X ↪→ P(L) is a closed immersion (resp. an immersion) then the subset of
Chow0,d

(
P(L)

)
parameterizing cycles with support in X is closed (resp. locally

closed). In fact, it is the image of the morphism

(3.3.3.1) Symd(X/S) → Symd
(
P(L)/S

)
→ Chow0,d

(
P(L)

)
.

As Symd
(
P(L)/S

)
= Γd

(
P(L)/S

)
, this morphism factors through Symd(X/S) →

Γd(X/S). Moreover, as Symd(X/S) → Γd(X/S) is a homeomorphism [I, Cor. 4.2.5],
the morphism

(3.3.3.2) Γd(X/S) → Symd
(
P(L)/S

)
→ Chow0,d

(
P(L)

)
.

has the same image as (3.3.3.1). Since Γd is more well-behaved, e.g., commutes
with base change S′ → S, the following definition is reasonable:

Definition (3.3.4). Let S be any scheme and L a locally free sheaf on S. If X ↪→
P(L) is a closed immersion we let Chow0,d

(
X ↪→ P(L)

)
be the scheme-theoretic

image of Γd(X/S) ↪→ Γd
(
P(L)/S

)
→ Chow0,d

(
P(L)

)
. If X ↪→ P(L) is an immer-

sion we let Chow0,d

(
X ↪→ P(L)

)
be the open subscheme of Chow0,d

(
X ↪→ P(L)

)
corresponding to cycles with support in X.

Remark (3.3.5). Classically Chow0,d

(
X ↪→ P(L)

)
is defined as the reduced sub-

scheme of Chow0,d

(
P(L)

)
↪→ P

(
TSd(L)

)
parameterizing zero-cycles of degree d with

support in X. It is clear that this is the reduction of the scheme Chow0,d

(
X ↪→

P(L)
)

as defined in Definition (3.3.4).

Remark (3.3.6). If L is a locally free sheaf on S of finite type then by definition
Chow0,d

(
P(L)

)
is Proj(B) where B is the image of⊕

k≥0

Sk
(
TSd(L)

)
→

⊕
k≥0

TSd
(
Sk(L)

)
i.e., B is the subalgebra of

⊕
k≥0 TSd

(
Sk(L)

)
generated by degree one elements. If

X ↪→ P(L) is a closed immersion then X = Proj(A) where A is a quotient of S(L).
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The Chow scheme Chow0,d

(
X ↪→ P(L)

)
is then Proj(B) where B is the subalgebra

of
⊕

k≥0 ΓdOS
(Ak) generated by degree one elements, cf. Corollary (3.2.8).

Proposition (3.3.7). Let S be any scheme and let B be a graded quasi-coherent
OS-algebra of finite type generated in degree one. Then there is a canonical mor-
phism

ϕB : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)

which is a universal homeomorphism onto its image. This morphism commutes
with base change S′ → S and surjections B � B′.

Proof. The existence of the morphism follows from Proposition (3.2.9). That ϕB is
universally injective can be checked on the fibers and this is done in the beginning
of this section. The last statements follows from the corresponding statements of
the algebra of divided powers. �

Remark (3.3.6) and Proposition (3.3.7) shows that there is a natural extension
of the definition of Chow0,d

(
X ↪→ PS(L)

)
which includes the case where L need not

be locally free. In particular, we obtain a definition valid for arbitrary projective
schemes:

Definition (3.3.8). Let X/S be quasi-projective morphism of schemes and let
X ↪→ PS(E) be an immersion for some quasi-coherent OS-module E of finite type.
Let X be the scheme-theoretic image of X in PS(E) which can be written as X =
Proj(B) where B is a quotient of S(E). We let Chow0,d

(
X ↪→ PS(E)

)
be the

scheme-theoretic image of ϕB : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)

or equivalently, the
scheme-theoretic image of

ϕX,E : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)
↪→ P

(
ΓdOS

(E)
)
.

We let Chow0,d

(
X ↪→ PS(E)

)
be the open subscheme of Chow0,d

(
X ↪→ PS(E)

)
given by the image of

Γd(X/S) ⊆ Γd(X/S) → Chow0,d

(
X ↪→ PS(E)

)
.

This is indeed an open subscheme as Γd
(
X/S

)
→ Chow0,d

(
X ↪→ P(E)

)
is a home-

omorphism by Corollary (3.3.7).

Remark (3.3.9). Let S be any scheme, E a quasi-coherent OS-module and X ↪→
P(E) an immersion. Let S′ → S be any morphism and let X ′ = X ×S S′ and
E ′ = E ⊗OS

OS′ . There is a commutative diagram

Γd(X ′/S′)
ϕX′,E′

//

∼=
��

PS′(E ′)

∼=
��

Γd(X/S)×S S′
ϕX,E×S idS′ // PS(E)×S S′

◦
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i.e., ϕX′,E′ = ϕX,E ×S idS′ . As the underlying sets of Chow0,d

(
X ↪→ P(E)

)
and

Chow0,d

(
X ′ ↪→ P(E ′)

)
are the images of ϕX,E and ϕX′,E′ it follows that the canon-

ical morphism

(3.3.9.1) Chow0,d

(
X ′ ↪→ PS′(E ′)

)
↪→ Chow0,d

(
X ↪→ PS(E)

)
×S S′

is a nil-immersion, i.e., a bijective closed immersion. As the scheme-theoretic image
commutes with flat base change [EGAIV, Lem. 2.3.1] the morphism (3.3.9.1) is an
isomorphism if S′ → S is flat.

If Z ↪→ X is an immersion (resp. a closed immersion, resp. an open immersion)
then there is an immersion (resp. a closed immersion, resp. an open immersion)

Chow0,d

(
Z ↪→ PS(E)

)
↪→ Chow0,d

(
X ↪→ PS(E)

)
.

Proposition (3.3.10). Let S = Spec(A) where A is affine and such that every
residue field of S has at least d elements. Let X = Proj(B) where B is a graded
A-algebra finitely generated in degree one. Let D =

⊕
k≥0 ΓdA

(
Bk) and let E ↪→ D

be the subalgebra generated by elements of degree one. Then Chow
(
X ↪→ P(B1)

)
=

Proj(E) is covered by open subsets of the form Spec(Eγd(f)) with f ∈ B1. Fur-
thermore, Eγd(f) is the subalgebra of Γd

(
B(f)

)
generated by elements of degree one,

i.e., elements of the form ×ni=1γ
di(bi/f) with bi ∈ B1.

Proof. The first statement follows immediately from Proposition (3.2.7) taking into
account that the inclusion E ↪→ D induces a surjective morphism Proj(D) →
Proj(E) by Proposition (3.3.7). The last statement is obvious. �

4. The relations between the parameter spaces

In this section we show that the morphisms

Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
are universal homeomorphisms with trivial residue field extensions. That the
first morphism is a universal homeomorphisms with trivial residue field exten-
sions is shown in [I]. We also briefly mention the construction of the morphism
Hilbd(X/S) → Symd(X/S).

4.1. The Sym-Gamma morphism. In this section we discuss some properties of
the canonical morphism SGX : Symd(X/S) → Γd(X/S) defined in (3.2.4). Recall
the following basic result:

Proposition (4.1.1). [I, Cor. 4.2.5] Let X/S be a separated algebraic space. The
canonical morphism SGX : Symd(X/S) → Γd(X/S) is a universal homeomorphism
with trivial residue field extensions. If S is purely of characteristic zero or X/S is
flat, then SGX is an isomorphism.

From Proposition (4.1.1) we obtain the following results which only concerns
Symd(X/S) but relies on the existence of the well-behaved functor Γd and the
morphism Symd(X/S) → Γd(X/S).
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Corollary (4.1.2). Let S → S′ be a morphism of schemes and X/S a separated
algebraic space. The induced morphism Symd(X ′/S′) → Symd(X/S)×S S′ is a
universal homeomorphism with trivial residue field extensions. If S′ is of char-
acteristic zero then this morphism is an isomorphism. If X ′/S′ is flat then the
morphism is a nil-immersion.

Proof. Follows from Proposition (4.1.1) and the commutative diagram

Symd(X ′/S′) //

��

Symd(X/S)×S S′

��

Γd(X ′/S′)
∼= // Γd(X/S)×S S′.

◦

�

Corollary (4.1.3). Let X/S be a separated algebraic space and Z ↪→ X a closed
subscheme. Let q : (X/S)d → Symd(X/S) be the quotient morphism. The induced
morphism Symd(Z/S) → q

(
(Z/S)d

)
is a universal homeomorphism with trivial

residue field extensions. If S is of characteristic zero then this morphism is an
isomorphism. If Z/S is flat then the morphism is a nil-immersion.

Proof. Follows from Proposition (4.1.1) and the commutative diagram

Symd(Z/S) //

��

Symd(X/S)

��

Γd(Z/S) � � // Γd(X/S).

◦

�

Let us also mention the following result.

Theorem (4.1.4). Let A be any ring, let B be an A-algebra and let d be a positive
integer. Let ϕ : ΓdA(B) → TSdA(B) be the canonical homomorphism. Then

(i) If x ∈ ker(ϕ) then d!x = 0 and xd! = 0.
(ii) If y ∈ TSdA(B) then d!y ∈ im(ϕ) and yd! ∈ im(ϕ).

Proof. This is (1.1.9) and [II, Cor. 4.7]. �

It is not difficult to prove that if every prime but p is invertible in A, then d! in
the theorem can be replaced with the highest power of p dividing d!.

Examples (4.1.5). The following examples are due to C. Lundkvist [Lun08]:

(i) An A-algebra B such that ΓdA(B) → TSdA(B) is not injective
(ii) An A-algebra B such that ΓdA(B) → TSdA(B) is not surjective
(iii) A surjection B → C of A-algebras such that TSdA(B) → TSdA(C) is not

surjective
(iv) An A-algebra B such that ΓdA(B)red ↪→ TSdA(B)red is not an isomorphism
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(v) An A-algebra B and a base change A→ A′ such that the canonical homo-
morphism TSdA(B)⊗A A′ → TSdA′(B

′) is not injective.
(vi) An A-algebra B and a base change A→ A′ such that the canonical homo-

morphism TSdA(B)⊗A A′ → TSdA′(B
′) is not surjective.

Remark (4.1.6). The seminormalization of a scheme X is a universal homemomor-
phism with trivial residue fields Xsn → X such that any universal homeomorphism
with trivial residue field X ′ → X factors uniquely through Xsn → X [Swa80]. If
Xsn = X then we say that X is seminormal. If X → Y is a morphism and X is
seminormal then X → Y factors canonically through Y sn → Y .

Using Proposition (4.1.1) it can be shown that Symd(X/S)sn = Symd(Xsn/Ssn)sn.
Corollaries (4.1.2) and (4.1.3) then show that in the fibered category of seminormal
schemes Sch sn, taking symmetric products commutes with arbitrary base change
and closed subschemes. This is a special property for Symd which does not hold
for arbitrary quotients.

4.2. The Gamma-Chow morphism. Let us first restate the contents of Propo-
sition (3.2.9) taking into account the definition of Chow0,d

(
X ↪→ P(E)

)
.

Proposition (4.2.1). Let S be a scheme, q : X → S quasi-projective and E a
quasi-coherent OS-module of finite type such that there is an immersion X ↪→ P(E).
Let k ≥ 1 be an integer. Then

(i) The canonical map

S
(
ΓdOS

(SkE)
)
→

⊕
i≥0

ΓdOS
(SkiE)

induces a morphism

ϕE,k : Γd(X/S) ↪→ Γd
(
P(E)/S

)
→ P

(
ΓdOS

(SkE)
)

which is a universal homeomorphism onto its image. The scheme-theoretical
image of ϕE,k is by definition Chow0,d

(
X ↪→ P(E⊗k)

)
.

(ii) Assume that either E is locally generated by at most r + 1 elements and
k ≥ r(d− 1) or S has pure characteristic zero, i.e., is a Q-scheme. Then
ϕE,k is a closed immersion and Γd(X/S) → Chow0,d

(
X ↪→ P(E⊗k)

)
is an

isomorphism.

Remark (4.2.2). As Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
is a universal homeomor-

phism, the topology of the Chow scheme does not depend on the chosen embedding
X ↪→ P(E).

In higher dimension, it is well-known that the Chow variety Chowr,d
(
X ↪→ P(E)

)
does not depend on the embedding X ↪→ P(E) as a set. This follows from the fact
that a geometric point corresponds to an r-cycle of degree d [Sam55, §9.4d,h]. The
invariance of the topology is also well-known, cf. [Sam55, §9.7]. This implies that
the weak normalization of the Chow variety does not depend on the embedding in
the analytic case, cf. [AN67]. This also follows from functorial descriptions of the
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Chow variety over weakly normal schemes as in [Gue96] over C or more generally
in [Kol96, §1.3]. We will now show that the residue fields of Chow0,d

(
X ↪→ P(E)

)
do not depend on the embedding.

Proposition (4.2.3). Let S, q : X → S and P(E) as in Proposition (4.2.1). The
morphism ϕE : Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
is a universal homeomorphism

with trivial residue field extensions.

Proof. We have already seen that the morphism ϕE is a universal homeomorphism.
It is thus enough to show that it has trivial residue field extensions. To show this
it is enough to show that for every point a : Spec(k) → Chow0,d

(
X ↪→ P(E)

)
with

k = ksep there exists a, necessarily unique, point b : Spec(k) → Γd(X/S) lifting a,
i.e., the diagram

Γd(X/S)
ϕE // Chow0,d

(
X ↪→ P(E)

)

Spec(k)
b

hh

a

OO

has a unique filling. By (3.2.1) (i) and Remark (3.3.9) the schemes Γd(X/S) and(
Chow0,d(X ↪→ P(E))

)
red

commute with base change, i.e.,

Γd(X/S)×S S′ = Γd(X ×S S′/S′)(
Chow0,d(X ↪→ P(E))×S S′

)
red

= Chow0,d

(
X ×S S′ ↪→ P(E ⊗OS

OS′)
)
red

for any S′ → S. We can thus assume that S = Spec(k) and hence that the image
of a is a closed point.

Let r + 1 be the rank of E . The point a then corresponds to a Chow form
Fa ∈ k[y0, y1, . . . , yr] which is homogeneous of degree d. Over k = kp

−∞
this form

factors into linear forms
Fa = F d11 F d22 . . . F dn

n

where d = d1 +d2 + · · ·+dn. Let Fj =
∑
j x

(j)
i yi and let k

(
x(j)

)
= k

(
x

(j)
0 , . . . , k

(j)
r

)
.

If we let d = pem such that p - m, then k
(
x(j)

)pe

⊆ k as F di
i is k-rational. Thus the

exponent of k
(
x(j)

)
/k is at most pe and it follows by [II, Prop. 7.6] that Γdj (X/S)

has a unique k-point bj corresponding to Fj . The k-point b = b1 + b2 + · · ·+ bn is
a lifting of a. �

Remark (4.2.4). Proposition (4.2.3) also follows from the following fact. Let k be
a field, E a k-vector space and X ↪→ Pk(E) a subscheme. Let Z be an r-cycle
on X. The residue field of the point corresponding to Z in the Chow variety
Chowr,d

(
X ↪→ P(E)

)
, the Chow field of Z, does not depend on the embedding

X ↪→ Pnk [Kol96, Prop-Def. I.4.4].
As ϕE⊗k : Γd(X/S) → Chow0,d

(
X ↪→ P(E⊗k)

)
is an isomorphism for sufficiently

large k by Proposition (4.2.1) the Chow field coincides with the corresponding
residue field of Γd(X/S).
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4.3. The Hilb-Sym morphism. The Hilbert-Chow morphism can be constructed
in several different ways. Mumford [GIT, Ch. 5 §4] constructs a morphism

Hilbd(Pn) → Divd((Pn)∨) ∼= P(O(Pn)∨(d))

from the Hilbert scheme of d points to Cartier divisors of degree d on the dual
space. This construction is a generalization of the construction of the Chow variety
and it follows immediately that the image of this morphism is the Chow variety of
Pn. As the Chow variety Chow0,d(Pn) does not coincide with Symd(Pn) = Γd(Pn)
in general, it is not clear that this construction lifts to a morphism to Symd(Pn)
or to Γd(Pn). Neeman solved this [Nee91] constructing a morphism Hilbd(Pn) →
Symd(Pn) directly without using Chow forms.

There is a natural way of constructing the “Hilbert-Chow” morphism due to
Grothendieck [FGA] and Deligne [Del73]. There is a natural map Hilbd(X/S) →
Γd(X/S) taking a flat family Z → T to its norm family [II]. We will call this
map the Grothendieck-Deligne norm map and denote it with HGX . Using that the
symmetric product coincide with the space of divided powers for X/S flat, it follows
by functoriality that the morphism Hilbd(X/S) → Γd(X/S) factors through the
symmetric product. To be precise, we have the following natural transformation:

Definition (4.3.1). Let X/S be a separated algebraic space. We let HSX :
Hilbd(X/S) → Symd(X/S) be the following morphism. Let T be an S-scheme and
f : T → Hilbd(X/S) a T -point. Then f corresponds to a subscheme Z ↪→ X ×S T
which is flat and finite over T . There is a commutative diagram

T //

(f,idT )
&&LLLLLLLLLLLL Hilbd(Z/T )

HGZ //
� _

��

Γd(Z/T )
� _

��

Symd(Z/T )

��

SGZ

∼=
oo

Hilbd(X/S)×S T
HGX // Γd(X/S)×S T Symd(X/S)×S T

SGXoo

and we let HSX(f) be the composition T → Symd(X/S)×S T → Symd(X/S).
The morphisms HSX and HGX are isomorphisms whenX/S is a smooth curve [I].

They are also both isomorphisms over the non-degeneracy locus as shown in the
next section. In [ES04, RS07], it is shown that the closure of the non-degeneracy
locus of Hilbd(X/S) — the good component — is a blow-up of either Γd(X/S) or
Symd(X/S).

5. Outside the degeneracy locus

In this section we will prove that the morphisms

Hilbd(X/S) → Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
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are all isomorphisms over the open subset parameterizing “non-degenerated fami-
lies” of points. That the morphism HGX : Hilbd(X/S) → Γd(X/S) is an isomor-
phism over the non-degeneracy locus is shown in [II]. It is thus enough to show
that the last two morphisms are isomorphisms outside the degeneracy locus.

5.1. Families of cycles. Let k be an algebraically closed field and fix a geometric
point s : Spec(k) → S. Let α : Spec(k) → Symd(X/S) be a geometric point
above s. As (X/S)d → Symd(X/S) is integral, we have that α lifts (non-uniquely)
to a geometric point β : Spec(k) → (X/S)d. Let πi : (X/S)d → X be the ith

projection and let xi = πi ◦ β. It is easily seen that the different liftings β of α
corresponds to the permutations of the d geometric points xi : Spec(k) → X. This
gives a correspondence between k-points of Symd(X/S) and effective zero-cycles of
degree d on Xs.

As Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
are universal homeomor-

phisms, there is a bijection between their geometric points. It is thus reasonable
to say that Symd(X/S), Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
parameterize effective

zero-cycles of degree d. Moreover, as Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→

P(E)
)

have trivial residue field extensions, there is a bijection between k-points for
any field k.

Definition (5.1.1). Let X, S, k and s be as above. Let Z be an effective zero-
cycle of degree d on Xs. The residue field of the corresponding point in Symd(X/S),
Γd(X/S) or Chow0,d

(
X ↪→ P(E)

)
is called the Chow field of Z.

Definition (5.1.2). Let k be a field and X a scheme over k. Let k′/k and k′′/k be
field extensions of k. Two cycles Z ′ and Z ′′ on X ×k k′ and X ×k k′′ respectively,
are said to be equivalent if there is a common field extension K/k of k′ and k′′ such
that Z ′ ×k′ K = Z ′′ ×k′′ K. If Z ′ is a cycle on X ×S k′ equivalent to a cycle on
X ×S k′′ then we say that Z ′ is defined over k′′.

Remark (5.1.3). If Z is a cycle on X ×S k then the corresponding morphism
Spec(k) → Symd(X/S) factors through Spec(k) → Spec(k). Thus if Z is de-
fined over a field K then the Chow field is contained in K. Conversely it can be
shown that Z is defined over an inseparable extension of the Chow field. Thus,
in characteristic zero the Chow field of Z is the unique minimal field of definition
of Z. In positive characteristic, it can be shown that the Chow field of Z is the
intersection of all minimal fields of definitions of Z, cf. [Kol96, Thm. I.4.5] and [II,
Prop. 7.13].

Let T be any scheme and f : T → Symd(X/S), f : T → Γd(X/S) or f : T →
Chow0,d

(
X ↪→ P(E)

)
a morphism. A geometric k-point of T then corresponds to a

zero-cycle of degree d on X ×S k. The following definition is therefore natural.

Definition (5.1.4). A family of cycles parameterized by T is a T -point of either
Symd(X/S), Γd(X/S) or Chow0,d

(
X ↪→ P(E)

)
. We use the notation Z → T to
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denote a family of cycles parameterized by T and let Zt be the cycle over t, i.e.,
the cycle corresponding to k(t) → T → Symd(X/S), etc.

As Γd(X/S) commutes with base change and has other good properties it is the
“correct” parameter scheme and the morphisms T → Γd(X/S) are the “correct”
families of cycles.

5.2. Non-degenerated families.

(5.2.1) Non-degenerate families of subschemes — Let k be a field and X be a
k-scheme. If Z ↪→ X is a closed subscheme then it is natural say that Z is non-
degenerate if Zk is reduced, i.e., if Z → k is geometrically reduced. If Z is of
dimension zero then Z is non-degenerate if and only if Z → k is étale. Similarly
for any scheme S, a finite flat morphism Z → S of finite presentation is called a
non-degenerate family if every fiber is non-degenerate, or equivalently, if Z → S is
étale.

Let Z → S be a family of zero dimensional subschemes, i.e., a finite flat morphism
of finite presentation. The subset of S consisting of points s ∈ S such that the fiber
Zs → k(s) is non-degenerate is open [EGAIV, Thm. 12.2.1 (viii)]. Thus, there is an
open subset Hilbd(X/S)nd of Hilbd(X/S) parameterizing non-degenerate families.

(5.2.2) Non-degenerate families of cycles — A zero-cycle Z =
∑
i ai[zi] on a

k-scheme X is called non-degenerate if every point in the support of Zk has mul-
tiplicity one. Equivalently the multiplicities ai are all one and the field extensions
k(zi)/k are separable. It is clear that there is a one-to-one correspondence between
non-degenerate zero-cycles onX and non-degenerated zero-dimensional subschemes
of X.

Given a family of cycles Z → S, i.e., a morphism S → Symd(X/S), S →
Γd(X/S) or S → Chow0,d

(
X ↪→ P(E)

)
, we say that it is non-degenerate family if

Zs is non-degenerate for every s ∈ S.

(5.2.3) Degeneracy locus of cycles — Let X → S be a morphism of schemes
and let ∆ ↪→ (X/S)d be the big diagonal, i.e., the union of all diagonals ∆ij :
(X/S)d−1 → (X/S)d. It is clear that the image of ∆ by (X/S)d → Symd(X/S)
parameterizes degenerate cycles and that the open complement parameterizes non-
degenerate cycles. We let Symd(X/S)nd, Γd(X/S)nd and Chow0,d

(
X ↪→ P(E)

)
nd

be the open subschemes of Symd(X/S), Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
respec-

tively, parameterizing non-degenerate cycles.
We will now give an explicit cover of the degeneracy locus of Symd(X/S),

Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
. Some of the notation is inspired by [ES04,

2.4 and 4.1] and [RS07].

Definition (5.2.4). Let A be a ring and B an A-algebra. Let x = (x1, x2, . . . , xd) ∈
Bd. We define the symmetrization and anti-symmetrization operators from Bd to
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TdA(B) as follows

s(x) =
∑
σ∈Sd

xσ(1) ⊗A xσ(2) ⊗A · · · ⊗A xσ(d)

a(x) =
∑
σ∈Sd

(−1)|σ|xσ(1) ⊗A xσ(2) ⊗A · · · ⊗A xσ(d).

As s and a are A-multilinear, s is symmetric and a is alternating it follows that we
get induced homomorphisms, also denoted s and a

s : SdA(B) → TSdA(B)

a :
∧d
A(B) → TdA(B).

Remark (5.2.5). If d is invertible in A, then sometimes the symmetrization and
anti-symmetrization operators are defined as 1

d!s and 1
d!a. We will never use this

convention. In [ES04] the tensor a(x) is denoted by ν(x) and referred to as a norm
vector.

Definition (5.2.6). Let A be a ring and B an A-algebra. Let x = (x1, x2, . . . , xd) ∈
Bd and y = (y1, y2, . . . , yd) ∈ Bd. We define the following element in ΓdA(B)

δ(x,y) = det
(
γ1(xiyj)× γd−1(1)

)
ij
.

Following [RS07] we call the ideal I = IA =
(
δ(x,y)

)
x,y∈Bd , the canonical ideal.

As δ is multilinear and alternating in both arguments we extend the definition of δ
to a function

δ :
∧d
A(B)×

∧d
A(B) → S2

A

(∧d
A(B)

)
→ ΓdA(B).

Proposition (5.2.7) ([ES04, Prop. 4.4]). Let A be a ring, B an A-algebra and
x,y ∈ Bd. The image of δ(x,y) by ΓdA(B) → TSdA(B) ↪→ TdA(B) is a(x)a(y). In
particular, a(x)a(y) is symmetric.

Lemma (5.2.8) ([ES04, Lem. 2.5]). Let A be a ring and let B and A′ be A-algebras.
Let B′ = B ⊗A A′. Denote by IA ⊂ ΓdA(B) and IA′ ⊂ ΓdA′(B

′) = ΓdA(B)⊗A A′ the
canonical ideals corresponding to B and B′. Then IAA

′ = IA′ .

Lemma (5.2.9). Let S be a scheme and X and S′ be S-schemes. Let X ′ = X×SS′.
Let ϕ : Γd(X ′/S′) = Γd(X/S)×S S′ → Γd(X/S) be the projection morphism. The
inverse image by ϕ of the degeneracy locus of Γd(X/S) is the degeneracy locus of
Γd(X ′/S′).

Proof. Obvious as we know that a geometric point Spec(k) → Γd(X/S) corresponds
to a zero-cycle of degree d on X ×S Spec(k). �

Lemma (5.2.10). Let k be a field and let B be a k-algebra generated as an algebra
by the k-vector field V ⊆ B. Let k′/k be a field extension and let x1, x2, . . . , xd be
d distinct k′-points of Spec(B⊗k k′). If k has at least

(
d
2

)
elements then there is an

element b ∈ V such that the values of b at x1, x2, . . . , xd are distinct.
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Proof. For a vector space V0 ⊆ V we let B0 ⊆ B be the sub-algebra generated
by V0. There is a finite dimensional vector space V0 ⊆ V such that the images
of x1, x2, . . . , xd in Spec(B0 ⊗k k′) are distinct. Replacing V and B with V0 and
B0 we can thus assume that V is finite dimensional. It is further clear that we
can assume that B = S(V ). The points x1, x2, . . . , xd then corresponds to vectors
of V ∨ ⊗k k′ and we need to find a k-rational hyperplane which does not contain
the

(
d
2

)
difference vectors xi − xj . A similar counting argument as in the proof of

Lemma (3.1.6) shows that if k has at least
(
d
2

)
elements then this is possible. �

Proposition (5.2.11). Let A be a ring and B an A-algebra. Let V ⊂ B be an
A-submodule such that B is generated by V as an algebra. Consider the following
three ideals of ΓdA(B)

(i) The canonical ideal I1 =
(
δ(x,y)

)
x,y∈Bd .

(ii) I2 =
(
δ(x,x)

)
x∈Bd .

(iii) I3 =
(
δ(x,x)

)
x=(1,b,b2,...,bd−1), b∈V .

The closed subsets determined by I1 and I2 coincide with the degeneracy locus of
Γd

(
Spec(B)/Spec(A)

)
= Spec

(
ΓdA(B)

)
. If every residue field of A has at least

(
d
2

)
elements then so does the closed subset determined by I3.

Proof. The discussion in (5.2.3) shows that it is enough to prove that the image of
the ideals Ik by the homomorphism ΓdA(B) → TSdA(B) ↪→ TdA(B) set-theoretically
defines the big diagonal of Spec

(
TdA(B)

)
. By Proposition (5.2.7) the image of

δ(x,y) is a(x)a(y). Thus the radicals of the images of I1 and I2 equals the radical
of J =

(
a(x)

)
x∈Bd . It is further easily seen that J is contained in the ideal of

every diagonal of Spec
(
TdA(B)

)
. Equivalently, the closed subset corresponding to

J contains the big diagonal.
By Lemmas (5.2.8) and (5.2.9) it is enough to show the first part of the proposi-

tion after any base change A→ A′ such that Spec(A′) → Spec(A) is surjective. We
can thus assume that every residue field of A has at least

(
d
2

)
elements. Both parts

of the proposition then follows if we show that the closed subset corresponding to
the ideal

K =
(
a(1, b, b2, . . . , bd−1)

)
b∈V ⊆ TdA(B)

is contained in the big diagonal. As the formation of the ideal K commutes with
base changes A→ A′ which are either surjections or localizations we can replace A
with one of its residue fields and assume that A is a field with at least

(
d
2

)
elements.

Let Spec(k) : x→ Spec
(
TdA(B)

)
be a point corresponding to d distinct k-points

x1, x2, . . . , xd of Spec(B ⊗A k). Lemma (5.2.10) shows that there is an element
b ∈ V which takes d distinct values a1, a2, . . . , ad ∈ k on the d points. The value of
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a(1, b, b2, . . . , bd−1) at x is then

∑
σ∈Sd

(−1)|σ|aσ(1)−1
1 a

σ(2)−1
2 . . . a

σ(d)−1
d = det


1 a1 a2

1 . . . ad−1
1

1 a2 a2
2 . . . ad−1

2
...

...
...

. . .
...

1 ad a2
d . . . ad−1

d

 =
∏
j<i

(ai−aj)

which is non-zero. Thus x is not contained in the zero-set of K. This shows that
zero-set of K is contained in the big diagonal and hence that zero-set defined by K
is the big diagonal. �

5.3. Non-degenerated symmetric tensors and divided powers.

Lemma (5.3.1). Let A be a ring, B an A-algebra and x, y ∈
∧d
A(B). Then

ΓdA(B)δ(x,y) → TSdA(B)δ(x,y) is an isomorphism.

Proof. Denote the canonical homomorphism ΓdA(B) → TSdA(B) with ϕ. Let f ∈
TSdA(B). As the anti-symmetrization operator a : TdA(B) → TdA(B) is a TSdA(B)-
module homomorphism we have that fa(x) = a(fx). By Proposition (5.2.7)

fϕ
(
δ(x, y)

)
= fa(x)a(y) = a(fx)a(y) = ϕ

(
δ(fx, y)

)
which shows that ϕ is surjective after localizing in δ(x, y).

To show that ϕδ(x,y) is injective, it is enough to show that the composition

ΓdA(B)δ(x,y) → TSdA(B)δ(x,y) ↪→ TdA(B)δ(x,y)

is injective. Choose a surjection F � B with F a flat A-algebra and let I be the
kernel of F � B. Let J be the kernel of TdA(F ) � TdA(B).

Let f ∈ JG. As f ∈ J we can write f as a sum f1 + f2 + · · ·+ fn such that for
every i we have that fi = fi1 ⊗ fi2 ⊗ · · · ⊗ fid ∈ TdA(F ) with fij ∈ I for some j.
Choose liftings x′, y′ ∈

∧d
A(F ) of x, y ∈

∧d
A(B). Identifying ΓdA(F ) and TSdA(F ),

we have that fδ(x′, y′) = δ(fx′, y′). This is a sum of determinants with elements
in ΓdA(F ) such that in every determinant there is a row in which every element is
in the ideal γ1(I) × γd−1(1). Thus δ(fx′, y′) is in the kernel of ΓdA(F ) � ΓdA(B)
by (1.1.8). The image of f in ΓdA(B) is thus zero after multiplying with δ(x, y).
Consequently ϕ is injective after localizing in δ(x, y). �

Theorem (5.3.2). Let X/S be a separated algebraic space. Then Symd(X/S)nd →
Γd(X/S)nd is an isomorphism.

Proof. We can assume that S and X are affine (3.2.5). The theorem then follows
from Proposition (5.2.11) and Lemma (5.3.1). �

Definition (5.3.3). Let A be any ring and B = A[x1, x2, . . . , xr]. We call the
elements f ∈ ΓdA(B) of degree one, see Definition (1.3.2), multilinear or elementary
multisymmetric functions. These are elements of the form

γd1(x1)× γd2(x2)× · · · × γdn(xn)× γd−d1−···−dn(1).
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We let ΓdA(A[x1, x2, . . . , xn])mult.lin. denote the subalgebra of ΓdA(A[x1, x2, . . . , xn])
generated by multi-linear elements.

Remark (5.3.4). If the characteristic of A is zero or more generally if d! is invertible
in A, then ΓdA(A[x1, x2, . . . , xn])mult.lin. = ΓdA(A[x1, x2, . . . , xn]) by Theorem (1.3.4).

Lemma (5.3.5). Let A be a ring and B = A[x1, x2, . . . , xn]. Let b ∈ B1 and let x =
(1, b, b2, . . . , bd−1). Then

(
ΓdA(B)mult.lin.

)
δ(x,x)

↪→ ΓdA(B)δ(x,x) is an isomorphism.

Proof. Let f ∈ ΓdA(B) = TSdA(B). We will show that f is a sum of products
of multilinear elements after multiplication by a power of δ(x,x). As fδ(x,x) =
δ(fx,x) and the latter is a sum of products of elements of the type γ1(c)×γd−1(1)
we can assume that f is of this type. As c 7→ γ1(c) × γd−1(1) is linear we can
further assume that c = xα for some non-trivial monomial xα ∈ B. It will be useful
to instead assume that c = xαbk with |α| ≥ 1 and k ∈ N. We will now proceed on
induction on |α|.

Assume that |α| = 1. If k = 0 then f = γ1(xαbk) × γd−1(1) is multilinear. We
continue with induction on k to show that f ∈ ΓdA(B)mult.lin.. We have that

f = γ1(xαbk)× γd−1(1) =
(
γ1(xαbk−1)× γd−1(1)

)(
γ1(b)× γd−1(1)

)
− γ1(xαbk−1)× γ1(b)× γd−2(1)

and by induction it is enough to show that the last term is in ΓdA(B)mult.lin.. Similar
use of the relation

γ1(xαbk−`)×γ`(b)×γd−`−1(1) =
(
γ1(xαbk−`−1)×γd−1(1)

)(
γ`+1(b)×γd−`−1(1)

)
− γ1(xαbk−`−1)× γ`+1(b)× γd−`−2(1)

with 1 ≤ l ≤ d − 2 and l ≤ k − 1 shows that it is enough to consider either
γ1(xα) × γk(b) × γd−k−1(1) if k ≤ d − 1 or γ1(xαbk−d+1) × γd−1(b) if k > d −
1. The first element of these is multilinear and the second is the product of the
multilinear element γd(b) and γ1(xαbk−d)× γd−1(1) which by the induction on k is
in ΓdA(B)mult.lin..

If |α| > 1 then xα = xα
′
xα

′′
for some α′, α′′ such that |α′|, |α′′| < |α|. We have

that

f = γ1(c)× γd−1(1) =
(
γ1(xα

′
bk)× γd−1(1)

)(
γ1(xα

′′
)× γd−1(1)

)
− γ1(xα

′
bk)× γ1(xα

′′
)× γd−2(1).

By induction it is enough to show that the last term is a sum of products of
multilinear elements, after suitable multiplication by δ(x,x). Let g = γ1(xα

′
bk)×

γ1(xα
′′
)×γd−2(1). Then gδ(x,x) = δ(gx,x) which is a sum of products of elements

of the kind γ1(xα
′
bt
′
)×γd−1(1) and γ1(xα

′′
bt
′′
)×γd−1(1). By induction on |α| these

are in
(
ΓdA(B)mult.lin.

)
δ(x,x)

. �



38 DAVID RYDH

Theorem (5.3.6). Let X/S be quasi-projective morphism of schemes and let X ↪→
PS(E) be an immersion for some quasi-coherent OS-module E of finite type. Then
Γd(X/S)nd → Chow0,d

(
X ↪→ P(E)

)
nd

is an isomorphism.

Proof. As Γ commutes with arbitrary base change and Chow commutes with flat
base change we may assume that S is affine and, using Lemma (1.2.3), that every
residue field of S has at least

(
d
2

)
elements. If E ′ � E is a surjection of OS-

modules then Chow0,d

(
X ↪→ P(E)

)
= Chow0,d

(
X ↪→ P(E ′)

)
by Definition (3.3.8)

and we may thus assume that E is free. Further as Chow0,d

(
X ↪→ P(E)

)
is the

schematic image of Γd(X/S) ↪→ Γd
(
P(E)/S

)
→ Chow0,d

(
P(E)

)
we may assume

that X = P(E) = Pn.
By Proposition (3.3.10) and the assumption on the residue fields of S = Spec(A),

the scheme Chow0,d

(
P(E)

)
is covered by affine open subsets over which the mor-

phism Γd
(
P(E)/S

)
→ Chow0,d

(
P(E)

)
corresponds to the inclusion of rings

ΓdA(A[x1, x2, . . . , xn])mult.lin. ↪→ ΓdA(A[x1, x2, . . . , xn]).

The theorem now follows from Proposition (5.2.11) and Lemma (5.3.5). �
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FAMILIES OF CYCLES

DAVID RYDH

Abstract. Let X be an algebraic space, locally of finite type over an arbitrary
scheme S. We give a definition of relative cycles on X/S. When S is reduced
and of characteristic zero, this definition agrees with the definitions of Barlet,
Kollár and Suslin-Voevodsky when these are defined. Relative multiplicity-
free cycles and relative Weil-divisors over arbitrary parameter schemes are
then studied more closely. We show that relative normal cycles are given by
flat subschemes, at least in characteristic zero. In particular, the morphism

Hilbequi
r (X/S) → Chowr(X/S) taking a subscheme, equidimensional of di-

mension r, to its relative fundamental cycle of dimension r, is an isomorphism
over normal subschemes.

When S is of characteristic zero, any relative cycle induces a unique relative
fundamental class. The set of Chow classes in the sense of Angéniol constitute
a subset of the classes corresponding to relative cycles. When α is a relative
cycle such that either S is reduced, α is multiplicity-free, or α is a relative
Weil-divisor, then its relative fundamental class is a Chow class. In particular,
the corresponding Chow functors agree in these cases.

Introduction

The Chow variety ChowVarr,d(X ↪→ Pn), parameterizing families of cycles of
dimension r and degree d on a projective variety X, was constructed in the first
half of the twentieth century [CW37, Sam55]. The main goal of this paper is
to define a natural contravariant functor Chowr,d(X) from schemes to sets, such
that its restriction to reduced schemes is represented by ChowVarr,d(X). Here
ChowVarr,d(X) is a reduced variety coinciding with ChowVarr,d(X ↪→ Pn) for a
sufficiently ample projective embedding X ↪→ Pn [Hoy66]. In characteristic zero,
the Chow variety ChowVarr,d(X ↪→ Pn) is independent on the embedding [Bar75]
but this is not the case in positive characteristic [Nag55].

We will first define a notion of relative cycles on X/S. This definition is given
in great generality without any assumptions on S and only assuming that X/S is

2000 Mathematics Subject Classification. Primary 14C05; Secondary 14C25.
Key words and phrases. Chow scheme, Hilbert scheme, divided powers, cycles, Weil divisors.
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locally of finite type. This definition includes non-equidimensional and even non-
separated relative cycles. We then let

Cycl(X/S) = {relative cycles on X/S}

Chowr(X/S)(T ) =
{proper relative cycles which are equi-

dimensional of dimension r on X ×S T/T

}
.

If X is projective, the functor Chowr(X) is a disjoint union of the subfunctors
Chowr,d(X) parameterizing cycles of a fixed degree. We also let

Chow(X)(T ) = {proper equidimensional relative cycles on X ×S T/T}.

A similar Chow-functor, which we will denote by Angr(X), has been constructed
by Angéniol [Ang80] in characteristic zero and we will present some evidence indi-
cating that Chow = Ang in characteristic zero. In fact, there is a natural monomor-
phism Angr(X) → Chowr(X) which is a bijection when restricted to reduced T
and between the open subfunctors parameterizing multiplicity-free cycles.

It is known [Bar75, Gue96, Kol96, SV00] that if T is a normal scheme of char-
acteristic zero, then there is a one-to-one correspondence between T -points of
the Chow variety and cycles Z on X × T which are equidimensional of rela-
tive dimension r and whose generic fiber has degree d. Thus when S is nor-
mal and of characteristic zero we define a relative r-cycle on X/S to be a cy-
cle on X which is equidimensional of relative dimension r and the definition of
Chowr(X)(T ) for T normal follows. There is a subtle point here concerning the
pull-back Chowr(X)(T ) → Chowr(X)(T ′) for a morphism T ′ → T between normal
schemes. If t ∈ T is a point, then the näıve fiber Zt does not necessarily coincide
with the cycle corresponding to the morphism Spec(k(t)) → T → ChowVarr,d(X).

This problem is due to the fact that Z is not “flat” over T . As an illustration,
let T = Spec(k[s, t]) be the affine plane and consider the family of zero-cycles
on X = Spec(k[x, y]) of degree two given by the primitive cycle Z = [Z] where
Z ↪→ X×T is the subvariety given by the ideal (x2−s3t, y2−st3, xy−s2t2, tx−sy).
On the open subset T \ (0, 0), we have that Z is flat of rank two, but the fiber over
the origin is the subscheme defined by (x2, y2, xy) which has rank three. The näıve
fiber in this case would be three times the origin of X while the correct fiber is two
times the origin.

If T is a smooth curve, the above “pathology” does not occur as then every
cycle is flat. If T is a smooth variety, the correct fiber Zt can be defined through
intersection theory [Ful98, Ch. 10]. If T is a normal variety, then the correct fiber Zt

can be defined through Samuel multiplicities [SV00, Thm. 3.5.8]. For an arbitrary
reduced scheme T , the fiber of a cycle Z on X × T at t can be defined by taking
the “limit cycle” along a curve passing through t as defined by Kollár [Kol96] and
Suslin-Voevodsky [SV00]. This construction may depend on the choice of the curve,
but if T is normal and of characteristic zero the limit cycle is well-defined. If T
is weakly normal, then Z will be a relative cycle if and only if the limit cycle is
well-defined for every point t ∈ T . In positive characteristic, even if T is normal,
the limit cycle may have rational coefficients [SV00, Ex. 3.5.10].
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It is natural to include cycles with certain rational coefficients in positive charac-
teristic [II] and we will call these cycles quasi-integral. A relative cycle over a perfect
field will always have integral coefficients. The denominator of the multiplicity of
a subvariety is bounded by its inseparable discrepancy.

The limit-cycle condition only gives the correct functor for semi-normal schemes.
The problem is easily illustrated by taking a geometrically unibranch but non-
normal parameter scheme S, such as a cuspidal curve. The normalization X → S
then satisfies the limit-cycle condition — the limit-cycle of the singular point of S
is the corresponding point of X with multiplicity one. We thus obtain a “relative”
zero-cycle of degree one X → S but this does not correspond to a morphism
S → ChowVar0,1(X) ∼= X.

Definition of the Chow functor. The definition of the Chow functor is based
upon the assumption that Chow0,d(X) should be represented by the scheme of
divided powers Γd(X/S). This is in agreement with the conditions on Chow0,d(X)
imposed at the beginning as Γd(X/S)red = ChowVar0,d(X/S), cf. [III]. If X/S is
flat or the characteristic of S is zero, then Γd(X/S) = Symd(X/S) [I].

We let Γ?(X/S) =
∐

d≥0 Γd(X/S) which thus represents Chow0(X). A relative
proper zero-cycle on X/S is then a morphism S → Γ?(X/S). If S is reduced, a
relative proper zero-cycle is represented by a quasi-integral cycle on X, such that
its support is proper and equidimensional of dimension zero over S. For a reduced
scheme S, we then make the following definition of a higher-dimensional relative
cycle:

If S is reduced, then a relative cycle on X/S of dimension r is a cycle Z on
X which is equidimensional of dimension r over S and such that for any smooth
projection (U,B, T, p, g, ϕ) consisting of a diagram

U
p

//

ϕ

��

X

��

B

��

T
g

// S

◦

where U → X, B → T and T → S are smooth, U → X ×S T is étale, and
ϕ : U → B is finite over the support of p∗Z, we have that p∗Z is a relative
(proper) zero-cycle over B, i.e., given by a morphism B → Γ?(U/B).

We will show that when S is of characteristic zero, the above definition agrees
with the definition given by Barlet [Bar75] in the complex-analytic case and the defi-
nition given by Angéniol [Ang80] in the algebraic setting. The functor Chowr(X)red
is then an algebraic space which coincides with ChowVarr(X) when X is projec-
tive. Over semi-normal schemes, we recover the definitions with limit-cycles due to
Kollár and Suslin-Voevodsky.
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Definition over arbitrary parameter schemes. Over a general scheme S it
is more complicated to define what a relative cycle on X/S is. A main obsta-
cle is the fact that relative cycles on X/S are not usually represented by cycles
on X. The course taken by El Zein and Angéniol [AEZ78, Ang80] is to represent
a relative cycle by its relative fundamental class. This is a cohomology class in
c ∈ Ext−r

Zm
(Ωr

Zm/S ,D
•
Zm/S), where jm : Zm ↪→ X is an infinitesimal neighborhood

of the support Z of the relative cycle. Such a cohomology class induces, by dual-
ity, a class in Ext−r

X ((jm)∗OZm
⊗ Ωr

X/S ,D
•
X/S) and, if X/S is smooth, a class in

H−r
Z (X, (Ωr

X/S)∨ ⊗D•X/S) = Hn−r
Z (X,Ωn−r

X/S).
The connection with cycles is as follows. A class c, supported at Z ⊆ X, in

one of the above cohomology groups, induces for any projection (U,B, T, p, g, ϕ)
with U → X, B → T and T → S smooth and ϕ : U → B finite over p−1(Z), a
trace homomorphism tr(c) : ϕ∗Ωr

p−1(Zm)/T → Ωr
B/T . This homomorphism extends

uniquely to a homomorphism tr(c) : ϕ∗Ω•p−1(Zm)/T → Ω•B/T , commuting with the
differentials, and in particular we obtain a trace map tr(c) : ϕ∗Op−1(Zm) → OB .
In characteristic zero, a family of zero-cycles B → Γd(p−1(Zm)/B) is determined
by its trace ϕ∗Op−1(Zm) → OB .

In characteristic zero, Angéniol [Ang80, Thm. 1.5.3] gives a condition char-
acterizing the homomorphisms ϕ∗Op−1(Zm) → OB which are the traces of fam-
ilies B → Γd(p−1(Zm)/B). He then generalizes this condition to a condition
on tr(c) : ϕ∗Ω•p−1(Zm)/T → Ω•B/T which is stable under the choice of projec-
tion [Ang80, Prop. 2.3.5]. Thus, if tr(c) satisfies this condition, then the induced
trace for any projection comes from a family of zero-cycles. It is not clear whether
the converse is true, i.e., if a class such that the induced trace on any projection
comes from a family of zero-cycles satisfies Angéniol’s condition.

In positive characteristic, some kind of “crystalline duality” would be required
to accomplish a similar description and we do not follow this line. Our definition is
more straight-forward. We define a relative cycle, supported on a subset Z ⊆ X, to
be a collection of relative zero-cycles B → Γ?(U/B) for every projection (U,B,Z)
of X/S such that p−1(Z) → B is finite. We further impose natural compatibility
conditions on the zero-cycles of different projections. At first glance, this looks
impractical to work with but we describe situations in which the relative cycles are
easier to describe.

(A1) If S is reduced, then every relative cycle is induced by an ordinary cycle
on X as described above, cf. Corollary (8.7).

(A2) If α is a multiplicity-free relative cycle on X/S, i.e., if the pull-back cycles
αs are without multiplicities for every geometric point s → S, then α is
induced by a subscheme of X which is flat over a fiberwise dense subset,
cf. Corollary (9.9).

(A3) If α is a relative Weil-divisor on X/S, i.e., if X/S is equidimensional of
dimension r+1, and if X/S is flat with (R1)-fibers, e.g., if X/S has normal



FAMILIES OF CYCLES 5

fibers, then α is induced by a subscheme of X which is a relative Cartier
divisor over a fiberwise dense subset, cf. Corollary (9.16).

In positive characteristic, the descriptions (A2) and (A3) are unfortunately conjec-
tural except when S is reduced. Note that in these three cases we obtain an object
which represents the cycle α but not all such objects induce a relative cycle. There
are however correspondences as follows:

(B1) S normal. Relative cycles over S correspond to effective quasi-integral
cycles on X with universally open support, cf. Theorem (10.1).

(B2) S semi-normal. Relative cycles over S correspond to ordinary cycles on
X with universally open support such that the limit-cycle for every point
s ∈ S is well-defined and quasi-integral, cf. Theorem (10.17).

(B3) S arbitrary. Smooth relative cycles correspond to subschemes which are
smooth, cf. Theorem (9.8).

(B4) S arbitrary. Normal relative cycles correspond to subschemes which are
flat with normal fibers, cf. Theorem (12.8).

(B5) S arbitrary, X/S smooth. Relative Weil-divisors on X/S correspond to
relative Cartier-divisors on X/S, cf. Theorem (9.15).

(B6) S arbitrary, X/S flat with geometrically (R2)-fibers. Relative Weil-divisors
on X/S correspond to Weil-divisors Z on X/S such that Z is a relative
Cartier-divisor over an open subset of Z containing all points of relative
codimension at most one, cf. Theorem (11.7).

(B7) S arbitrary. Multiplicity-free relative cycles which are geometrically (R1)
correspond to subschemes which are flat with geometrically (R1)-fibers
over an open subset containing all points of relative codimension at most
one, cf. Theorem (11.5).

(B8) S reduced, X/S flat with geometrically (R1)-fibers. Relative Weil-divisors
on X/S correspond to Weil-divisors Z on X/S which are relative Cartier-
divisors over an open fiberwise dense subset of Z, cf. Theorem (11.7).

(B9) S reduced. Multiplicity-free relative cycles correspond to subschemes which
are flat with reduced fibers over an open fiberwise dense subset, cf. Theo-
rem (11.5).

Here (B3)–(B7) are conjectural in positive characteristic.
In characteristic zero, it follows from Bott’s theorem on grassmannians, similarly

as in [AEZ78], that a relative cycle induces a fundamental class c in one of the
cohomology groups discussed above. It is however not clear that c satisfies the
conditions imposed by Angéniol except for relative cycles as in (A1)–(A3).

Push-forward and pull-back. If f : X → Y is a finite morphism of S-schemes,
then there is a natural functor — the push-forward — from relative cycles on X/S
to relative cycles on Y/S. When S is reduced, the push-forward of relative cycles
coincides with the ordinary push-forward of cycles.

It is reasonable to believe that for any proper morphism f : X → Y there
should be a push-forward functor f∗ : Cycl(X/S) → Cycl(Y/S) coinciding with the
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ordinary push-forward of cycles when S is reduced. Recall that if V is a subvariety
of X, then the push-forward f∗([V ]) of the cycle [V ] is deg

(
k(V )/k(f(V ))

)
[f(V )] if

f |V is generically finite and zero otherwise. The push-forward for arbitrary cycles is
then defined by linearity. If α is a relative cycle on X/S then it is straight-forward
to define f∗α on a dense subset of its support, but the verification that this cycle
extends to a cycle, necessarily unique, on the whole support is only accomplished
in the cases (A1) and (B1)–(B9) above using flatness.

If f : U → X is a flat morphism which is equidimensional of dimension r, then
it is again reasonable that there should be a pull-back functor f∗ : Cycl(X/S) →
Cycl(Y/S) coinciding with the flat pull-back of cycles when S is reduced. Contrary
to the case with the push-forward it is not even clear how f∗ should be defined in
general. It is possible to partially define the pull-back by giving families of zero-
cycles on certain projections. In the cases (A1)–(A3), it is clear how the pull-back
should be defined generically on any projection but it is only in the cases (B1)–(B9)
that it is shown that the generic pull-back extends to a relative cycle.

If f : U → X is smooth of relative dimension r, then it is possible to construct a
pull-back f∗(c) for the cohomological description of relative cycles in characteristic
zero. We will show that smooth pull-back exists when S is reduced but in general
this is as problematic as the flat pull-back. This motivates the following alternative
definition of relative cycles. A relative cycle α on X/S with support Z consists of
relative zero-cycles αU/B on U/B for any commutative square

U
p

//

��

X

��

B
g

// X

such that p and g are smooth and p−1(Z) → B is finite. These zero-cycles are
required to satisfy natural compatibility conditions. Every relative cycle of the new
definition determines a unique relative cycle of the first definition. With the new
definition, it is at least clear that smooth pull-backs exist.

Products and intersections. If α and β are relative cycles on X/S and Y/S
respectively, then it is reasonable to demand that there should be a natural relative
cycle α × β on X ×S Y/S. This relative cycle is only defined under the same
conditions as the flat pull-back.

If α is a relative cycle on X/S and D is a relative Cartier divisor on X/S meeting
α properly in every fiber, then there is a relative cycle D∩α on X/S. If two relative
cycles α and β on a smooth scheme X/S meet properly in every fiber, then under
the assumption that α × β is defined, we then define α ∩ β as the intersection of
α× β with the diagonal ∆X/S .

Overview of contents. The paper is naturally divided into three parts. In the
first part, Sections 1–6, we give the foundations on relative cycles. In the second
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part, Sections 7–12, we treat relative cycles which are flat, multiplicity-free, nor-
mal or smooth, relative Weil divisor and relative cycles over reduced parameter
schemes. In the third part, Sections 13–17, we discuss proper push-forward, flat
pull-back and intersections of cycles, compare our definition of relative cycles with
Angéniol’s definition and mention the classical construction of the Chow variety via
Grassmannians. The third part is very brief and many results are only sketched.

In Section 1, we briefly recall the results on proper relative zero-cycles from [I, II].
We also show that the definition of a proper relative zero-cycle on X/S is local on
X with respect to finite étale coverings.

In Section 2, we define non-proper relative zero-cycles. This is done by working
étale-locally on the carrier scheme X. A non-proper relative zero-cycle is a proper
relative zero-cycle if and only if its support is proper. This gives a new étale-local
definition of proper relative zero-cycles.

In Section 3, a topological condition (T) on morphisms is introduced. This
condition is closely related to open morphisms. In fact, if S is locally noetherian
and f : X → S is locally of finite type, then f is universally open if and only if
it is universally (T). Universally open morphisms and equidimensional morphisms
satisfy (T).

In Section 4, we define higher-dimensional relative cycles. A priori, the support of
a higher-dimensional relative cycle only satisfies (T), but we show that the support
is universally open.

In Section 5, we show that in the definition of a relative cycle, it is enough to
consider smooth projections. We then briefly discuss how the definition of a relative
cycle can be modified so that pull-back by smooth morphisms exist.

In Section 6, conditions for when a relative cycle on an open subset U ⊆ X
extends to a relative cycle on X are given. We also give a slightly generalized
version of Chevalley’s theorem on universally open morphisms.

In Section 7, we show that any flat and finitely presented sheaf F induces a
relative cycle, the norm family. We thus obtain morphisms from the Hilbert and
the Quot functors to the Chow functor.

In Section 8, we associate an ordinary cycle cycl(α) on X to any relative cycle
α on X/S. If S is reduced, this cycle uniquely determines α. This is (A1).

In Section 9, we show that smooth relative cycles correspond to smooth sub-
schemes and that relative Weil divisors on smooth carrier schemes correspond to
relative Cartier divisors. This is (B3) and (B5). Assuming only generic smooth-
ness, we obtain the descriptions (A2) and (A3). These results are only shown in
characteristic zero but are presumably valid in arbitrary characteristic.

In Section 10, we study relative cycles over reduced parameter schemes and
obtain the characterizations (B1) and (B2). We also describe the pull-back of
cycles via Samuel multiplicities.

In Section 11, we introduce n-flat and n-smooth morphisms and give the char-
acterizations (B6)–(B9). In Section 12, we prove a generalized Hironaka lemma.
Together with (B7), this result yields (B4). In particular, the Hilb-Chow morphism
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is an isomorphism over the locus parameterizing normal subschemes. All these
results depend upon (B3) but are otherwise characteristic-free.

In Sections 13–15, proper push-forward, flat pull-back and intersections of rel-
ative cycles are discussed. In Section 16, we indicate the existence of a relative
fundamental class to any relative cycle and compare our functor with Angéniol’s
and Barlet’s functors. Finally, in Section 17, we discuss the incidence correspon-
dence and the classical Chow-construction.

In the Appendix, an overview of duality and (relative) fundamental classes is
given.

Terminology and assumptions. As families of cycles are defined étale-locally,
the natural choice is to use algebraic spaces instead of schemes. In fact, all results
are true for algebraic spaces. For convenience, we only treat relative cycles on X/S
where S is a scheme, but this is no restriction as the definition is étale-local on
both S and X.

We allow relative cycles to have non-closed support. The reason for this is that
if α is a relative cycle on X/S then it decomposes as a sum α0 + α1 + · · · + αr

where αi is supported on the locally closed subset consisting of points of relative
dimension i. It is likely that the assumption that a relative cycle has closed support
is missing in some statements and the reader may choose to assume that all relative
cycles have closed support (except in the example above).

Usually, a cycle is a finite formal sum of equidimensional closed subvarieties.
As we treat relative cycles which are not equidimensional and also not necessar-
ily closed, we make the following definition. A cycle α on X is a locally closed
subset Z ⊆ X together with rational numbers (mZi) indexed by the irreducible
components {Zi} of Z. The irreducible sets {Zi} are the components of α and the
numbers (mZi) are the multiplicities of α. When the mZi ’s are integers, we say that
α is integral. When the mZi ’s are non-negative, we say that α is effective. Every
cycle is uniquely represented as a formal sum

∑
imZi

[Zi]. This sum is locally finite
if X is locally noetherian. Note that this definition excludes cycles with embedded
components. Through-out this paper we will only consider effective cycles.

Let X/S be an algebraic space locally of finite type. We say that x ∈ X has
relative codimension n if the codimension of {x} in its fiber Xs is n. A useful fact
is that if X → B is a quasi-finite morphism, B → S is smooth and x ∈ X has
relative codimension n over a point of depth m in S, then its image b ∈ B has
depth n + m. This is why the characterizations (A2)–(A3) and (B6)–(B9) only
involves the codimension.

Noetherian assumptions are eliminated in many instances but often only with
a brief sketch in the proof. Sometimes we use the notion of associated points on
a non-noetherian schemes. In the terminology of Bourbaki these are the points
corresponding to weakly associated prime ideals. These satisfy the usual properties
of associated points, e.g., an open (retro-compact) subset U ⊆ X is schematically
dense if and only if U contains all associated points. Recall that on a locally
noetherian scheme X, a point x ∈ X is associated if and only if X has depth zero
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at x. In the non-noetherian case the condition that S has (locally) a finite number
of irreducible components appears frequently.
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1. Proper relative zero-cycles

We recall the main results of [I, II], here stated only for schemes locally of finite
type. We then show that the definition of proper relative zero-cycles on X/S is
étale-local on X. At the end, the underlying cycle of a relative cycle is briefly
discussed.

Definition (1.1). Let f : Z → S be affine. Then we let Γd(Z/S) be the spectrum
of the algebra of divided powers Γd

OS
(f∗OZ).

Definition (1.2). Let X/S be a separated algebraic space locally of finite type. A
relative zero-cycle of degree d on X consists of a closed subscheme Z ↪→ X such that
Z ↪→ X → S is finite, together with a morphism α : S → Γd(Z/S). Two relative
zero-cycles (Z1, α1) and (Z2, α2) are equivalent if there is a closed subscheme Z of
both Z1 and Z2 and a morphism α : S → Γd(Z/S) such that αi is the composition
of α and the morphism Γd(Z/S) ↪→ Γd(Zi/S) for i = 1, 2.
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If g : S′ → S is a morphism of spaces and (Z,α) is a relative cycle on X/S, we
let g∗(Z,α) =

(
g−1(Z), g∗α

)
be the pull-back along g.

If (Z,α) is a relative zero-cycle, then there is a unique minimal closed subscheme
Image(α) ↪→ Z such that (Z,α) is equivalent to a relative zero-cycle (Image(α), α′).
The subscheme Image(α) is called the image of α and its reduction Supp(α) :=
Image(α)red is the support of α. The image commutes with smooth base change
but not with arbitrary base change. The support commutes with arbitrary base
change in the sense that Supp(α×S S

′) = (Supp(α)×S S
′)red.

Notation (1.3). If α : S → Γd(X/S) is a morphism then we will by abuse
of notation often write α for the first map in the canonical factorization S →
Γd(Image(α)/S) ↪→ Γd(X/S) of α.

Definition (1.4). Let X/S be a separated algebraic space locally of finite type.
We let Γd

X/S be the contravariant functor from S-schemes to sets defined as follows.
For any S-scheme T we let Γd

X/S(T ) be the set of equivalence classes of relative
zero cycles (Z,α) of degree d on X ×S T/T . For any morphism g : T ′ → T of
S-schemes, the map Γd

X/S(g) is the pull-back of relative cycles as defined above.

An element of Γd
X/S(T ) will be called a family of zero cycles of degree d on X/S

parameterized by T . By abuse of notation, henceforth a relative cycle will always
denote an equivalence class of relative cycles. The main result of [I] is that Γd

X/S

is representable by a separated algebraic space Γd(X/S) — the scheme of divided
powers — which coincides with the scheme in Definition (1.1) when X/S is affine.
If X is locally of finite type (resp. locally of finite presentation) over S then so is
Γd(X/S).

Definition (1.5) ([II, Def. 2.1]). Let X/S be a separated scheme (or algebraic
space), locally of finite type over S. We let Γ?(X/S) =

∐
d≥0 Γd(X/S). A proper

family of zero-cycles on X/S parameterized by T is a morphism α : T → Γ?(X/S).
A proper relative zero-cycle on X/S is a morphism α : S → Γ?(X/S). If the image
of a point s ∈ S by α lies in Γd(X/S) then we say that α has degree d at s.

If X = Spec(B) and S = Spec(A) are affine, then Γ?(X/S) represents multi-
plicative laws which are not necessarily homogeneous [II, Thm. 2.3]. To be precise,
if T = Spec(A′) then HomS(T,Γ?(X/S)) is the set of multiplicative laws B → A′.

We will use the following results and constructions from [I, II]:

(i) If f : X → Y is a morphism, then the push-forward along f is the
morphism f∗ : Γd(X/S) → Γd(Y/S) taking a family (Z,α) onto the family
(fT (Z), f∗α). Here f∗α is the composition of α : T → Γd(Z/T ) and
Γd(Z/T ) → Γd(fT (Z)/T ). The image does not commute with the push-
forward in general, but the support does, i.e., Supp(f∗(α)) = fT (Supp(α))
[I, 3.3.7].

(ii) The image Image(α) ↪→ X ×S T of a proper family of cycles α : T →
Γ?(X/S) is finite and universally open over T [I, 2.4.6, 2.5.7].
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(iii) If T is a reduced scheme, then the image Image(α) ↪→ X ×S T of a family
α : T → Γ?(X/S) is reduced [I, 2.4.6].

(iv) If k is an algebraically closed field, then there is a one-to-one correspon-
dence between k-points of Γd(X/S) and effective zero cycles of degree d
on X ×S Spec(k) [I, 3.1.9].

(v) If f : Z → S is finite and flat of finite presentation, i.e., such that f∗OZ

is a locally free OS-module, then there is a canonical family NZ/S : S →
Γ?(Z/S), the norm of f . The support of NZ/S is Zred but in general
the image of NZ/S can be smaller than Z. If f is in addition étale then
Image(NZ/S) = Z and the image commutes with arbitrary base change [II,
Prop. 3.2]. More generally, if X/S is affine, then a norm family NF/S :
S → Γ?(X/S) is defined for any quasi-coherent sheaf F on X such that
f∗F is locally free.

(vi) If α is a family of degree d parameterized by T such that for any alge-
braically closed field k and point t : Spec(k) → T the support of αt has (at
least) d points then we say that α is non-degenerate. Then Z = Image(α)
is étale of constant rank d and α = NZ/T [II, Cor. 5.7].

(vii) If X/S is a smooth curve, then Γd(X/S) ∼= Hilbd(X/S), i.e., for any
relative cycle α on X/S there is a unique subscheme Z ↪→ X, flat and finite
over S, such that NZ = α [II, Prop. 5.8]. Note however that Image(α)
does not always equal Z.

(viii) Let U/X be a separated algebraic space. If α is a proper relative zero-
cycle on X/S and β is a proper relative zero-cycle on U/X, then there
is a proper relative zero-cycle α ∗ β on U/S. If α and β have degrees d
and e respectively, then α ∗ β has degree de. If T is the spectrum of an
algebraically closed field and α corresponds to the cycle [x1] + [x2] + · · ·+
[xd], then α ∗ β corresponds to the cycle βx1 + βx2 + · · ·+ βxd

[II, §7].

We will now show that proper relative zero-cycles of X/S can be defined étale-
locally on X.

Definition (1.6). Let X/S be a separated algebraic space and let f : U → X
be a separated and étale morphism. Let α : S → Γ?(X/S) be a proper family
of zero-cycles on X and assume that f is proper over the support of α. Then f
is étale and finite over Z = Image(α) and we let f∗(α) = α ∗ Nf |Z which we by
push-forward consider as a family on U/S. When f is an open immersion, then we
let α|U = f∗α.

The notation f∗(α) is reasonable in view of the following results:

Proposition (1.7) ([II, Prop. 7.5]). Let X/S be a separated algebraic space and
let α be a proper relative cycle on X/S. Let f : S′ → S be a finite étale morphism
and denote by g : X ′ → X the pull-back of f along X → S. Then g∗α = Nf ∗ f∗α.
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Lemma (1.8). Let X/S be a separated algebraic space, α a proper relative zero-
cycle on X/S and p : U → X an étale morphism, finite over Supp(α). Then
Image(p∗α) = p−1(Image(α)).

Proof. As the image and composition commutes with étale base change, it is enough
to show the equality on an étale cover S′ → S. Since the image of α is finite over
S, we can thus assume that p|Image(α) is a trivial étale cover. Then both sides of
the equality become disjoint unions of copies of Image(α). �

Proposition (1.9) (Étale descent). Let X/S be a separated algebraic space and let
p : U → X be an étale surjective morphism. Let π1 and π2 be the projections of
U ×X U onto the two factors. Let β be a proper relative cycle on U/S such that the
πi’s are finite over the support of β and π∗1β = π∗2β. Then there is a unique proper
relative cycle α on X/S such that β = p∗α.

Proof. Let W ↪→ U be the image of β. Then π−1
1 (W ) = π−1

2 (W ) by Lemma (1.8)
and thus we obtain by étale descent, a closed subspace Z ↪→ X such that p−1(Z) =
W . Replacing X with Z we can thus assume that X/S is finite and that p is finite
and étale.

As X/S is finite, there is, for any point s ∈ S, an étale neighborhood S′ → S of s
such that U×SS

′ → X×SS
′ has a section s which is an open and closed immersion.

We define α′ : S′ → Γ?(X/S) as s∗(β ×S S
′). As π∗1β = π∗2β, it follows that α′ is

independent on the choice of section. Furthermore, it follows that the pull-backs
of α′ along the two projections of S′ ×S S

′ coincide. By étale descent we obtain,
locally around s, a unique family α : S → Γ?(X/S) as in the proposition. �

Definition (1.10). Let S be the spectrum of a field k and let α be a relative zero-
cycle on X/S and let x ∈ X be a point. Let Z = Supp(α). If x /∈ Z, then we let
degx α = multx α = 0. If x ∈ Z, then we let degx α be the degree of α|U for any
open neighborhood U ⊆ X such that U∩Z = {x} and we let multx α be the rational
number such that (multx α) deg

(
k(x)/k

)
= degx α. The geometric multiplicity of

α at x, denoted geom.multx α is the multiple of multx and deginsep

(
k(x)/k

)
).

Let S be an arbitrary scheme and let α be a proper relative zero-cycle on X/S.
Let x ∈ X be a point with image s ∈ S. Then we let the degree (resp. multiplicity,
resp. geometric multiplicity) of α at x, be the degree (resp. multiplicity, resp.
geometric multiplicity) of αs at x. Here αs denotes the relative zero-cycle s∗α on
Xs/Spec(k(s)).

Definition (1.11). Let S be an arbitrary scheme and let α be a relative zero-cycle
on X/S. The underlying cycle of α is the zero-cycle

cycl(α) =
∑

x∈Supp(α)max

multx(α)
[
{x}

]
.
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Remark (1.12). If α is a relative zero-cycle on X/Spec(k), then

deg(cycl(α)) =
∑

x∈Supp(α)

multx(α) deg
(
k(x)/k

)
=

∑
x∈Supp(α)

degx α = deg(α).

The assignment α 7→ cycl(α) induces a one-to-one correspondence between rela-
tive zero-cycles on X/k and cycles with quasi-integral coefficients [II, Prop. 9.11].

Proposition (1.13). Let k be a field, let α be a relative zero-cycle on X/Spec(k)
and let x ∈ X be a point. Let k′/k be a field extension and α′ be the relative
zero-cycle on Xk′/k

′ given by pull-back. Then
(i) The degree of α at x equals the sum of the degrees of α′ at the points above

x.
(ii) The geometric multiplicities of α at x and of α′ at any point x′ above x

coincide.
(iii) Taking the underlying cycle commutes with the base change k′/k, that is,

cycl(α)k′ = cycl(α′).
Let p : U → X be an étale morphism and u ∈ U a point mapping to x. Then

(iv) The multiplicity of α at x and of p∗α at u coincide.
(v) Taking the underlying cycle commutes with the pull-back along p, that is,

p∗ cycl(α) = cycl(p∗α).
Let k/k0 be a field extension, then

(vi) The multiplicity of α at x and the multiplicity of the family Nk/k0 ∗ α on
X/Spec(k0) at x coincide.

Proof. Follows easily from Remark (1.12) and the observation that the degree of
Nk/k0 ∗ α at x is deg(k/k0) degx α. �

Definition (1.14) (Trace). Let f : X → S be an affine morphism and let α : S →
Γ?(X/S) be a proper relative zero-cycle on X/S. The trace of α is the OS-module
homomorphism tr(α) : f∗OX → OS given as the composition of

f∗OX → Γd
OS

(f∗OX), g 7→ γ1(g)× γd−1(1)

and α∗ :
∏

d Γd
OS

(f∗OX) → OS .
If Z = Image(α), then the trace of α factors through f∗OX � f∗OZ . If F is

a sheaf on X such that f∗F is locally free, then tr(NF ) is the usual trace of the
representation f∗OX → EndOS

(f∗F).

2. Non-proper relative zero-cycles

We now introduce the notion of non-proper relative zero-cycles, or equivalently,
non-proper families of zero-cycles, as a first step towards the generalization to
higher dimensions. We define non-proper families in great generality, including
non-separated schemes and families with support which is not closed.

A non-proper family of zero-cycles should be viewed as an analog of a subscheme
Z ↪→ X×S T which is flat, locally quasi-finite and locally of finite presentation over
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T , but not necessarily proper. Every such subscheme Z also defines a non-proper
family. More generally, we assign a non-proper family to any coherent sheaf which
has finite flat dimension in Section 7. For an étale morphism p : U → X we define
the pull-back p∗ of relative zero-cycles which is the ordinary inverse image for flat
subschemes.

Definition (2.1). Let X be an algebraic space locally of finite type over S and
let Z ↪→ X be a locally closed subset such that Z → S is locally quasi-finite. A
neighborhood of X/S adapted to Z is a commutative square

U
p

//

��

X

��

T
g

// S

◦

such that U → X ×S T is étale and p−1(Z) → T is finite. We will denote such
a neighborhood with (U, T, p, g). If g is étale (resp. smooth) then we say that
(U, T, p, g) is an étale (resp. smooth) neighborhood.

A morphism of neighborhoods (U1, T1, p1, g1) → (U2, T2, p2, g2) is a pair of mor-
phisms p : U1 → U2 and g : T1 → T2 such that

U1 p
//

��

p1

''
U2 p2

//

��

X

��

T1
g

//

g1

77T2
g2 // S

is commutative.

Remark (2.2). If (p, g) is a morphism of neighborhoods as in the definition, then
(U1, T1, p, g) is a neighborhood of U2/T2 adapted to p−1

2 (Z). In fact, as U1 → X and
U2 → X are étale it follows that U1 → U2×T2 T1 is étale. Moreover, U1 → U2×T2 T1

is proper over p−1
2 (Z)×T2 T1.

Recall that a subset Z ⊆ X is retro-compact if Z ∩ U is quasi-compact for any
quasi-compact open subset U ⊆ X [EGAIII, Def. 0.9.1.1]. If X is locally noetherian,
then any subset Z ⊆ X is retro-compact.

Definition (2.3). Let X be an algebraic space locally of finite type over S. A
(non-proper) relative zero-cycle on X/S consists of the following data

(i) A locally closed retro-compact subset Z of X — the support of the cycle.
(ii) For every neighborhood (U, T, p, g) of X/S adapted to Z, a proper family

of zero-cycles αU/T : T → Γ?(U/T ) with support p−1(Z).

satisfying the following conditions:
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(a) The support Z → S is equidimensional of relative dimension zero, i.e.,
locally quasi-finite and every irreducible component of Z dominates an
irreducible component of S.

(b) For every morphism (p, g) : (U1, T1, p1, g1) → (U2, T2, p2, g2) of neighbor-
hoods we have that

αU1/T1 = p′∗(g∗αU2/T2)

where p′ : U1 → U2 ×T2 T1 is the canonical étale morphism.
A non-proper family of zero-cycles on X/S parameterized by an S-scheme T , is a
relative zero-cycle on X ×S T/T .

Remark (2.4). If X/S is separated, then every proper relative zero-cycle α on X/S
determines a unique non-proper relative zero-cycle with the same support and such
that αX/S = α. Conversely, a non-proper relative zero-cycle is proper if and only if
its support is proper over S. In fact, if Z/S is proper then for every neighborhood
(U, T, p, g), we have that αU/T is determined by αX/S according to condition (b).

Definition (2.5). We let Cycl0(X/S) be the set of relative zero-cycles on X/S. We
also let Cycl0X/S denote the functor from S-schemes to sets such that Cycl0X/S(T ) =
Cycl0(X ×S T ) and the pull-back is the natural map.

As Γ?(U/T ) is representable, it immediately follows that Cycl0X/S is an fppf-
sheaf.

(2.6) Push-forward — If f : X ↪→ Y is a quasi-compact immersion, and α is a
non-proper relative zero-cycle on X/S, then there is an induced non-proper relative
zero-cycle f∗α on Y . More generally, if f : X → Y is a morphism, and α is a
non-proper relative zero-cycle on X/S such that f(Supp(α)) is locally closed and
f |Supp(α) is proper onto its image, then we can define f∗α. In particular, this is the
case if f is proper and Supp(α) ⊆ X is closed or if Supp(α)/S is proper and Y/S
is separated.

(2.7) Addition of cycles — Let α and β be relative zero-cycles on X/S with sup-
ports Zα and Zβ . If Zα and Zβ are closed in Zα ∪Zβ , e.g., if Zα and Zβ are closed
in X, then there is a relative zero-cycle α+β on X/S with support Zα∪Zβ defined
by (α+ β)U/T = αU/T + βU/T for any neighborhood (U, T ) adapted to Zα ∪ Zβ .

The condition on Zα and Zβ is equivalent with the condition that f : ZαqZβ →
Zα ∪ Zβ is proper. This is necessary to ensure that a neighborhood adapted to
Zα ∪Zβ also is adapted to Zα and Zβ . This condition also implies that Zα ∪Zβ is
locally closed. We have that α+ β = f∗(α q β).

(2.8) Flat zero-cycles — If Z/S is locally quasi-finite, flat and locally of finite
presentation, then there is a non-proper family NZ/S of zero-cycles on Z/S with
support Zred. This family is defined by (NZ/S)U/T = Np−1(Z)/T on any projection
(U, T, p). The compatibility condition (b) follows from the functoriality of the norm.
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(2.9) Relative cycles on smooth curves — If X/S is a smooth curve, then any
relative cycle α on X/S is the norm family NZ/S of a unique subscheme Z ↪→ X.

(2.10) Pull-back — If α is a relative zero-cycle on X/S and f : U → X is an
étale morphism, then we define the relative zero-cycle f∗α on U/S as follows. The
support of f∗α is f−1(Supp(α)) and for any neighborhood (V, T, p, g) adapted to
f−1(Supp(α)) we let (f∗α)V/T = αV/T,f◦p,g.

Lemma (2.11) (Existence of étale neighborhoods). Let X/S be an algebraic space,
locally of finite type. Let Z ↪→ X be a locally closed subspace such that Z → S is
locally quasi-finite. Then for every point z ∈ Z, there exists an étale neighborhood
(U, T, p, g) of X/S adapted to Z such that there exists u ∈ U such that z = p(u) and
k(z) → k(u) is an isomorphism. Furthermore, we can assume that u is the only
point in its fiber Ut ∩ p−1(Z). If X/S is a scheme or a separated algebraic space,
then we can furthermore choose U → X ×S T as an open immersion.

Proof. Replacing X with an étale neighborhood of z in X, we can assume that X
is a scheme [Knu71, Thm. II.6.4] and that z is the only point in its fiber over S. It
then follows from [EGAIV, Thm. 18.12.1 and Rmk. 18.12.2] that there is an étale
morphism g : T → S, a point z′ ∈ ZT = Z ×S T above z such that k(z) ∼= k(z′)
and an open neighborhood V of z′ in ZT such that V → T is finite. Any open
subscheme U of X ×S T such that U ∩ ZT = V gives an étale neighborhood as in
the lemma.

If X/S is a scheme, then the last statement follows immediately, as we can skip
the first step in the construction of U . If X/S is a separated algebraic space then
nevertheless Z/S is a scheme [LMB00, Thm. A.2] and the statement follows. �

Remark (2.12). If X/S is a locally separated algebraic space, then we can choose
U → X ×S T as an open immersion if we drop the condition that k(u)/k(z) is a
trivial extension. This follows from the fact that if S is a strictly henselian local
scheme and if Z → S is a locally separated quasi-finite morphism, then Z → S is
finite over an open subset containing the closed fiber. This can be shown similarly
as [LMB00, Lem. A.1].

Proposition (2.13). The support of a relative zero-cycle is universally open and
hence universally equidimensional of relative dimension zero.

Proof. This follows immediately from Lemma (2.11) as the support of a proper
relative zero-cycle is universally open. �

Definition (2.14). Let X/S be locally of finite type and let α be a relative zero-
cycle on X/S. Let x ∈ X. The degree (resp. multiplicity, resp. geometric multi-
plicity) of α at x is the corresponding number of (αs)|U at x for any neighborhood
U ⊆ Xs of x such that Supp(αs)|U is finite. We say that α is non-degenerate or
étale at x if geom.multx(α) = 1.
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Proposition (2.15). Let X/S be an algebraic space, locally of finite type, and let
α be a relative zero-cycle on X/S. Then the function geom.mult : Supp(α) → N,
x 7→ geom.multx(α) is upper semi-continuous. In particular, α is étale at an open
subset of Supp(α).

Proof. Let x ∈ Supp(α) be a point with geometric multiplicity m. We have to
show that the geometric multiplicity is at most m in a neighborhood of x. This can
be checked on any étale neighborhood and we can thus assume that Supp(α) →
S is finite, that x is the only point in its fiber Supp(α)s and that k(x)/k(s) is
purely inseparable. Then m is the degree of α at s. As the degree of α is m in a
neighborhood of S, the geometric multiplicity of α is at most m in a neighborhood
of x. �

Definition (2.16). Let X/Spec(k) be locally of finite type and let α be a relative
zero-cycle on X/Spec(k). If Supp(α) is finite, then α is a proper relative zero-cycle
and deg(α) is defined. If Supp(α) is infinite, then we let deg(α) = ∞.

Proposition (2.17). Let X/S be a separated algebraic space, locally of finite type,
and let α be a relative zero-cycle on X/S. Then the function deg : S → N ∪ {∞},
s 7→ deg(αs) is lower semi-continuous, i.e., for every d ∈ N, the subset of S where
deg is at most d is closed. The relative cycle α is proper if and only if deg is finite
and locally constant.

Proof. Let s ∈ S such that d = deg(αs) is finite. Let Z = Supp(α). Let (S′, s′) →
(S, s) be an étale neighborhood such that Z×S S

′ = Z ′1qZ ′2 where Z ′1 → S′ is finite
of rank d and (Z ′2)s′ is empty [EGAIV, Thm. 18.12.1]. Then deg(α×S S

′) ≥ d over
the image of Z ′1 → S′ which is an open neighborhood of s′ as Z → S is universally
open. Hence deg is lower semi-continuous.

Assume that deg(s) = d for all s ∈ S. Then in the above construction it follows
that the images of Z ′1 and Z ′2 does not intersect. It follows that over the image of
Z ′1, which is open, Supp(α ×S S

′) is finite. By étale descent, so is Supp(α) in a
neighborhood of s. �

Proposition (2.18) (Étale descent). Let X/S be an algebraic space and let p :
U → X be an étale morphism. Let π1 and π2 be the projections of U ×X U onto the
first and second factors. Let β be a relative zero-cycle on U/S such that π∗1β = π∗2β.
Then there is a unique relative zero-cycle α on X/S with support contained in p(U)
such that β = p∗α.

Proof. As π−1
1 (Supp(β)) = π−1

2 (Supp(β)) we obtain by étale descent of quasi-
compact immersions [SGA1, 5.5 and 7.9], a locally closed retro-compact subscheme
Z ↪→ X such that p−1(Z) = Supp(β) and Z is contained in p(U). The support of
α will be Z.

Let (V, T, q, g) be a neighborhood of X/S adapted to Z. We will construct a
canonical proper family on V/T which is compatible with β. We let W = U ×X V
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such that

W ×V W //
//

��

W //

r

��

V

q′

��

UT ×XT
UT

//
// UT

p
// XT

is cartesian. The family r∗(β×ST ) is compatible with respect to the two projections
of W ×V W . Replacing S, X and U with T , V and W respectively, we can thus
assume that X/S itself is adapted to Z.

The support of β is p−1(Z). Lemma (2.11) gives an étale neighborhood (V, T, q, g)
of U/S adapted to p−1(Z) such that p−1(Z) is contained in the image of q : V → U .
If we construct a unique proper family α′ : T → Γ?(X/S) then the existence of the
proper family α : S → Γ?(X/S) follows by étale descent. We can thus replace S
with T and assume that there is an étale neighborhood (V, S, q, g) of U/S adapted
to p−1(Z). By the compatibility of the family β, we can finally replace U with V .
Then β is proper and the result follows from Proposition (1.9). �

Remark (2.19). An easy special case of the proposition is the following situation.
Let X/S be an algebraic space and let X =

⋃
i Ui be an open covering. Given

non-proper families αi on Ui/S which coincide on the intersections, there is then a
unique family α on U/S such that αUi/S = αi.

Corollary (2.20). In the definition of non-proper relative zero-cycles, it is enough
to only consider étale neighborhoods (U, T, p, g) of X/S, i.e., neighborhoods such
that g : T → S is étale. Furthermore, we can require that U and T are affine.

Proof. Follows immediately from Lemma (2.11) and Proposition (2.18). �

(2.21) Composition of relative zero-cycles — Let X/Y and Y/S be algebraic
spaces locally of finite type. Let α be a relative zero-cycle on Y/S and β a rel-
ative zero-cycle on f : X → Y . Then there is a natural relative zero-cycle α ∗β on
X/S with support Z = f−1Supp(α)∩Supp(β) such that when f : X → Y is étale,
we have that f∗α = α ∗ Nf . Also ∗ will be associative. We define α ∗ β as follows.

It is by Proposition (2.18) enough to define α∗β on an étale cover ofX. Replacing
X and Y with étale covers, we can thus assume that X and Y are separated. Let
Z = Supp(α ∗ β) and let (U, T, p, g) be a neighborhood of X/S adapted to Z. Let
p′ : U → XT be the induced morphism. Let W = fT (p′(p−1(Z))) ⊆ Supp(α)×S T
which is an open subset as Supp(β) → Y is universally open. Choose an open subset
V ⊆ YT restricting to W and let U ′ = p′−1(f−1

T (V )) ⊆ U . Then p−1(Z) ⊆ U ′ and
it is enough to define (α ∗ β)U ′/T .

As p−1(Z) → W is surjective, we have that W → T is proper and thus αV/T

is defined. As p−1(Z) → W is proper αU ′/Image(αV/T ) is also defined. We let
(α ∗ β)U ′/T = αV/T ∗ αU ′/Image(αV/T ).



FAMILIES OF CYCLES 19

Proposition (2.22). Let X/S be an algebraic space locally of finite type and let α
be a relative zero-cycle on X/S. Let f : S′ → S be an étale morphism and denote
by g : X ′ → X the pull-back of f along X → S. Then g∗α = Nf ∗ f∗α.

Proof. This follows from the construction of ∗ for non-proper relative cycles and
the proper case, Proposition (1.7). �

The compatibility condition (b) of Definition (2.3) implies the following compat-
ibility.

Corollary (2.23). Let X → S be an algebraic space, locally of finite type which
factors through an étale morphism h : S′ → S. If α is a relative zero-cycle on X/S
then NS′/S ∗ αX/S′ = αX/S. In particular, there is a one-to-one correspondence
between relative zero-cycles on X/S′ and relative zero-cycles on X/S.

Proof. Let p : X ′ → X be the pull-back of h : S′ → S. The factorization
X → S′ → S induces an open section s : X → X ′ of p. Then

αX/S = s∗p∗(αX/S) = s∗(NS′/S ∗ h∗(αX/S))

= s∗(NS′/S ∗ αX′/S′) = NS′/S ∗ s∗αX′/S′ = NS′/S ∗ αX/S′

by Proposition (2.22). �

Proposition (2.24). Let α be a relative zero-cycle on X/S with support Z ↪→
X. There is then a unique locally closed subspace Image(α) ↪→ X such that for
any neighborhood (U ′, S′, p, g) we have that Image(αU ′/S′) ⊆ p−1(Image(α)) with
equality if g is smooth. Moreover, Image(α)red = Z.

Proof. Let z ∈ Z and let (U ′, S′, p, g) be a smooth neighborhood such that z is
in the image of p(U ′). Such a neighborhood exists by Lemma (2.11). Let S′′ =
S′ ×S S

′, X ′ = X ×S S
′, X ′′ = X ×S S

′′ and let π1, π2 be the two projections
X ′′ = X ′×X X ′ → X ′. Let U ′′i = π∗i U

′, i = 1, 2 and U ′′ = U ′×X U ′ = U ′′1 ×X′′ U ′′2 .
The image W ′ = Image(αU ′/S′) is an infinitesimal neighborhood of Z ′ = p−1(Z).

As the image of a proper family of zero-cycles commutes with smooth base change
it follows that

W ′′
i = π−1

i (W ′) = Image(αU ′′i /S′′).

Let W ′′ = Image(αU ′′/S′′). By the compatibility of α we have that αU ′′/S′′ =
π∗i αU ′′i /S′′ . Furthermore, as U ′′/U ′′i is étale we have by Lemma (1.8) that the
inverse image of W ′′

i along U ′′ → U ′′i is W ′′.
Thus W ′ ↪→ U ′ is a closed subscheme with support Z ′ such that the inverse

images of W ′ along the projections of U ′′ → U ′ ×X U ′ coincide. By fppf descent it
thus follows that there is a closed subscheme W ↪→ p(U ′) such that W ′ = p−1(W ).
In particular, we have that Wred = Z ∩ p(U ′). As it is obvious that W does not
depend on the choice of smooth neighborhood, there is a unique locally closed
subspace Image(α) such that p−1(Image(α)) = W . �
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If α is a relative zero-cycle on X/S with image Z, then α is the push-forward of
a relative zero-cycle on Z/S along the immersion Z ↪→ X. Also note that if α is
étale with image Z, then Z/S is étale and α = NZ/S .

(2.25) Trace — Let α be a relative zero-cycle on X/S. Let Z be the image of
α. For every neighborhood (U, T, p, g) we obtain a trace map h∗Op−1(Z) → OT , cf.
Definition (1.14). Here h denotes the morphism p−1(Z) → U → T .

(2.26) Fundamental class — Let S be locally noetherian and let X/S be separated
and locally of finite type. Let α be a relative zero-cycle on X/S and Z ↪→ X its
image. Let (U, T, p, g) be an étale neighborhood. By duality, cf. Appendix A, the
trace map corresponds to a class in

H0(p−1(Z), h!OT ) = H0(p−1(Z), p∗D•Z/S)

By the compatibility condition on α, it follows that that this class is the restriction
of a unique class in H0(Z,D•Z/S), the relative fundamental class of α, cf. [AEZ78,
Prop. II.2].

Let j : Z ↪→ X be the inclusion and assume that j is closed. By duality, we
then also have that

H0(Z,D•Z/S) = H0(Z, j!D•X/S) = Ext0X(j∗OZ ,D•X/S).

This gives a unique class in H0
|Z|(X,D

•
X/S). In particular, if X/S is smooth of

relative dimension n, then this is a class in Hn
|Z|(X,Ω

n
X/S).

When S is of characteristic zero, or the characteristic of k(z) exceeds the geo-
metric multiplicity of α at z for every z ∈ Z, then the relative fundamental class,
in either H0(Z,D•Z/S) or H0

|Z|(X,D
•
X/S), uniquely determines α.

(2.27) Fundamental class II — Let S be locally noetherian, let q : B → S be
smooth of relative dimension r and let f : X → B be separated and locally of
finite type. Let α be a relative zero-cycle on X/B. Then we have the relative
fundamental class cα ∈ H0(Z,D•Z/B). This gives an element

Ext0Z
(
h∗(Ωr

B/S), h!OB ⊗OZ
h∗(Ωr

B/S)
)

= Ext0Z
(
h∗(Ωr

B/S), h!(Ωr
B/S)

)
= Ext−r

Z

(
h∗(Ωr

B/S), h!D•B/S

)
= Ext−r

Z

(
h∗(Ωr

B/S),D•Z/S

)
.

If α is induced from a relative cycle of dimension r on X/S, then this class is
induced by a class in Ext−r

Z

(
Ωr

Z/S ,D
•
Z/S

)
as will be shown in Theorem (16.1).

(2.28) Interpretation with multiplicative laws — If h : U = Spec(B) → T =
Spec(A) is a morphism of affine schemes, then a morphism αU/T : T → Γ?(U/T )
corresponds to a multiplicative A-lawB → A [II, Thm. 2.3]. Such a law corresponds
to multiplicative maps h′∗OU×T T ′ → OT ′ for every smooth T -scheme T ′ (it is
enough to take T ′ = An

T ) such that for any morphism ϕ : T ′1 → T ′2 the following
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diagram commutes

(h′1)∗OU×T T ′1
//

��

(h′1)∗ϕ
∗OU×T T ′2

��

OT ′1
// ϕ∗OT ′2

.

In the definition of a relative zero-cycle, we can thus instead of giving a proper zero-
cycle αU/T on every neighborhood (U, T ) instead give a multiplicative map h∗OU →
OT with support on p−1(Z) such that these maps satisfy a similar compatibility
condition.

3. Condition (T)

In this section we give a topological condition on a morphism closely related to
conditions such as equidimensional and universally open.

Definition (3.1). Let f : X → S be a morphism. An irreducible component
Xi ↪→ X is dominating over S if f(Xi) is an irreducible component of S. We let
Xdom/S ⊆ X be the union of the irreducible components which are dominating
over S. If X = Xdom/S then we say that f is componentwise dominating.

Remark (3.2). Let X → S be a morphism. If S has a finite number of irreducible
components with generic points ξ1, ξ2, . . . , ξn, then Xdom/S is the underlying set
of the schematic closure of X ×S

∐
i Spec(OS,ξi) in X. If X → S is open, then

Xdom/S = X.

Definition (3.3). Let f : X → S be a morphism locally of finite type. We let
XdimS=r (resp. XdimS>r) be the subset of X consisting of points x ∈ X with
dimx

(
Xf(x)

)
= r (resp. > r). By Chevalley’s theorem [EGAIV, Thm. 13.1.3], this

is a locally closed (resp. closed) subset.
Let f : X → S be locally of finite type. Recall [EGAIV, 13.3, ErrIV, 35] that f

(i) is equidimensional if f is componentwise dominating, and locally on S
there exists an integer r such that the fibers of f are equidimensional of
dimension r,

(ii) is equidimensional at x ∈ X if f |U is equidimensional for some open neigh-
borhood U of x,

(iii) is locally equidimensional if f is equidimensional at every point x ∈ X.

Proposition (3.4). Let f : X → S be a morphism locally of finite type. The
following conditions are equivalent:

(i) For every integer r, the subscheme XdimS=r is equidimensional of dimen-
sion r over S.

(ii) For every integer r, every irreducible component of XdimS=r dominates an
irreducible component of S.
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(iii) Every point x ∈ X is contained in an irreducible component W of X which
is equidimensional over S at x.

(iv) Every point x ∈ X which is generic in its fiber Xf(x) is contained in an
irreducible component W of X which is equidimensional over S at x.

Moreover, these conditions are satisfied if f is universally open or if the irreducible
components of X are equidimensional over S, e.g., if f is locally equidimensional.

Proof. By definition, (i) is equivalent to (ii) and trivially (iii) implies (iv). It is
obvious that (i) implies (iii). If (iv) is satisfied, then any irreducible component
of XdimS=r is contained in, and hence equal to, an irreducible component which is
equidimensional of dimension r. This shows that (iv) implies (i).

If f is universally open, then (iv) is satisfied by [EGAIV, Prop. 14.3.13]. If f is
locally equidimensional, then (i) is satisfied. �

Definition (3.5). We say that X/S satisfies condition (T) when the equivalent
conditions of Proposition (3.4) are satisfied. We say that X/S satisfies (T) univer-
sally if X ×S S

′/S′ satisfies (T) for any base change S′ → S.
Note that if X/S satisfies (T), then X ′/S′ satisfies (T) for any flat base change

S′ → S, cf. [EGAIV, Prop. 13.3.8].

Proposition (3.6). Let f : X → S be locally of finite type. The following are
equivalent.

(i) f satisfies (T) universally.
(ii) f ′ : X ′ → S′ is componentwise dominating for every morphism S′ → S.
(iii) f ′ : X ′ → S′ is componentwise dominating for every morphism S′ → S

where S′ is the spectrum of a valuation ring.

If S is locally noetherian, then these statements are equivalent with:

(iv) f ′ : X ′ → S′ is componentwise dominating for every morphism S′ → S
where S′ is the spectrum of a discrete valuation ring.

(v) f is universally open.

Proof. Is is clear that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). If S′ is the spectrum of a
valuation ring, then f ′ satisfies condition (T) if and only if f ′ is componentwise
dominating by [EGAIV, Lem. 14.3.10]. An easy argument then shows that (iii)
implies (i). That (iv) implies (v) is [EGAIV, Cor. 14.3.7] and finally (v) implies (i)
by [EGAIV, Prop. 14.3.13]. �

4. Families of higher-dimensional cycles

In this section, we define higher-dimensional relative cycles. The support of
a cycle will be universally open, Proposition (4.7), but a priori, the support only
satisfies the weaker condition (T) of the previous section. We do not require that the
support of a relative cycle is equidimensional, nor that its irreducible components
are equidimensional. In the sequel, we will often use the following two results.
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(i) If B → S is a smooth morphism, then for every b ∈ B, there is an
open neighborhood U 3 b and an étale morphism U → Ar

S [EGAIV,
Cor. 17.11.4].

(ii) If Z → B is open (or equidimensional), B → S is smooth and the compo-
sition is flat and locally of finite presentation with Cohen-Macaulay fibers
(e.g. smooth), then Z → B is flat [EGAIV, Thm. 11.3.10, Prop. 15.4.2].

As in previous sections, we work with algebraic spaces X/S locally of finite type.
It may appear more natural to assume that X/S is locally of finite presentation,
and indeed this is required in several statements. However, even if X/S is of finite
presentation, the support, image, representing scheme, etc., of a relative cycle is a
subscheme of X which need not be of finite presentation. Of course, it is expected
that any relative cycle α on X/S is of finite presentation, i.e., that there exists
X0/S0 of finite presentation and a relative cycle α0 on X0/S0 which pull-backs to α.
If this is the case, then locally there are infinitesimal neighborhoods of the support,
image, representing scheme, etc., which are finitely presented. Unfortunately, these
neighborhoods are not canonical and do not glue.

Definition (4.1). Let X be an algebraic space, locally of finite type over S and
let Z ↪→ X be a locally closed subset. A projection of X/S adapted to Z (resp.
quasi-adapted to Z) is a commutative diagram

U
p

//

ϕ
��

X

��

B

��

T
g

// S

◦

such that U → X ×S T is étale, p−1(Z) → B is finite (resp. quasi-finite) and
B → T is smooth. We will denote such a projection with (U,B, T, p, g, ϕ). If g is
étale (resp. smooth) then we say that (U,B, T, p, g, ϕ) is an étale (resp. smooth)
projection.

A morphism of projections (U1, B1, T1, p1, g1, ϕ1) → (U2, B2, T2, p2, g2, ϕ2) is a
triple of morphisms p : U1 → U2, q : B1 → B2 and g : T1 → T2 such that

U1 p
//

ϕ1

��

p1

''
U2 p2

//

ϕ2

��

X

��

B1
q

//

��

B2

��

T1
g

//

g1

77T2
g2 // S
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is commutative.

Definition (4.2). Let X/S be an algebraic space, locally of finite type over S. A
relative cycle α on X/S consists of the following:

(i) A locally closed retro-compact subset Z of X — the support of α.
(ii) For every projection (U,B, T, p, g) of X/S adapted to Z, a proper family

of zero-cycles αU/B/T : B → Γ?(U/B) with support p−1(Z)dom/B .

satisfying the following conditions:

(a) The support Z satisfies (T).
(b) For every morphism (p, q, g) : (U1, B1, T1, p1, g1) → (U2, B2, T2, p2, g2) of

projections, we have that

NB1/g∗B2 ∗ αU1/B1/T1 = g∗αU2/B2/T2 ∗ NU1/g∗U2 .

A relative cycle is locally equidimensional (resp. equidimensional of dimension r)
if Z/S is locally equidimensional (resp. equidimensional of relative dimension r).

Let us show that condition (b) makes sense. First note that U1 → g∗U2 is
étale and thus the right-hand side is defined. To define the left-hand side, we
can replace the Bi’s with the respective images of the universally open morphisms
p−1

i (Z)dom/Bi
→ Bi. Then as U1 → g∗U2 is universally open, it follows that B1 →

B2 is universally open. Thus B1 → g∗B2 is flat and of finite presentation [EGAIV,
Thm. 11.3.10, Prop. 15.4.2]. As B1 → g∗B2 is quasi-finite NB1/g∗B2 is thus defined.

Remark (4.3). As B → T is smooth, there is an open and closed partition of B
such that B → T is equidimensional. It is thus clear that in Definition (4.2), we can
assume that B → T is equidimensional and that Supp(αU/B/T ) → B is surjective.
If the support Z is equidimensional of dimension r, then it is enough to consider
projections with B/T smooth of dimension r.

Remark (4.4). It is easily seen if α is a relative cycle onX/S, then for any projection
(U,B, T, p, g) quasi-adapted to Supp(α) there is a unique non-proper relative zero-
cycle αU/B/T with support p−1(Z)dom/B . The compatibility condition (b) is then
also satisfied for morphisms of quasi-adapted projections.

Proposition (4.5). Let α be a relative cycle on X/S with support Z. Let Zr =
ZdimS=r. If (U,B, T, p, g) is a projection such that B/T has relative dimension
r, then Supp(αU/B/T ) ⊆ p−1(Zr) with equality if p−1(Zr) → T is componentwise
dominating. The collection of αU/B/T for which B/T has dimension r, determines
a unique equidimensional relative cycle αr with support Zr.

Proof. Let (U,B, T, p, g) be a neighborhood adapted to Z. As p−1(Z) is finite over
B, it follows that every point of p−1(Z) has dimension at most r relative to T and
that Supp(αU/B/T ) = p−1(Z)dom/B ⊆ p−1(Z)dimT =r = p−1(Zr).
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Let (U,B, T, p, g) be a neighborhood adapted to Zr and let p′ : U ′ → X be
the restriction of p to the open subset X \ ZdimS>r. Then (U ′, B, T, p′, g) is a
neighborhood adapted to Z and αU ′/B/T determines (αr)U/B/T uniquely. �

Lemma (4.6) (Existence of étale projections). Let f : X → S be an algebraic
space, locally of finite type, and α a relative cycle on X/S with support Z. Then
for any point z ∈ Z there is an étale projection (U,B, S, p, g) adapted to Z and
u ∈ p−1(z) such that u ∈ p−1(Z)|dom/B.

Proof. Replacing X with an étale cover, we can assume that X is a scheme. Let
r = dimz

(
Xf(z)

)
. There is an open neighborhood U ⊆ X of z and a morphism

U ∩Zr → Ar
S which is equidimensional of dimension zero [EGAIV, Prop. 13.3.1 b].

After shrinking U , we can assume that we have a morphism U → Ar
S such that

(U ∩ Z)dom/Ar
S

= (U ∩ Zr) in a neighborhood of z. The result then follows from
Lemma (2.11). �

The following proposition shows that the support of a relative cycle behaves sim-
ilarly as the support of a flat and finitely presented sheaf. One difference though
is that the irreducible components of the support of a flat sheaf always are equidi-
mensional [EGAIV, Prop. 12.1.1.5].

Proposition (4.7). Let X/S be locally of finite type. The support of a relative cycle
α on X/S is universally open. In particular, an equidimensional relative cycle is
universally equidimensional and equality always holds in Proposition (4.5).

Proof. Let α be a relative cycle. It is enough to show that the support Zr of
αr is universally open over S for every r. This follows from Lemma (4.6) and
Proposition (2.13). �

Remark (4.8). The support of a single irreducible component of α need not be
universally open. For example, if S consists of two secant lines and X = S, then
there is a relative zero-cycle on X/S with support X but the inclusion of one of the
lines is not open. This is also illustrated in the following example.

Example (4.9) ([EGAIV, Rem. 14.4.10 (ii)]). Let S be a regular quasi-projective
surface and choose a closed point s ∈ S. Let Z1 be the blow-up of S in s and let
Z2 = P1

S . Then (Z1)s
∼= (Z2)s

∼= P1
s. We let Z = Z1 qP1

s
Z2 be the gluing of Z1 and

Z2 along the common fiber. This is a scheme [Fer03, Thm. 5.4] with irreducible
components Z1 and Z2.

Note that Z1 → S does not satisfy (T) but that Z → S satisfies (T). It follows
from Chevalley’s theorem [EGAIV, Thm. 14.4.1] that Z → S is universally open
but that Z1 → S is not universally open. Later on, in Theorem (10.1), we will
see that Z/S determines a unique relative cycle on Z/S with underlying cycle
[Z] = [Z1]+ [Z2]. Thus, this an example of a relative cycle for which the irreducible
components are not equidimensional. This is a phenomenon which does not occur
in flat families.
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Proposition (4.10) (Étale descent). Let X/S be locally of finite type and let p :
U → X be an étale morphism. Let π1 and π2 be the projections of U ×X U onto
the first and second factors. Let β be a relative cycle on U/S such that π∗1β = π∗2β.
Then there is a unique relative cycle α on X/S with support contained in p(U) such
that β = p∗α.

Proof. Let W ⊆ U be the support of β. Then π−1
1 (W ) = π−1

2 (W ) and by étale
descent, we obtain a locally closed retro-compact subset Z ⊆ p(U). If (V,B, T ) is
a projection adapted to Z/S, then (U ×X V,B, T ) is a projection quasi-adapted
to W/S. The relative zero-cycle αU×XV/B/T then descends uniquely to a relative
zero-cycle αV/B/T by Proposition (2.18). �

Proposition (4.11). Let α be a relative cycle on X/S. Let (U,B, T, p, g) be a
projection such that B → T factors through an étale morphism h : T ′ → T . Then
(U,B, T ′, p, g ◦ h) is a projection and αU/B/T ′ = αU/B/T .

Proof. As T ′ → T is étale, U → X ×S T is étale and B → T is smooth, it follows
that U → X ×S T

′ is étale and that B → T ′ is smooth. Thus (U,B, T ′, p, g ◦h) is a
projection. We also have a natural map of projections (idU , idB , h) : (U/B/T ′) →
(U/B/T ). The compatibility condition for this map is that

NB/B×T T ′ ∗ αU/B/T ′ = π∗2αU/B/T ∗ NU/U×T T ′

where the maps are given by the diagram

U � � //

��

U ×T T
′ //

��

U

��

B � � //

=

##HH
HH

HH
HH

HH
B ×T T

′

π1

��

π2 //

�

B

��

T ′
h // T

But as B → B ×T T
′ is an open immersion, it is obvious that this is equivalent to

αU/B/T ′ = αU/B/T . �

Corollary (4.12). There is a one-to-one correspondence between relative zero-
cycles as of Definition (2.3), and relative cycles of dimension zero, as of Defi-
nition (4.2). In this correspondence the support remains the same and αU/B/T =
αU/B.

Proof. As αU/B/T = αU/B/B by Proposition (4.11), this correspondence is well-
defined. Under the hypothesis that αU/B/T = αU/B/B , it is then enough to check
the compatibility condition in the second definition for morphisms between projec-
tions of the form (U1, B1, B1) → (U2, B2, B2). This compatibility condition coin-
cides with the compatibility condition between neighborhoods (U1, B1) → (U2, B2)
in the first definition. �
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Definition (4.13). We let Cycl(X/S) be the set of relative cycles on X/S. We
let Cyclequi(X/S) (resp. Cyclr(X/S), resp. Cyclprop(X/S), resp. Cyclcl(X/S))
be the subset consisting of relative cycles which are equidimensional (resp. are
equidimensional of dimension r, resp. have proper support, resp. have closed
support). We let Chowr(X/S) and Chow(X/S) be the functors from S-schemes to
sets given by

Chowr(X/S)(T ) = Cyclprop
r (X ×S T/T )

Chow(X/S)(T ) = Cyclprop
equi (X ×S T/T )

with the natural pull-back.
As before it follows that Cycl(X/S), Chow(X/S), Chowr(X/S), etc., are fppf-

sheaves as Γ?(U/B) is representable.

Definition (4.14). Let X/S be locally of finite type. We say that a relative cycle
α on X/S is a relative Weil divisor if for every s ∈ S and z ∈ Supp(α)s we have
that codimz(Supp(α)s, Xs) = 1.

(4.15) Addition of cycles — Let α and β be relative cycles on X/S with supports
Zα and Zβ . If Zα and Zβ are closed in Zα ∪ Zβ , e.g., if Zα and Zβ are closed in
X, then there is a relative cycle α + β on X/S with support Zα ∪ Zβ defined by
(α+ β)U/B/T = αU/B/T + βU/B/T for any projection adapted to Zα ∪Zβ , cf. (2.7).
This makes Cyclcl(X/S) a commutative monoid.

5. Smooth projections

In this section, we show that in the definition of a relative cycle, given in the
previous section, it is enough to consider smooth projections. That is, relative zero-
cycles on every smooth projection satisfying the compatibility condition, determine
a unique relative cycle. We then discuss variants of the definition of a relative cycle
that are more well-behaved.

Lemma (5.1). Let S0 ↪→ S be a closed immersion. Let X0 → S0 be smooth (resp.
étale) and x0 ∈ X0. Then there is an open neighborhood U0 ⊆ X0 of x0 and a
smooth (resp. étale) scheme U → S such that U0 = U ×S S0.

Proof. Replacing X0 with an open neighborhood of x0, we can assume that there
is an étale morphism X0 → An

S0
. This lifts to an étale morphism X → An

S such
that X0 = X ×S S0 [SGA1, Exp. I, Prop. 8.1]. �

Lemma (5.2). Let S0 ↪→ S be a closed immersion. Let X/S be a scheme and
let Y/S be smooth. Let X0 = X ×S S0, let x0 ∈ X0 and let f0 : X0 → Y be a
morphism. Then there exists an open neighborhood U0 ⊆ X0, an étale morphism
U → X such that U0 = U ×X X0, and a map f : U → Y which restricts to (f0)|U0 .

Proof. Replacing X and Y with open neighborhoods, we can assume that Y/S
factors through an étale map Y → An

S . As f0 lifts toX → An
S , we can replace S with

An
S and assume that Y/S is étale. Let V = X×S Y and V0 = V ×X X0 = X0×S Y .
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Then V0 → X0 has an open section s. Any open subset U ⊆ V restricting to s(X0)
gives a map as in the lemma. �

Proposition (5.3). In the definition of relative cycles, Definition (4.2), it is enough
to consider projections (U,B, T ) such that T = An

S for some n. That is, given Z as
in the definition and relative cycles αU/B/T on projections (U,B, T ) with T = An

S

for some n satisfying the compatibility condition, these data extends uniquely to a
relative cycle.

Proof. It is clear that in the definition of relative cycles, we can assume that U , B
and T are affine. We can also assume that S and X are affine. Let (U,B, T ) be a
projection. Then T is the inverse limit of finitely presented affine S-schemes Tλ. As
U/X×ST , andB/T are of finite presentation, it follows that the projection descends
to a projection (Uλ, Bλ, Tλ) for sufficiently large λ. Similarly, every morphism
of neighborhoods (U1, B1, T ) → (U2, B2, T ) descends to a morphism of finitely
presented neighborhoods. In the definition of relative cycles, we can thus assume
that all projections are finitely presented.

Let (U,B, T ) be a projection with T a finitely presented affine S-scheme. There
is then a closed immersion T ↪→ T1 = An

S . Lemmas (5.1) and (5.2) shows that,
locally on U and B, there exists an étale morphism U1 → X1 ×S T1, a smooth
morphism B1 → T1 and a morphism U1 → B1, lifting U → X ×S T , B → T and
U → B respectively.

To show that αU/B/T is uniquely defined by smooth projections, we can assume
that B = An

T . Let (U1, B1, T1) and (U2, B2, T2) be two smooth liftings, i.e., Ti =
Ani

S , Bi = Ar
Ti

and (Ui, Bi, Ti) ×Ti T = (U,B, T ). Then T → T2 (resp. B → B2)
factors non-canonically through T → T1 (resp. B → B1). Replacing U1 with an
étale cover, we can also arrange so that U → U2 factors through U → U1. Thus, if
the smooth projections are compatible, then αU/B/T is uniquely defined by them.

Finally, let us show that the compatibility condition for smooth projections imply
the compatibility condition for arbitrary projections. As the αU/B/T ’s are compat-
ible with base change by assumption, it is enough to check the compatibility for
(U,B1, T ) → (U,B2, T ) and (U1, B, T ) → (U2, B, T ). By Lemmas (5.1) and (5.2),
these morphisms lift to morphisms of projections over An

S . �

Corollary (5.4). Let Z ↪→ X be a locally closed subset, universally open over
S, and assume that we are given relative zero-cycles αU/B/S for every projection
(U,B, S) adapted to Z. Then there is at most one relative cycle inducing these
relative zero-cycles.

Proof. By Proposition (5.3) a relative cycle α is given by its smooth projections. By
Corollary (B.3), a relative cycle α is determined by its étale projections. Finally if
(U,B, T ) is an étale projection, then αU/B/T = αU/B/S by Proposition (4.11). �
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A relative cycle on X/S is expected to behave as if it is induced by an object
living on X. Thus, the following condition is reasonable.

(*)
For any smooth projection (U,B, T ) the relative zero-cycle
αU/B/T does not depend on T .

We will show that this is satisfied in many situations, cf. Proposition (9.17). I do
not know if this condition always holds for a relative cycle but this seems unlikely.
If not, then this condition should probably be imposed on relative cycles to get a
well-behaved functor, cf. Section 16.

Moreover, it is also reasonable to require that for any pair of smooth morphisms
p : U → X and B → S and a morphism U → B such that U → B is quasi-finite
over p−1(Z), there is a relative zero-cycle αU/B on U/B. Indeed, if smooth pull-
back of relative cycles exists, then such relative zero-cycles αU/B exist. This is the
case if S is reduced, cf. Section 14. I do not know if this follows in general from
condition (∗).

Given a relative cycle α on X/S, it is also fair to require that there should be
an infinitesimal neighborhood Z of Supp(α) such that α is the push-forward of a
relative cycle on Z/S. If α is a relative zero-cycle, then there is the canonical choice
Z = Image(α). The following proposition gives sufficient and necessary conditions
for the existence of an infinitesimal neighborhood Z as above.

Proposition (5.5). Let α be a relative cycle on X/S with support Z0 ⊆ X. Let
Z0 ↪→ Z be an infinitesimal neighborhood. Then α is the push-forward of a relative
cycle on Z if and only if

(i) For any smooth projection (U,B, T, p) adapted to Z0, the image of αU/B/T

is contained in p−1(Z).
(ii) For any smooth projection (U,B, T, p) adapted to Z0, the relative cycle

αU/B/T only depends upon U |p−1(Z) → B and p|Z .

Proof. The two conditions are clearly necessary. To show that they are sufficient
it is enough to show that given a smooth projection (U,B, T, p) of Z/S adapted to
Z0, there is a smooth projection (U ′, B, T, p′) of X/S adapted to Z0 which restricts
to the first projection over Z, and similarly for morphisms of projections. This
follows from Lemmas (5.1) and (5.2). �

6. Uniqueness and extension of relative cycles

Proposition (6.1). Let S be an irreducible normal scheme with generic point ξ
and X/S locally of finite type. Let Z ↪→ X be a subscheme such that Z/S is
equidimensional of dimension zero, i.e., locally quasi-finite and such that Zdom/S =
Z. Then any relative cycle on Xξ/Spec(k(ξ)) with support Zξ extends uniquely to
a relative cycle on X/S.

Proof. If g : T → S is étale then T is normal. As it is enough to consider étale
neighborhoods (U, T, p, g) in the definition of a relative non-proper cycle, we can
thus assume that Z/S is finite. Let αξ be a relative cycle on Xξ/Spec(k(ξ)) and
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let Wξ be its image, which is an infinitesimal neighborhood of Zξ. Let W ↪→ X be
the closure of Wξ. Then as Γd(W/S) → S is finite [I, Prop. 4.3.1] and S is normal,
it follows that the morphism αξ : Spec(k(ξ)) → Γd(W/S) extends to a section of
Γd(W/S) → S. �

Corollary (6.2). Let S be an irreducible normal scheme with generic point ξ and
X/S locally of finite type. Let Z ↪→ X be a subscheme satisfying (T). Then any
relative cycle on Xξ/Spec(ξ) with support Zξ extends uniquely to a relative cycle
on X/S.

Proof. Follows from Proposition (6.1) as it is enough to consider smooth projec-
tions. �

Chevalley’s criterion for universally open morphisms [EGAIV, Thm. 14.4.1] easily
follows. Note that the proof given in loc. cit. only is valid if X/S is locally of finite
presentation [EGAIV, ErrIV 37].

Corollary (6.3) (Chevalley’s theorem). Let S be a geometrically unibranch scheme
(e.g. a normal scheme) with a finite number of components and let X → S be
locally of finite type satisfying (T), i.e., such that every point x ∈ X is contained
in an irreducible component which is equidimensional over S at x. Then X → S is
universally open.

Proof. Let S̃ → S be the normalization. As this is a universal homeomorphism, we
can assume that S is normal. We will now construct a canonical relative cycle α on
X/S with support X. The underlying cycle, cf. Section 8, of α is going to be [X].
Let (U,B, T ) be any smooth projection. Then B is normal and U/B is generically
flat. We let αU/B/T be the unique extension of NUξ/Bξ

given by Proposition (6.1).
The corollary then follows from Proposition (4.7). �

Note that the condition that S has a finite number of components is essential. In
fact, there are non-noetherian normal schemes such that the irreducible components
are not open, e.g., the absolutely flat scheme associated to the affine line. The
inclusion of such a component is a counter-example.

We have the following simple analog of the flatification by Raynaud and Gru-
son [RG71]:

Proposition (6.4). Let S be a scheme, X/S locally of finite type and let U ⊆ S
be an open retro-compact subset. Let Z ↪→ X be a subscheme such that Z/S is
universally open. Let αU be a relative cycle on X|U/U with support Z|U . Let
S′ → S be the normalization of S in U , i.e., the spectrum of the integral closure of
OS in the direct image of OU . Then αU extends to a relative cycle on X ′/S′.

Proof. As the integral closure commutes with smooth morphisms, we can assume
that Z/S is zero-dimensional. Then reason as in the proof of Proposition (6.1). �
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Proposition (6.5). Let S be a locally noetherian scheme, X/S locally of finite type
and let U ⊆ S be an open subscheme. Let Z ↪→ X be a subscheme such that Z/S
satisfies (T). Let αU be a relative cycle on X|U/U with support Z|U .

(i) If U contains all points of depth zero, then there is at most one relative
cycle on X/S extending αU .

(ii) If U contains all points of depth at most one, then there is a unique relative
cycle on X/S extending αU .

Proof. If B → S is flat and U ⊆ S contains all points of depth zero (resp. at most
one) then so does B ×S U ⊆ B. As it is enough to consider smooth projections,
we can thus assume that Z/S is finite. Then αU is a relative proper zero-cycle
and we let W ↪→ X be its image. If U contains all points of depth zero, then the
morphism U → Γd(W/S) has at most one extension to S. If U contains all points
of depth one, then as Γd(W/S) → S is finite and in particular affine, it follows that
the section U → Γd(W/S) extends to S. Indeed, if j : U ↪→ S is the inclusion,
then j∗OU = OS . �

We can make the extension property slightly more precise.

Corollary (6.6). Let S be a locally noetherian scheme, let f : X → S be locally
of finite type and let U ⊆ X be an open subscheme. Let Z ↪→ X be a subscheme
such that Z/S satisfies (T). Let αU be a relative cycle on U/S with support Z|U .

(i) If U contains all points z ∈ Z such that depth f(z) + codimz(Zf(z)) = 0,
then there is at most one relative cycle on X/S with support Z extending
αU .

(ii) If U contains all points z ∈ Z such that depth f(z) + codimz(Zf(z)) ≤ 1,
then there is a unique relative cycle on X/S with support Z extending αU .

Proof. This follows from Proposition (6.5) and the observation that if h : B → S
is smooth, then the depth of a point b ∈ B is the sum of the depth of h(b) and the
codimension of b in its fiber h−1(h(b)). �

7. Flat families

In this section, we will define a relative cycleNF/S onX/S for any quasi-coherent
OX -module F which is flat over S. If (U,B, T, p) is a projection, then p∗F is not flat
over B, but only of finite Tor-dimension, cf. Lemma (7.12). If for every point s ∈ S
of depth zero, Fs has no embedded components in codimension one, then p∗F/B
is flat at every point of depth one and the existence of (NF/S)U/B/T follows from
Proposition (6.5). In general, however, we need to associate a relative zero-cycle
to a coherent sheaf of finite Tor-dimension. Similar constructions can be found
in [GIT, Ch. 5, §3], [Fog69, §2] and [KM76]. To avoid complicated notions such
as pseudo-coherence, we only use the notion of finite Tor-dimension for coherent
modules over noetherian schemes.
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Definition (7.1) ([SGA6, Exp. I, Def. 5.2]). Let (X,A) be a locally ringed space.
An A-module F on X has finite Tor-dimension if Fx is an Ax-module of finite Tor-
dimension for every x ∈ X, i.e., if Fx admits a finite resolution of flat Ax-modules.
The Tor-dimension of F at x, denoted Tor-dimx(F), is the length n of a minimal
flat resolution of Ax-modules

0 → Pn → Pn−1 → · · · → P0 → Fx → 0.

Note that F is flat at x if and only if the Tor-dimension of F at x is zero.

Definition (7.2) ([SGA6, Exp. III, Def. 3.1]). Let f : X → S be a morphism
of algebraic spaces and let F be an OX -module. The module F has finite Tor-
dimension over S if F has finite Tor-dimension as a f−1OS-module.

Remark (7.3). If f : X → S is affine and F is a quasi-coherent OX -module, then
F is of finite Tor-dimension over S if and only if f∗F is of finite Tor-dimension.

(7.4) Auslander-Buchsbaum formula — Let X be a locally noetherian scheme and
let F be a coherent OX -module of finite Tor-dimension. Then Tor-dimx(F) +
depthx(F) = depthx [AB57, Thm. 3.7]. In particular, F is flat, and hence free,
over points of depth zero. If F is (Sk), then F is flat over points of depth at most k.

(7.5) Norms and traces — Let A be a ring, B an A-algebra and M a B-module
which is locally free of rank d as an A-module. Then the norm map of M , which
defines NM , is given by

B // EndA(M) det // EndA(∧dM) ∼= A

where the first homomorphism is the multiplication, and the second map takes an
endomorphism ϕ ∈ EndA(M) onto the endomorphism ∧dϕ given by

x1 ∧ · · · ∧ xd 7→ ϕ(x1) ∧ · · · ∧ ϕ(xd).

We also have a trace homomorphism given by a similar composition where the
second map is the homomorphism which takes ϕ onto the endomorphism

x1 ∧ · · · ∧ xn 7→ ϕ(x1) ∧ x2 ∧ · · · ∧ xn + x1 ∧ ϕ(x2) ∧ · · · ∧ xn+

· · ·+ x1 ∧ x2 ∧ · · · ∧ ϕ(xn).

Now assume that M is not locally free but of finite Tor-dimension. Let 0 →
Pn → Pn−1 → · · · → P0 → M → 0 be a locally free resolution. If ϕ ∈ EndA(M)
then, as the Pi’s are projective, there is a (non-unique) lifting of the endomorphism
ϕ to an endomorphism ϕ• of the complex P•. The trace of ϕ on M , can then be
defined as the alternating sum

∑
i(−1)i trPi(ϕi). If M is locally free, the resolution

splits locally and it is clear that this definition of the trace of M coincides with
the previous definition. It thus follows that the trace of an arbitrary M of finite
Tor-dimension is independent of the resolution and the choice of lifting ϕ•. In fact,
M is free over every point in Spec(A) of depth zero.
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Näıvely, we would define the norm of a module of finite Tor-dimension similarly,
i.e.,

∏
i NPi

(ϕi)(−1)i

, but this does not make sense unless NPi(ϕi) is invertible for
every odd i. The following easy lemma, similar to Gauss’s Lemma, solves this.

Lemma (7.6). Let A ↪→ A′ be a ring extension. Let p, q ∈ A[t] and r ∈ A′[t] be
monic polynomials. If rp = q in A′[t] then r ∈ A[t].

Lemma (7.7). Let A be a noetherian ring and let

0 → Pn → Pn−1 → · · · → P1 → P0 →M → 0

be an exact sequence of A-modules such that the Pi’s are free of finite ranks. Let
ϕ ∈ EndA(M). Then there is a unique element, det(ϕ) ∈ A, coinciding with the
usual determinant of ϕ at any point p ∈ Spec(A) such that Mp is free.

Proof. First note that the uniqueness of det(ϕ) is clear as Mp is free over any
point p of depth zero. Let ϕi ∈ EndA(Pi), be liftings of the endomorphism ϕ. Let
ϕ′ ∈ EndA[t]M [t] and ϕ′i ∈ EndA[t] Pi[t] be defined by

ϕ′ = idM ⊗ t+ ϕ⊗ idA[t]

ϕ′i = idPi ⊗ t+ ϕi ⊗ idA[t]

where t also denotes multiplication by t. Then det(ϕ′i) — the characteristic poly-
nomial of ϕi — is a monic polynomial for all i. It is enough to show the existence
of det(ϕ′).

Let Tot(A) be the total ring of fractions of A, i.e., the localization in the set of all
regular elements. Recall that Tot(A) is a semi-local ring such that every maximal
ideal has depth zero. It follows that M ⊗A Tot(A) is locally free of rank d, and
hence free [Bou61, Ch. II, §2.3, Prop. 5]. Thus, there exists a regular element f ∈ A
such that Mf is free.

Let p =
∏

2-i det(ϕ′i) ∈ A[t], q =
∏

2|i det(ϕ′i) ∈ A[t] and r = det(ϕ′f ) ∈ Af [t].
Then rp = q in Af [t] and hence p ∈ A[t] by the lemma. The element p(0) ∈ A is
the determinant of ϕ. �

Proposition (7.8). Let S be a locally noetherian space and let f : X → S be a
morphism of algebraic spaces, locally of finite type. Let F be a coherent OX-module
such that Supp(F) is finite over S and F has finite Tor-dimension over S. Then
there is a unique proper relative zero-cycle NF/S : S → Γ?(X/S) on X/S such
that for any point s ∈ S of depth zero, the induced cycle

(
NF/S

)
s

is given by the
norm N(f∗F)s

of the free OS,s-module (f∗F)s. In particular, the degree of NF/S

at s ∈ S is the rank of F over any generization of s and the support of NF/S is
the closure of the support of Supp(F) over the generic points. This construction
commutes with cohomologically flat base change, i.e., base change S′ → S such that
TorS

i (OS′ ,F) = 0 for all i > 0.

Proof. Let I = AnnOX
(F) be the annihilator of F and let j : Z ↪→ X be the

closed subscheme defined by I. Then Z → S is finite and F = j∗j
∗F . Replacing
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X with Z, we can thus assume that f is finite. The norm

f∗OX
// EndOS

(f∗F) det // OS

defines a multiplicative law and hence a proper relative zero-cycle NF/S as in the
proposition. �

Corollary (7.9). Let S be locally noetherian and let f : X → S be a morphism lo-
cally of finite type. Let F be a coherent OX-module of finite type such that Supp(F)
is quasi-finite over S and such that F has finite Tor-dimension over S. Then there
is a unique relative zero-cycle NF on X/S with support Supp(F)dom/S such that for
any point s ∈ S of depth zero, the induced cycle (NF )s is given by the norm N(f∗F)s

of the free OS,s-module (f∗F)s. This construction commutes with cohomologically
flat base change.

Proof. Proposition (7.8) gives a unique proper relative zero-cycle αU/T on any étale
neighborhood (U, T, p, g) which thus determines the relative zero-cycleNF by Corol-
lary (2.20). �

Remark (7.10). Let F , G and H be coherent OX -modules of finite Tor-dimension
over S and with quasi-finite support over S. The following properties of the norm
of a sheaf of finite Tor-dimension are easily verified.

(i) If L is an invertible OX -sheaf, then NF⊗OX
L = NF .

(ii) If 0 → F → G → H → 0 is an exact sequence, then NG = NF +NH. In
particular, we have that NF⊕G = NF +NG .

Remark (7.11). Norms of perfect complexes — There is an analog of Proposi-
tion (7.8) for certain perfect complexes. Note that not every perfect complex
determines a relative cycle. Indeed, a necessary condition is that it is possible
to define a relative cycle on depth zero points, i.e., that the alternating determi-
nant is defined on depth zero points. This is also a sufficient condition by the proof
of Lemma (7.7).

If F• is a perfect complex on S such that the norm of F• is defined and⊕
i Hi(S,F•) is of finite Tor-dimension and zero in odd degree, then we have that

the norms of F• and
⊕

i Hi(S,F•) coincide. In particular, if F• is a perfect complex
on S such that at depth zero points, Hi(S,F•) is zero for odd i and locally free for
even i, then the norm of F• is defined.

Lemma (7.12) ([GIT, Lem. 5.8]). Let h : B → S be smooth and let ϕ : X → B
be locally of finite type. If F is a quasi-coherent OX-module which has finite Tor-
dimension over S, then F has finite Tor-dimension over B.

Proof. Consider the product X ×S B. The first projection π1 has a section s =
(idX , ϕ) : X → X ×S B which is a regular immersion. Thus, OX has finite Tor-
dimension over X ×S B. The pull-back π∗1F has finite Tor-dimension over B and
thus F = s∗π∗1F has finite Tor-dimension over B. �
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Proposition (7.13). Let S be locally noetherian and let f : X → S be a smooth
curve. Let F be a coherent OX-module of finite Tor-dimension over S and such
that Z = Supp(F) is quasi-finite over S. Then NF/S = NDiv(F)/S where Div(F)
is the relative Cartier-divisor on X defined by Mumford [GIT, KM76].

Proof. Note that F has finite Tor-dimension as an OX -module by Lemma (7.12)
and thus Div(F) is defined. The support of both NF/S and NDiv(F)/S is Zdom/S .
By Proposition (6.5) it is enough to show the equality on depth zero points. Taking
an étale neighborhood, we can thus assume that Z/S is finite and that f∗F is a
free OS-module. The equality now follows from [Del73, Prop. 6.3.11.1]. �

Theorem (7.14). Let f : X → S be a morphism locally of finite presentation
and let F be a finitely presented OX-module which is flat over S. Then there
is a canonical relative cycle, denoted NF on X/S with support Supp(F). This
construction commutes with arbitrary base change. If Z ↪→ X is a subscheme such
that Z is flat and of finite presentation over S, we let NZ = NOZ

.

Proof. The question is local so we can assume that X and S are affine. By a limit
argument, we can then assume that S is noetherian. First note that the support Z
of F is universally open [EGAIV, 2.4.6]. Let (U,B, T ) be a projection adapted to
Z. Then F is of finite Tor-dimension over B and we let (NF )U/B/T = NF/B . This
defines a relative cycle. Note that any base change B×S S

′ → B is cohomologically
flat with respect to F over B as F is flat over S. �

Note that NF is defined for sheaves F with non-proper and non-equidimensional
support. We do not even require that X/S is separated. For representability, we
need families of cycles to be equidimensional. However, even if F is a sheaf whose
support is not equidimensional, then we have the equidimensional relative cycle
(NF )r. If F has proper support with fibers of dimension at most r, then (NF )r

is a proper relative cycle of dimension r. In particular, we obtain the following
morphism:

Corollary (7.15). There is a canonical morphism from the functor Quotr(G/X/S)
to the functor Chowr(X/S) given by F 7→ (NF )r. Similarly, there is a canoni-
cal morphism from the functor Hilbr(X/S) to the functor Chowr(X/S) given by
Z 7→ (NZ)r. Here Hilbr(X/S) is the Hilbert functor parameterizing subschemes
Z which are proper and of dimension r but not necessary equidimensional, and
Chowr(X/S) is the Chow functor parameterizing equidimensional proper relative
cycles of dimension r.

Later on, we will see that there also are morphisms from the Hilbert stack and
from the Kontsevich space of stable maps to the Chow functor. In particular,
we obtain a morphism from the stack of Branch varieties [AK06] and from the
space of Cohen-Macaulay curves [Høn04] to the Chow functor. This is discussed in
Section 13.
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8. The underlying cycle

In this section we will assign to any relative cycle α on X/S, an ordinary cycle,
denoted cycl(α). The support of cycl(α) coincides with the support of α. As the
support is universally open, the only thing that we need to define is the multiplicities
of the components over a generic point of S.

Proposition-Definition (8.1). Let S = Spec(k) be the spectrum of a field and
α be a relative cycle on X/S. Let x ∈ X be a point which is generic in Supp(α).
Then there is a unique number multx(α), the multiplicity of α at x, such that for
any projection (U,B, T, p, g) and u ∈ U above x ∈ X and t ∈ T such that k(t)/k(s)
is separable, we have that multu(αU/B/T ) = multx(α), cf. Definition (1.10). The
geometric multiplicity at x is the product of the multiplicity at x and the radical
multiplicity of k(x)/k(s) [EGAIV, Def. 4.7.4]. The geometric multiplicity is constant
under arbitrary base change.

Proof. We first observe that if (U,B, T ) is a projection, T ′ → T is an arbitrary
morphism and u′ ∈ U ′ = U×T T

′ a point above u, then the geometric multiplicities
of αU/B/T at u and αU ′/B′/T ′ at u′ coincide. This is Proposition (1.13) (ii). Thus,
multu′(αU ′/B′/T ′) = multu(αU/B/T )r where r is the length of Spec(k(u)⊗k(t) k(t′))
at u′ [EGAIV, Prop. 4.7.3]. It follows that the multiplicites at u′ and u, multiplied
with the radical multiplicity of k(u′)/k(t′) and k(u)/k(t) respectively, coincide.

It is thus enough to show that if k is an algebraically closed field, (U1, B1,Spec(k))
and (U2, B2,Spec(k)) are two projections and u1 ∈ U2 and u2 ∈ U2 are two points
above x, then the multiplicites of αU1/B1/k at u1 and αU2/B2/k at u2 coincide. As
the multiplicity is constant under pull-back by étale morphisms U ′ → Ui by Propo-
sition (1.13) (iv), we can replace the Ui’s with U1 ×X U2 and the ui’s with (u1, u2)
and hence assume that X = U1 = U2 and x = u. Taking étale projections B1 → Ar

and B2 → Ar, which is possible locally around the images of x and using Proposi-
tion (1.13) (vi) we can assume that B1 = B2 = Ar. Taking an open neighborhood
of x, we can assume that Z = Supp(α) is smooth and irreducible.

Let ϕ1 and ϕ2 be the two projections X → Ar. It is enough to show that the
multiplicity of αϕ1 at x coincides with the multiplicity of αϕ2 for a particular choice
of ϕ2. Taking a generic projection, we can thus assume that ϕ2|Z is étale. The
morphisms ϕ1 and ϕ2 can be put into a single projection

ϕ : X ×k T → Ar ×k T

over T = A1
k

such that ϕ1 = ϕ|t=0 and ϕ2 = ϕ|t=1. Let U ⊆ X × T be the open
subset where ϕ|Z×T is quasi-finite. This subset contains X × {0} and X × {1}.
As Z × T → T is Cohen-Macaulay it follows that ϕ|Z×T is flat over U . Moreover,
as ϕ2|Z is étale it follows that ϕ|Z×T is generically étale. It then readily follows
from [II, Prop. 8.6] that the (non-proper) relative zero-cycle αϕ is of the form
m · NZ×T/Ar×T for some positive integer m. We thus have that αϕi = mNZ/ϕi

Ar

for i = 1, 2. It follows that multx αϕ1 = multx αϕ2 = m. �
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Definition (8.2). Let S be arbitrary and let α be a relative cycle on X/S with sup-
port Z. The underlying cycle of α is the effective cycle cycl(α) with Q-coefficients
defined by

cycl(α) =
∑

s∈Smax
x∈(Zs)max

multx(αs)
[
{x}

]
.

Here {x} denotes the closure of x in Supp(α) as a reduced subscheme.

Remark (8.3). It follows from Proposition-Definition (8.1) that if (U,B, T, p) is a
smooth projection, then p∗ cycl(α) = cycl(αU/B/T ).

The following definition generalizes [II, Def. 8.1].

Definition (8.4). Let K/k be a finitely generated field extension. The inseparable
degree, or radical multiplicity [EGAIV, Def. 4.7.4], is the maximum length of K⊗kk

′

where k′/k is an inseparable extension. The exponent of K/k is the smallest integer
e such that Kek/k is separable. The inseparable discrepancy is the quotient of the
inseparable degree and the exponent.

If K/k is a finitely generated field extension and k′ = k(x1, x2, . . . , xr) ⊆ K is
a transcendence basis, then the exponent of K/k′ is a multiple of the exponent
of K/k. Moreover, there is a transcendence basis such that the exponent of K/k′

equals the exponent of K/k, e.g., take k′ as a separating transcendence basis of
Kek/k.

Definition (8.5). Let S be a scheme and let X/S be locally of finite type. A cycle
Z on X with Q-coefficients is quasi-integral if the multiplicity of every irreducible
component Zi of Z becomes an integer after multiplying it with the inseparable
discrepancy of k(Zi)/k(Si). Here Si denotes the image of Zi in S.

Theorem (8.6). Let S = Spec(k) be the spectrum of a field. Then there is a
one-to-one correspondence between relative cycles on X/S and effective cycles on
X with quasi-integral coefficients. This correspondence is given by associating the
underlying cycle to a relative cycle.

Proof. It is clear from [II, Prop. 8.6] that every cycle comes from at most one
relative cycle. If α is a family on X/S then α has quasi-integral coefficients. In
fact, let Z be an irreducible component of Supp(α) and let eZ be the exponent of
K(Z)/k. Then K(Z)eZ/k is separable and there is a separating transcendence basis
t1, t2, . . . , tr. The homomorphism k[t1, t2, . . . , tr] → K(Z)eZ → K(Z) extends to a
morphism U → Ar

k for some open subset U ⊆ Z. The inseparable discrepancy of
K(Z)/k coincides with the inseparable discrepancy of K(Z)/K(t1, t2, . . . , tr) and
thus it follows from [II, Prop. 8.11] that the multiplicity of α at Z is quasi-integral.

Conversely, let us show that the quasi-integral cycle 1
eZ

[Z] is the underlying cycle
of a relative cycle. We can assume that X = Z. Let (U,B,An

k , p, g) be a smooth
projection adapted to X. We want to construct a canonical relative zero-cycle
αU/B/An

k
on U/B with underlying cycle 1

eZ
[U ]. As B is normal (even regular), it is
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enough to construct this canonical relative zero-cycle over a generic point of B by
Theorem (6.1). We can thus assume that U and B are irreducible. The inseparable
discrepancy of k(U)/k(B) is a multiple of the inseparable discrepancy of k(X)/k
and the existence of the relative cycle follows from [II, Prop. 8.11]. �

Corollary (8.7). Let S be a reduced scheme. Then there is an injective map

Cycl(X/S) → {quasi-integral effective cycles on X}

taking a relative cycle α on X/S to its underlying cycle.

Corollary (8.8). Let S be a reduced scheme and let α be a relative cycle on X/S
with support Z. Then α satisfies condition (∗) of Section 5 and α is the push-
forward of a relative cycle on Z/S.

Proof. If (U,B, T, p) is a smooth projection, then p∗ cycl(α) = cycl(αU/B/T ). This
shows condition (∗), i.e., that αU/B/T does not depend on the morphisms B → T
and T → S. The last statement follows from Proposition (5.5). �

Lemma (8.9). Let S = Spec(k) be the spectrum of a field and let Z be an effective
cycle with Q-coefficients on X/S. Then Z is quasi-integral if and only if k is
the intersection of all inseparable field extensions k′/k such that Zk′ has integral
coefficients.

Proposition (8.10). Let X/S be a quasi-projective scheme with a given embedding
X ↪→ P(E) where E is a locally free OS-sheaf. Then there is functorial bijection
between k-points of Chow(X/S) and k-points of ChowVar(X ↪→ P(E)).

Proof. This follows from Lemma (8.9) and [Kol96, Thm. 4.5]. �

Definition (8.11). Let α be a relative cycle on f : X → S. We say that α is
multiplicity-free at a point x ∈ X if the geometric multiplicity of αf(x) is one at the
generic points of the irreducible components of Supp(α)f(x) containing x. We say
that α is normal (resp. smooth) at x if α is multiplicity-free and equidimensional
at x and Supp(αf(x)) =

(
Supp(α)f(x)

)
red

is geometrically normal (resp. smooth)
at x over k(f(x)).

The requirement that α is equidimensional at x is explained by the following
example:

Example (8.12). Let S = Spec(k[t]) and X = Spec(k[t, x, y]/x(y, x − t)). Then
X is the union of a plane and a line meeting in the origin. The natural morphism
X → S is smooth outside the origin. The special fiber X0 is an affine line with an
embedded point. The corresponding relative cycle NX/S has underlying cycle [X]
and special fiber [X0] = [(X0)red] which is smooth.

Note that the fact that α is multiplicity-free at x ∈ X, does not imply that
Supp(α) is reduced at x in its fiber. However, if f : Z → S is flat and α = NZ/S ,
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then α is multiplicity-free (resp. normal, resp. smooth) at z ∈ Z if and only if Z is
geometrically (R0) (resp. geometrically normal, resp. smooth) at z in Zf(z).

9. Representable relative cycles

We have showed that if S is reduced, then any relative cycle on X/S is repre-
sented by an ordinary cycle on X/S, cf. Corollary (8.7). In this section, we will
show that smooth relative cycles correspond to subschemes which are smooth over
S and that if X/S is smooth then relative Weil divisors on X/S correspond to
relative Cartier divisors on X/S. Unfortunately, these result are so far only proven
when either S is reduced or S is of characteristic zero. I conjecture that these
results hold in general.

It then follows (assuming that S is reduced or that S has characteristic zero),
that multiplicity-free relative cycles and relative Weil divisors on (R1)-schemes are
represented by unique subschemes which are flat in relative codimension zero. When
α is a relative cycle on X/S such that either S is reduced, α is multiplicity-free or α
is a relative Weil divisor on a (R1)-scheme (cases (A1)–(A3) in the introduction), α
has several nice properties. In the following sections, these three cases are discussed
in more detail.

Proposition (9.1). Let f : X → S be an algebraic space, locally of finite type and
let α be a relative cycle on X/S with support Z. The set of points z ∈ Z such that
α is multiplicity-free at z is open.

Proof. Let z ∈ Z be a point at which α is multiplicity-free and let s = f(z). After
replacing X with an open neighborhood of z, we can assume that every irreducible
component of Zs contains z. It is enough to show that αr is multiplicity-free in a
neighborhood of z for every r. Thus we can assume that Z is equidimensional of
dimension r but it is now possible that z /∈ Z.

After restricting X and S further, we can assume that there is an embedding
X ↪→ An

S . There is then a projection πs : An
s → Ar

s such that πs|Zs is quasi-finite
in a neighborhood of z and generically étale. After restricting S, we can assume
that this projection extends to a projection π : An

S → Ar
S . Choose étale morphisms

B → Ar
S and U → An

S such that (U,B, S, p, g) is a projection adapted to Z with
z ∈ p(U). Then αU/B/S is non-degenerate at the generic points of Bs. The non-
degeneracy locus Bnondeg of the proper relative zero-cycle αU/B/S is open. As the
fibers of B → S are irreducible, it follows that α is multiplicity-free over the image
of Bnondeg in S. This is an open subset as B → S is open. �

Proposition (9.2). Let f : X → S be an algebraic space, locally of finite type
and let α be a relative cycle on X/S with support Z0. Let x ∈ X be a smooth
point of α and let s = f(x). Then there is a smooth projection (U,B, S, p), and a
point u ∈ U over x such that p−1((Z0)s)red → Bs is étale at x. If (U,B, S, p) is
any such projection with u ∈ U above x then, in a neighborhood of U , there exists
a closed subscheme Z ↪→ U which is smooth over S and étale over B such that
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αU/B/S = NZ/B. In particular, the set of points x ∈ X such that α is smooth at x
is open.

Proof. Let x ∈ Supp(α) be a point at which α is smooth and let s be its image
in S. Let Z0 = Supp(α) ↪→ X. Then ((Z0)s)red → Spec(k(s)) is smooth at x. Thus
in a neighborhood of x there is a factorization ((Z0)s)red → Ar

k(s) → Spec(k(s))
such that ((Z0)s)red → Ar

k(s) is étale at x. As Z0 → S is equidimensional at x,
this factorization lifts to a neighborhood U ⊆ X of x such that U ∩ Z0 → Ar

S is
quasi-finite and dominant. We thus have a quasi-adapted projection and after étale
localization, we obtain an adapted projection.

Now let (U,B, S, p) be any smooth projection such that p−1((Z0)s)red is étale
over Bs. Then passing to the fiber at s we obtain a family αUs/Bs/s which is étale,
i.e., non-degenerate, at u. Thus, so is αU/B/S in a neighborhood of u and the
proposition follows with Z = Image(αU/B/S). �

Corollary (9.3). Let f : X → S be an algebraic space, locally of finite type and
let α be a relative cycle on X/S. Then Supp(α) → Sred is smooth at smooth points
of α.

Proof. We can assume that S is reduced. Then for any smooth projection (U,B, S)
we have that B is reduced. It follows that Image(αU/B/S) = Supp(αU/B/S) and
hence Supp(α) → Sred is smooth by Proposition (9.2). �

Proposition (9.2) states that locally at x ∈ X there is a subscheme Z ↪→ X such
that Z → S is smooth and NZ is equal to α under a certain projection. However,
it does not follow trivially that this subscheme is independent on the choice of
projection, except when S is reduced. At the moment, I can only show that Z is
independent on the choice of projection in characteristic zero. We begin with two
lemmas valid in arbitrary characteristic.

Lemma (9.4). Let S be a scheme, let X → S be flat and locally of finite presen-
tation and let G → S be proper and smooth with geometrically connected fibers.
Let S0 = Sred, G0 = G ×S S0 and X0 = X ×S S0. Let Z0 ↪→ X0 be a subscheme
which is flat and locally of finite presentation over S0. Let W0 = Z0 ×S0 G0 and
let W ↪→ X ×S G be a subscheme such that W ×S S0 = W0. Further, assume that
W → G is flat and finitely presented over a schematically dense open retro-compact
subset U ⊆W which contains all points of relative codimension one over Z0. Then
there exists a unique subscheme Z ↪→ X, flat and locally of finite presentation over
S, such that Z0 = Z ×S S0 and W = Z ×S G.

Note that a priori W → G is only flat over U but that a posteriori it follows
that W → G is flat. The lemma thus essentially states that all deformations of W0

come from deformations of Z0.
Proof. The question is local on X and S and we can thus assume that X and S
are affine and that W and Z0 are closed subschemes. By a limit argument, we
can also assume that S is noetherian. By effective descent of closed subschemes
for the smooth morphism X ×S G → X, the existence of a Z such that W =



FAMILIES OF CYCLES 41

Z ×S G is equivalent to the condition that π−1
1 W = π−1

2 W where π1 and π2 are
the two projections X ×S G×S G→ X ×S G. This can be checked on infinitesimal
neighborhoods of depth zero points onW , and hence on infinitesimal neighborhoods
of depth zero points on S. We can thus assume that S is the spectrum of a local
artinian ring A with maximal ideal m and residue field k.

We will show the lemma by induction on the integer n such that mn = 0. If n = 1,
then there is nothing to prove. If n > 1, let A1 = A/mn−1 and let J = ker(A→ A1)
so that Jm = 0. Then J is a k-module. Let S1 = Spec(A1) and let X1 = X ×S S1,
G1 = G ×S S1 and W1 = W ×S S1. Then by induction there is a subscheme
Z1 ↪→ X1, flat and finitely presented over S1, such that W1 = Z1 ×S1 G1. Let Ii

be the ideal sheaves defining Zi ↪→ Xi, for i = 0, 1, and let p : U ×G G1 → Z1

be the composition of the open immersion j : U ×G G1 → W1 and the projection
π : W1 = Z1 ×S1 G1 → Z1.

By the deformation theory of Hilbert schemes, cf. [FGA, No. 221, p. 21] or [Kol96,
I.2], the obstruction to extend the flat family W1|U = p−1Z1 over S1 to a flat family
over S is an element

cJ(W1|U ) ∈ Ext1p−1X1

(
p∗I1,OW0|U ⊗k J

)
= Ext1X1

(
I1, p∗p

∗(OZ0)⊗k J
)
.

As such an extension exists, namely the deformation W |U → S, the obstruction
cJ(W1|U ) is zero. Moreover, W |U corresponds (non-canonically) to an element in

Homp−1X0

(
p∗I0,OW0|U ⊗k J

)
= HomX0

(
I0, p∗p

∗(OZ0)⊗k J
)
.

Now, as G → S is proper and smooth, we have that π is cohomologically flat in
dimension zero [EGAIII, Prop. 7.8.6] and as G → S has geometrically connected
fibers it thus follows that π∗OW0 = OZ0 . As the open immersion j contains all
points of depth one of W0, it follows that j∗j∗OW0 = OW0 and hence p∗p∗OZ0 =
OZ0 . It follows that the obstruction

cJ(Z1) ∈ Ext1X1

(
I1,OZ0 ⊗k J

)
is zero and that the deformation W → S of W1 → S1 is the pull-back of a defor-
mation Z → S of Z1 → S1. �

We the need the following construction of Angéniol and El Zein [AEZ78, §I].

(9.5) Grassmannians of projections — Let S be a scheme, let E = On
S be a free

sheaf of rank n and let X = An
S = SpecS(E∨). Let G = G(r, n) = Gr(E) be the

grassmannian parameterizing quotients E � F such that F is locally free of rank
r [EGAI, 9.7]. Let π : G → S be the structure morphism and let π∗E � F be
the universal quotient. We then let B = SpecG(F∨). The morphism B → G is a
vector bundle of rank r. The morphism An

G = SpecG(E∨) → SpecG(F∨) = B is the
universal projection.

Let Z ↪→ An
S be a closed subset, equidimensional of dimension r over S. Let

U ⊆ Z ×S G be the open subset over which Z ×S G ↪→ An
G → B is quasi-finite. We

say that Z ↪→ An
S has property (P′) if U ⊆ Z ×S G contains all points of relative

codimension at most one over Z.
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Lemma (9.6). Let S be an affine scheme, let X → S be a scheme with a closed
immersion X ↪→ An

S and let Z0 ↪→ X ×S Sred be a closed subscheme such that
Z0 → Sred is a finitely presented morphism. Then there exists, Zariski-locally on
X, a closed immersion X ↪→ An+m

S such that the projection onto the first n factors
is the original embedding of X in An

S and such that Z0 ↪→ An+m
S has property (P′).

Proof. By a limit argument, there exists a noetherian scheme Sα, an affine mor-
phism S → Sα and a morphism of finite type Zα → (Sα)red such that Z0 → Sred is
the pull-back of Zα → (Sα)red along Sred → (Sα)red. By [AEZ78, Lem. I.3], every
point z ∈ Zα admits an open neighborhood Vα and a closed immersion Vα ↪→ Am

Sα

satisfying (P′). If V = Z0×Zα Vα, then the corresponding immersion V ↪→ Am
S also

satisfies (P′). After replacing X with an open neighborhood of z, we can lift this
immersion to a morphism X → Am

S . We thus obtain an immersion X ↪→ An+m
S .

By loc. cit. the immersion Z0 ↪→ X ↪→ An+m
S satisfies (P′). �

Proposition (9.7). Let S be purely of characteristic zero and let X → S be lo-
cally of finite type. Let α be a smooth relative cycle on X/S. Let (X,B1, S) and
(X,B2, S) be two projections quasi-adapted to Supp(α). Assume that there exists
a locally closed subscheme Z ↪→ X, such that Z → B1 is étale and such that
αX/B1/S = NZ/B1 . Then αX/B2/S = NZ/B2 .

Proof. Let Z0 ↪→ X×S Sred be the support of α. This is smooth over Sred by Corol-
lary (9.3). The question is local on X and S and can be checked at neighborhoods
of the generic points of Z0. Taking étale projection Bi → Ar

S , we can assume that
Bi = Ar

S . Locally on X there is then a closed immersion X ↪→ An
S such that the

two projections (X,Ar
S , S) lifts to linear projections An

S → Ar
S . We then take a

closed immersion X ↪→ An+m
S as in Lemma (9.6). We thus have a grassmannian

G → S and a projection (X ×S G,B,G) which is quasi-adapted to Z0 over an open
subscheme U ⊆ X ×S G containing all points of relative codimension at most one
over X. Furthermore, the two projections X → Ar

S that we started with, appear
as two of the fibers of the grassmannian family.

As the family of one of these fibers is non-degenerate, it follows that αU/B/G is
generically non-degenerate. It follows that there exists a closed subscheme W ↪→
X×S G and an open subset V ⊆ U ⊆ X×S G such that W |V ⊆W is schematically
dense and W |V → B is étale. Furthermore, as S is of characteristic zero, it follows
that V contains all points lying over a generic point of Z0. Indeed, any quasi-finite
morphism between regular schemes is generically étale in characteristic zero.

Replacing X with an open neighborhood of any generic point of Z0 we can thus
assume that W |U is smooth over G. It follows from Lemma (9.4) that W = Z×S G
for a unique subscheme Z ↪→ X with support Z0. �

If S is noetherian and such that the residue field of every points of depth zero has
characteristic zero, then Proposition (9.7) is still true, as can be seen from the proof
of Lemma (9.4). I do not know if the proposition is false in positive characteristic.
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Theorem (9.8). Let S be a scheme purely of characteristic zero and let X/S be
locally of finite type. Let α be a smooth relative cycle on X/S. Then there is a
unique subscheme Z ↪→ X which is smooth over S such that α = NZ .

Proof. Let x ∈ Z and let (U,B, S, p, g, ϕ) be a projection with a lifting u ∈ U of
x as in Proposition (9.2) such that αU/B = NW for a subscheme W ↪→ U which
is smooth over S. We apply Proposition (9.7) with (U ×X U,B, S) and the two
morphisms ϕi : U ×X U → B given by the compositions of the projections and
the morphism ϕ : U → B. By étale descent, it then follows that there exists a
subscheme Z ↪→ X which is smooth over S such that W = Z ×X U .

Now let (U ′, B′, T ′, p′) be an arbitrary projection. We will show that αU ′/B′/T ′ =
Np′−1(Z)/B′ , and it suffices to show this equality étale-locally on U ′. This follows
from Proposition (9.7) applied on the two projections (U ′×X U,B′, T ′, p′ ◦ π1) and
(U ′ ×X U,B ×T T

′, T ′, p ◦ π2), �

Corollary (9.9). Let S be a scheme purely of characteristic zero and let X/S be
locally of finite type. Let α be a relative cycle on X/S which is multiplicity-free.
There is a unique subscheme Z ↪→ X which has support Supp(α) and a fiberwise
dense open subset U ⊆ Z, containing all associated points, such that U → S is
smooth and such that NU/S = α|U . Moreover α is uniquely determined by Z. If
S′ → S is an arbitrary morphism, then the unique subscheme corresponding to
α×S S

′ is the closure of U ×S S
′ in Z ×S S

′.

Proof. Let Z0 be the support of α. By Proposition (9.2), the subset U0 ⊆ Z0 of
points where α is smooth is open. As α is multiplicity-free, this subset contains
all points which are generic in their fibers, i.e., U0 ⊆ Z0 is fiberwise dense. Let
V ⊆ X be any open subset restricting to U0. It then follows from Theorem (9.8)
that α|V = NZV

for a unique subscheme ZV ↪→ V which is smooth over S. This
extends uniquely to a locally closed subscheme Z ↪→ X such that Z|V = ZV is
schematically dense in Z. �

Corollary (9.10). Let S be a scheme purely of characteristic zero and let X/S
be locally of finite presentation. The morphism Hilbred

r (X/S) → Chowred
r (X/S)

from the Hilbert functor parameterizing equidimensional and reduced subschemes of
dimension r to the Chow functor parameterizing equidimensional and multiplicity-
free families of cycles of dimension r is a monomorphism.

Remark (9.11). If X/S is quasi-projective, it is not difficult to show that the above
morphism is an immersion when restricted to a component Hilbred

P (X/S) where P is
a polynomial of degree r. This also follows from the representability of Hilbr(X/S)
and Chowr(X/S) for a projective scheme X/S as it then follows that Hilbr(X/S) →
Chowr(X/S) is proper.

Proposition (9.12). Let f : X → S be an algebraic space and let α be a relative
cycle on X/S. Let x ∈ X be a point such that α is a relative Weil divisor at x and f
is smooth at x. Then there is a projection (U,B, S, p, g) quasi-adapted to Supp(α),
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such that p−1(x) is non-empty and such that U → B is smooth. Furthermore, for
any such projection, we have that αU/B/S = NZ/B for a unique subscheme Z ↪→ U
flat over B.

Proof. The existence of the projection follows from an argument similar as in Propo-
sition (9.2). The existence of Z follows from (2.9) as U/B is a smooth curve. �

Corollary (9.13). Let f : X → S be smooth and let α be a relative Weil divisor
on X/S. Then Supp(α) → Sred is flat.

As before we would like to show that Z is independent upon the choice of smooth
projection but this is only accomplished in characteristic zero.

Proposition (9.14). Let S be a scheme purely of characteristic zero. Let X/S be
smooth and let α be a relative Weil divisor on X/S. Let (X,B1, S) and (X,B2, S)
be two projections quasi-adapted to Supp(α). Assume that X → B1 is smooth, such
that αX/B1/S = NW/B1 for a locally closed subscheme W ↪→ X, flat over B1. Then
αX/B2/S = NW/B2 .

Proof. Similar as Proposition (9.7) using (9.12). �

Theorem (9.15). Let S be a scheme purely of characteristic zero. Let X/S be
smooth and let α be a relative Weil divisor on X/S. Then there is a unique sub-
scheme Z ↪→ X which is flat with Cohen-Macaulay fibers over S such that α = NZ ,
i.e., Z is a relative Cartier divisor.

Proof. Follows from Proposition (9.14) exactly as Theorem (9.8) follows from Propo-
sition (9.7). �

Corollary (9.16). Let S be a scheme purely of characteristic zero. Let X → S be
locally of finite type and smooth at points of relative codimension at most one, e.g.,
X → S flat with (R1)-fibers. Let α be a relative Weil-divisor on X/S. Then there
is a unique subscheme Z ↪→ X which has support Supp(α) and a fiberwise dense
open subset U ⊆ Z, containing all associated points, such that U → S is a relative
Cartier divisor and such that NU/S = α|U . The relative Weil divisor α is uniquely
determined by Z. If S′ → S is an arbitrary morphism, then the unique subscheme
corresponding to α×S S

′ is the closure of U ×S S
′ in Z ×S S

′.

Proposition (9.17). Let X/S be locally of finite type and let α be a relative cycle
on X/S. Assume that one of the following conditions are satisfied:

(i) S is reduced.
(ii) α is multiplicity-free and S is of characteristic zero.
(iii) X/S is smooth in relative codimension one, α is a relative Weil divisor

and S is of characteristic zero.

Then there is a locally closed subscheme Z ↪→ X, such that |Z| = Supp(α) and such
that α is the push-forward of a relative cycle on Z/S. The relative cycle α satisfies
condition (∗) of Section 5.
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Proof. These assertions follow from Corollaries (8.7), (9.9) and (9.16). In fact, let
Z be the representing subscheme in the last two cases and the support of α in the
first case. Then for any smooth projection (U,B, T, p), the relative cycle αU/B/T is
determined by p−1(Z) (resp. p−1 cycl(α) in the first case) and hence do not depend
on T . This is condition (∗). Proposition (5.5) shows that α is the push-forward of
a cycle on Z/S. �

10. Families over reduced parameter schemes

Let X be locally of finite type over a reduced scheme S. We describe the subset
of effective cycles with Q-coefficients which corresponds to the set of relative cycles
on X/S, cf. Corollary (8.7). When S is semi-normal and of characteristic zero, we
obtain the descriptions of Kollár [Kol96] and Suslin-Voevodsky [SV00]. When S is
semi-normal and of positive characteristic, then the description is slightly different
as Kollár does not include cycles with quasi-integral coefficients. This is a minor
difference though, as Kollár has characterized the quasi-integral cycles. Suslin
and Voevodsky work either with integral coefficients or with arbitrary rational
coefficients. We also show that the fibers of a relative cycle can be computed via
Samuel multiplicities of its underlying cycle.

Theorem (10.1). Let S be normal with a finite number of irreducible components.
Then there is a one-to-one correspondence between relative cycles on X/S and
effective cycles on X with quasi-integral coefficients and universal open support.

Proof. This follows from Theorem (8.6) and Corollary (6.2). �

Corollary (10.2). Let S be normal with a finite number of irreducible components.
Then the commutative monoid Cyclclr (X/S) of r-dimensional cycles with closed
support is freely generated by cycles of the form (1/pδ)[Z] where Z is an irreducible
and reduced closed subscheme of X which is equidimensional of dimension r over
S, and δ is the inseparable discrepancy of k(Z)/k(S).

Definition (10.3). LetX/S be locally of finite type, let f : S′ → S be a morphism
and let Z =

∑
imi[Zi] be a cycle on X such that every irreducible component Zi

dominates an irreducible component of S. The pull-back of Z along f is the cycle
f∗Z = Z ×S S

′ =
∑

imi[f−1(Zi)dom/S′ ].
The pull-back of a relative cycle does not correspond to taking the pull-back

of the underlying cycle. This is because the underlying cycle need not be flat.
Also, the pull-back of a cycle is not functorial as we forget all non-dominating and
embedded components.

Proposition (10.4). Let S be reduced and let α be a relative cycle on X/S. As-
sume that cycl(α) = Z =

∑
imi[Zi] where the Zi’s are subschemes of X, flat and

finitely presented over S, but not necessarily reduced or irreducible, and the mi’s
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are rational numbers. Let S′ be reduced and let S′ → S be any morphism. Then

cycl(α×S S
′) = Z ×S S

′ =
∑

i

mi[Zi ×S S
′].

Proof. The question is local on X and S and thus we can assume that X and S are
quasi-compact. Let q be an integer clearing the denominators of the mi’s. As addi-
tion of cycles commutes with pull-back it is enough to show that cycl (qα)×S S

′ =∑
i qmi[Zi ×S S

′] and we can thus assume that the mi’s are integers. Then α =∑
imiNZi and it follows that α×S S

′ =
∑

imi(NZi ×S S
′) =

∑
imiNZi×SS′ . �

Corollary (10.5). Let S be a smooth curve, i.e., a noetherian regular scheme of
dimension one, or the spectrum of a valuation ring. Let α be a relative cycle on
X/S. Then for any point s ∈ S we have that cycl(αs) = cycl(α)s.

Proof. Follows from the previous proposition as any irreducible and reduced sub-
scheme Z of X dominating S is flat over S. In fact, S is a Prüfer scheme, i.e., every
finitely generated ideal of OS is locally free. �

Definition (10.6) ([SV00, 3.1.1]). Let S be a scheme, let k be a field and let
s : Spec(k) → S be a point. A fat point over s is a triple (s0, s1, V ) where V is a
valuation ring and s0 : Spec(k) → Spec(V ) and s1 : Spec(V ) → S are morphisms
such that

(i) s = s1 ◦ s0.
(ii) The image of s0 is the closed point of Spec(V ).
(iii) The image under s1 of the generic point of Spec(V ) is a generic point of

S.

Remark (10.7). For every point s ∈ S and generization ξ ∈ Smax, there is a field
extension k/k(s) and a fat point (s0, s1, V ) over s : Spec(k) → S such that the
image of the generic point by s1 is ξ [EGAII, Prop. 7.1.4]. If S is locally noetherian,
then there is a fat point with V a discrete valuation ring [EGAII, Prop. 7.1.7].

Proposition (10.8). Let S be reduced and let α be a relative cycle on X/S. Let
s : Spec(k) → S be a point of S and (s0, s1, V ) a fat point over s. Then

cycl(s∗α) = s∗0
(
s∗1 cycl(α)

)
.

Proof. As s1 is flat over the generic point, it is clear that cycl(s∗1α) = s∗1 cycl(α).
The result thus follows from Corollary (10.5). �

The pull-back s∗0s
∗
1 can be interpreted as taking the limit fiber over s along a

general curve through s.

Definition (10.9). Let S be reduced, letX/S be an algebraic space, locally of finite
type and let Z be a cycle on X. We say that Z satisfies the limit cycle condition if
for every point s : Spec(k) → S, the pull-back s∗0s

∗
1Z is independent on the choice

of fat point (s0, s1, V ) over s. When Z satisfies the limit cycle condition, then we
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let s[−1](Z) denote the pull-back s∗0s
∗
1Z for any choice of fat point over s, under

the assumption that there exists a fat point over s.

Proposition (10.10). Let S be reduced, let X/S be locally of finite type and let Z
be a cycle on X flat over S, i.e., Z =

∑
imi[Zi] where the Zi’s are flat over S.

Then Z satisfies the limit cycle condition and s[−1](Z) = Zs.

Proof. Trivial, as the pull-back of a flat cycle is functorial. �

Corollary (10.11). Let X/S be locally of finite type, and let Z be a cycle on X.
Let f : S′ → S be a proper morphism such that Z ′ = f∗Z is flat over S′. Then Z
satisfies the limit cycle condition if and only if for any point s : Spec(k) → S the
cycle Z ′s′ is independent on the choice of a lifting s′ : Spec(k) → S′ of s. If this is
the case, then s[−1]Z = Z ′s′ for any such lifting.

Proof. Follows easily from the valuative criterion for proper morphisms and the
previous proposition. �

If S is reduced and noetherian and X/S is of finite type, then there exists a
proper morphism S′ → S which flatifies Z. In fact, under these hypotheses there
is an open dense subset U ⊆ S such that Z is flat over U [EGAIV, Cor. 11.3.2]. If
Supp(Z) is proper over S, the existence of S′ → S then follows from the existence
of the Hilbert scheme Hilb(Supp(Z)/S). In the non-proper case, this is Raynaud
and Gruson’s flatification theorem [RG71].

Lemma (10.12). Let S be reduced, let X/S be locally of finite type and let Z be a
cycle on X satisfying the limit cycle condition and such that any component of Z
dominates a component of S. Then for any point s ∈ S, the support of s[−1]Z equals
the support of Supp(Z)s. Also, the support of Z satisfies condition (T) universally.

Proof. Let Z = Supp(Z). Let z ∈ Z be a point and choose a generization η ∈ Zmax.
Let s ∈ S and ξ ∈ Smax be the images of z and η. Choose a valuation ring
V and a morphism Spec(V ) → X such that the closed point v0 is mapped onto
z and the generic point v1 is mapped onto η. Let s1 : Spec(V ) → S be the
composition of Spec(V ) → X and X → S. Let k/k(v0) be an extension such that
k is algebraically closed and let s0 : Spec(k) → Spec(k(v0)) ↪→ Spec(V ) be the
corresponding morphism. Then X ×S Spec(V ) → Spec(V ) has a section mapping
v0 onto the k(v0)-point (z, v0). It follows that (z, v0) is in the support of s∗1Z and
hence that (z, s1 ◦ s0) is in the support of s∗0s

∗
1Z. For any ψ ∈ Autk(s)(k) we have

by assumption that s∗0s
∗
1Z = (s0 ◦ ψ)∗s∗1Z. Thus any closed point in (s1 ◦ s0)−1Z

above z is contained in the support of s∗0s
∗
1Z. It follows that s∗0s

∗
1Z contains the

whole fiber above z. Thus Supp(s[−1]Z) = |Zs|.
In particular, Supp(s∗1Z) = |s−1

1 Z| for any valuation ring V and morphism s1 :
Spec(V ) → S. It follows from Proposition (3.6) that Z/S satisfies (T) universally.

�
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We denote by kperf = kp−∞ the perfect closure of k, where p is the characteristic
of k.

Proposition (10.13). Let S be reduced, let X/S be locally of finite type and let Z be
a cycle on X satisfying the limit cycle condition and such that any component of Z
dominates a component of S. For any point s ∈ S there is a unique cycle s[−1]Z on
X ×S Spec(k(s)) such that for any field extension k/k(s) and fat point (s0, s1, V )
over Spec(k) → Spec(k(s)) ↪→ S, the cycle (s∗0s

∗
1Z) coincides with s[−1]Z ×k(s)

Spec(k).

Proof. From the previous lemma, it follows that the support of s[−1]Z should be
Supp(Z)s = Supp(Z)×S Spec(k(s)perf). Thus, it is enough to assign multiplicities
for the irreducible components of Supp(Z)s. If W ⊆ Supp(Z)s is an irreducible
component, then there is a finite separable and normal field extension k/k(s)perf

such that the irreducible components of Wk are geometrically irreducible [EGAIV,
Cor. 4.5.11]. It then follows from the limit cycle condition, and the action of
Gal(k/k(s)perf) on any algebraically closed extension of k, that the multiplicities
of the irreducible components of Wk are all equal. The multiplicity of s[−1]Z at W
is then this common value divided by the inseparable degree of k(W )/k(s). �

Recall that a morphism f : X → Y is integral if f is affine and f∗OX is
integral over OY . A morphism f : X → Y is a universal homeomorphism if
f ′ : X ′ → Y ′ is a homeomorphism for any base change Y ′ → Y . A morphism
of schemes f : X → Y is a universal homeomorphism if and only if f is integral,
universally injective and surjective [EGAIV, Cor. 18.12.11]. The same holds for a
locally separated morphism of algebraic spaces [Ryd08b, Cor. 4.22]. We recall the
following definitions, cf. [AB69, Tra70, Swa80, Man80, Yan83, Kol96, Ryd08b].

Definition (10.14). A morphism f : X → Y is weakly subintegral (resp. subin-
tegral) if it is a separated universal homeomorphism (resp. a separated universal
homeomorphism with trivial residue field extensions). A reduced algebraic space X
is weakly normal (resp. semi-normal) if every birational weakly subintegral (resp.
subintegral) morphism X ′ → X, from a reduced space X ′, is an isomorphism.

Let f : X → Y be a morphism. Consider the set of factorizations X → Y ′ → Y
of f such that X → Y ′ is schematically dominant and g : Y ′ → Y is subinte-
gral (resp. weakly subintegral). We have corresponding homomorphisms OY →
g∗OY ′ ↪→ f∗OX and as g is affine, the set of such factorizations is partially ordered
with Y ′1 ≥ Y ′2 if and only if there exists a morphism Y ′1 → Y ′2 or equivalently if
and only if (g2)∗OY ′2

⊆ (g1)∗OY ′1
. The subintegral closure, or semi-normalization,

Y X/sn → Y (resp. weak subintegral closure or weak normalization Y X/wn → Y ) of
f is the maximal element in this set.

If X is an algebraic space with a finite number of irreducible components, then
the semi-normalization X sn (resp. weak normalization X wn) is the subintegral
closure (resp. weak subintegral closure) of X with respect to the normalization
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X̃ → X. As (weakly) subintegral morphisms are integral, it follows that X sn is
semi-normal and that X wn is weakly normal.

The following proposition is a special form of “h-descent”. In general, if S′ → S
is universal subtrusive of finite presentation (e.g. faithfully flat or proper and
surjective) and X is a scheme, then the sequence

Hom(S,X) // Hom(S′, X) //
// Hom

(
(S′ ×S S

′)red, X
)

is exact if S is absolutely weakly normal [Voe96, Ryd08b].

Proposition (10.15). Let S be a reduced scheme, X/S an algebraic space, locally
of finite type and let p : S′ → S be an integral surjective morphism of reduced
schemes. Let S′′ = (S′ ×S S

′)red and denote the two projections by π1 and π2. Let
α′ be a relative cycle on X ′/S′ such that π∗1α

′ = π∗2α
′. Assume that either of the

following conditions is satisfied.

(i) S is weakly subintegrally closed in S′,
(ii) S is subintegrally closed in S′ and for any s ∈ S, there exists a relative

cycle αs on Xs/Spec(k(s)) such that αs ×s p
−1(s) = α′ ×S′ p

−1(s).

Then there exists a unique relative cycle α on X/S such that α′ = p∗α.

Proof. Let Z ′ = Supp(α′) ↪→ X ′ and let Z ↪→ X be the image of Z ′. As X ′ → X
is universally closed and Z ′ = p−1(Z), it follows that Z is a locally closed subset of
X. As the support commutes with arbitrary base change, we have that π−1

1 (Z ′) =
π−1

2 (Z ′) and hence that Z ′ = p−1(Z). The support of α, if it exists, is Z.
As the (weak) subintegral closure and the reduction commutes with smooth base

change [Ryd08b, App. B] we can take a smooth projection adapted to Z and assume
that Z → S is finite. Then α′ corresponds to a morphism α′ : S′ → Γ?(X/S) such
that α′ ◦ π1 = α′ ◦ π2. Moreover, as S′ is reduced, it follows that α′ factors
through Γ?(Z ′/S′) and hence through Γ?(Z/S). Note that Γ?(Z/S) is finite, and
in particular affine, over S.

Let W be the image of α′ : S′ → Γ?(Z/S) and consider the factorization
S′ → W → S. As α ◦ π1 = α′ ◦ π2 we obtain a bijective section α : S → W
of sets such that α′ = α ◦ p. As S′ → S is submersive, i.e., S is equipped with
the quotient topology, this section is continuous and it follows that W → S is
weakly subintegral, i.e., a universal homeomorphism. If α′s lifts to a morphism
αs : k(s) → W for every s ∈ S, then W → S is subintegral. Thus W = S under
either of the two conditions and α′ lifts to a morphism α : S = W ↪→ Γ?(Z/S). �

Theorem (10.16). Let S be weakly normal with a finite number of components.
Then there is a one-to-one correspondence between relative cycles α on X/S and
effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible component
of S.

(ii) Z satisfies the limit cycle condition.
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(iii) Z has quasi-integral coefficients, i.e., for any generic point s ∈ Smax, the
cycle Zs has quasi-integral coefficients.

Proof. If α is a relative cycle then cycl(α) satisfies the three conditions. Indeed,
the first follows by definition, the second follows from Proposition (10.8) and the
third from Theorem (8.6).

Conversely, assume that we are given a cycle Z satisfying the three conditions.
Let S′ → S be the normalization. Then by Theorem (10.1) we have that Z×S S

′ =
cycl(α′) for a unique relative cycle α′ on X ′/S′. Let S′′ = (S′×S S

′)red and denote
the two projections with π1 and π2. Then π∗1α

′ = π∗2α
′. In fact, for any point

s′′ ∈ S′′ we have that (π∗1α
′)s′′ = (π∗2α

′)s′′ as their underlying cycles coincide with
s′′[−1]Z. The theorem then follows by h-descent, cf. Proposition (10.15). �

Theorem (10.17). Let S be semi-normal with a finite number of components.
Then there is a one-to-one correspondence between relative cycles α on X/S and
effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible component
of S.

(ii) Z satisfies the limit cycle condition.
(iii) For every s ∈ S, the cycle s[−1]Z has quasi-integral coefficients.

In particular, a relative cycle such that its underlying cycle has integral coefficients,
is a well defined family of cycles satisfying the Chow-field condition in the termi-
nology of Kollár [Kol96, Defs. I.3.10, I.4.7].

Proof. Reason as in the proof of Theorem (10.16). �

Corollary (10.18). Let S be a semi-normal scheme over Spec(Q) with a finite
number of components. Then there is a one-to-one correspondence between relative
cycles α on X/S and effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible component
of S.

(ii) Z satisfies the limit cycle condition.
In particular, under this hypothesis on S, a relative cycle corresponds to a relative
effective cycle in the terminology of Suslin and Voevodsky [SV00, Def. 3.1.3].

Corollary (10.19) ([Bar75, Ch. II, §3]). Let S be semi-normal and let Z be a cycle
on X/S. Then there is a one-to-one correspondence between relative cycles α on
X/S and effective cycles Z on X such that:

(i) The support of Z satisfies (T).
(ii) There is a smooth projection (U,B, S, p) such that Supp(α) ⊆ p(U) and

such that p∗(Z) satisfies the limit cycle condition over B.
(iii) For every s ∈ S, the cycle s[−1]Z has quasi-integral coefficients.

Proof. This follows from the observation that the limit cycle condition on X/S is
equivalent to the limit cycle condition on U/B. �
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Finally, we define the pull-back of a relative cycle using intersection theory.

Definition (10.20) ([Ful98, Ex. 4.3.4]). Let W ↪→ Z be a closed subscheme with
irreducible components {Wi}. The multiplicity of Z along W at Wi, denoted
(eWZ)Wi , is the Samuel multiplicity of the primary ideal determined by W in
the local ring OZ,wi where wi is a generic point of Wi.

If [Z] =
∑

j mj [Zj ] then (eWZ)Wi =
∑

j mj(eW∩ZjZj)Wi [Ful98, Lem. 4.2]. This
motivates the following definition:

Definition (10.21). Let S be reduced with a finite number of irreducible compo-
nents and let X/S be locally of finite type. Let Z ↪→ X be an irreducible locally
closed subscheme and let s ∈ S. We denote by [Z]s the cycle∑

V

(eZsZ)V

esS
[V ]

where the sum is taken over the irreducible components of Zs. We extend this
definition linearly to cycles on X.

We have the following generalization of [SV00, Thm. 3.5.8]:

Theorem (10.22). Let S be a reduced scheme with a finite number of irreducible
components and let α be a relative cycle on f : X → S with underlying cycle
Z = cycl(α). Then for any point s ∈ S we have that cycl(αs) = [cycl(α)]s.

Proof. Let Z = Supp(α). Let V ↪→ Zs be an irreducible component with generic
point v. Let (U,B, S, p) be a smooth projection adapted to Z such that there exists
a point v′ ∈ U above v such that v′ is the only point of p−1(Z) in its fiber over B.
Let V ′ ↪→ p−1(Zs) be the corresponding irreducible component. Let W ↪→ Bs be
the image of V ′ — this is a connected component of Bs — and let w be its generic
point.

Then since p : U → X and B → S are smooth it follows from [SV00, Lem. 3.5.2]
that eWB = esS and (

ep−1(Zs)p
∗Z

)
|V ′ = (eZs

Z)V .

Thus, if we show that ep−1(Zs)(p∗Z)|V ′/eWB is the multiplicity of αU/B/S at v′,
the result follows. Replacing X, S and s with U , B and w, we can thus assume
that α is a proper relative zero-cycle such that Zs consists of a single (non-reduced)
point z.

Let Sj be an irreducible component of S and let Zj = Z|Sj =
∑

imi[Zi] be the
pull-back of the cycle to Sj . Then

e(Zi)s
Zi =

esf∗[Zi]
deg

(
k(z)/k(s)

) = esSj

deg
(
k(Zi)/k(Sj)

)
deg

(
k(z)/k(s)

) ,

cf. [SV00, Lem. 3.5.3]. Thus

eZsZj = esSj
deg(α)

deg
(
k(z)/k(s)

) = esSj multz(α)
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and the theorem follows. �

Corollary (10.23). Let S be a smooth scheme and let α be an equidimensional
relative cycle on X/S. Then the pull-back of α coincides with the pull-back of
cycl(α) given by intersection theory. That is, cycl(αs) = cycl(α)s where the right-
hand side is the cycle (not the rational equivalence class) defined in [Ful98, §10.1].

Proof. As S is smooth, esS = 1, and thus the corollary follows from the theorem
and [Ful98, 10.1.1]. �

11. Multiplicity-free relative cycles and relative Weil divisors

In Section 9 we saw that multiplicity-free relative cycles and relative Weil divi-
sors on (R1)-schemes are given by unique subschemes which are flat over a fiberwise
dense open subset. Conversely, we would like to characterize the subschemes, fiber-
wise generically flat, which correspond to such relative cycles. This is not accom-
plished in general. We only mention the simple cases in which such correspondences
are known.

Note that under these correspondences, the pull-back of a relative cycle corre-
sponds to the ordinary pull-back of the corresponding subscheme after removing
embedded components of relative codimension at least one.

Let X be a locally noetherian scheme. We recall that X is (Rn) if X is regular at
every point of codimenson n and (Sn) if every point of depth d ≤ n has codimension
d. In particular, X is (R0) if it is reduced at every generic point and (S1) if it has
no embedded components. A scheme is (S2) if it is (S1) and every point of depth
1 has codimension 1. Serre’s condition states that X is normal if and only if X is
(R1) and (S2).

Recall that a morphism f , locally of finite type, is reduced (resp. normal, resp.
(Rn), resp. (Sn)) if it is flat and its geometric fibers are reduced (resp. normal,
etc.) [EGAIV, Def. 6.8.1]. We say that a relative cycle α on X/S is (Rn), if αs is
multiplicity-free and Supp(αs) is geometrically (Rn) for every s ∈ S.

Definition (11.1). Let Z → S be locally of finite type. We say that Z → S is
n-flat (resp. n-smooth) if there exists a schematically dense open subset U ⊆ Z,
containing all points of relative codimension at most n, such that U → S is flat,
(S1) and locally of finite presentation (resp. smooth).

The condition that U is schematically dense is equivalent to demanding that all
(weakly) associated points of Z have relative codimension zero. Indeed, by flatness
and the (S1)-condition, any associated point in U has relative codimension zero.

Remark (11.2). If Z → S is 0-flat, then Z → S satisfies the condition (T) univer-
sally, i.e., Z ′ → S′ satisfies (T) after any base change S′ → S. In particular, if
Z → S is 0-flat and equidimensional, then Z → S is universally equidimensional. If
in addition Z → S is locally of finite presentation or S has a finite number of com-
ponents, then Z → S is universally open. This follows from [EGAIV, Cor. 1.10.14]
and Corollary (6.3).
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Conceptually, an n-flat morphism is a family of (S1)-schemes, i.e., schemes with-
out embedded components. Of course, the ordinary fibers are not necessarily (S1)-
schemes but this is taken care of by the following definition

Definition (11.3). If g : S′ → S is a morphism and Z → S is 0-flat, then we let
g∗emb(Z) be the closure of U ×S S

′ in Z ×S S
′ for some U ⊆ Z as in the definition

of 0-flat.
Note that since U ×S S′ ⊆ Z ×S S′ is dense, g∗emb(Z) has the same support

as the usual pull-back. Also, g∗emb(Z) can be described as removing all embedded
components of relative codimension at least one. In particular, g∗emb(Z) does not
depend upon the choice of U . If Z is n-flat (resp. n-smooth) then g∗emb(Z) is n-flat
(resp. n-smooth).

Remark (11.4). Let X/S be locally of finite presentation. If Z ↪→ X is a subspace
and Z → S is 0-flat with U ⊆ Z as in the definition of 0-flat, then Z/S defines
a relative cycle NU/S on X/S. By Corollary (6.6), this relative cycle has at most
one extension to Z. If Z → S is 1-flat or S is reduced, then the same corollary
(together with a limit argument in the non-noetherian case) shows that such an
extension exists. We will denote this extension by NZ/S .

Theorem (11.5). Let X/S be locally of finite type. There is a one-to-one corre-
spondence between multiplicity-free relative cycles on X/S and subschemes Z ↪→ X
such that Z → S is 0-smooth and NU extends to a cycle on Z. Under this correspon-
dence, the pull-back of a relative cycle corresponds to the pull-back of a 0-smooth
morphism as defined in Definition (11.3). In particular, we have the following
correspondences:

(i) If S is reduced, there is a one-to-one correspondence between multiplicity-
free relative cycles on X/S and subschemes Z ↪→ X such that Z/S is
0-smooth.

(ii) For arbitrary S, and n ≥ 1, there is a one-to-one correspondence between
relative (Rn)-cycles on X/S and subschemes Z ↪→ X such that Z → S is
n-smooth.

Proof. As 0-smooth morphisms satisfies condition (T), the first correspondence fol-
lows from Corollary (9.9). The last two correspondences follows from Remark (11.4)
and Theorem (9.8). �

Let X/S be flat and locally of finite presentation. An effective relative Cartier
divisor on X/S is an immersion Z ↪→ X which is transversally regular relative to S
of codimension one [EGAIV, 21.15.3.3]. By definition, this means that Z/S is flat
and that Z ↪→ X is a Cartier divisor. Equivalently, Z/S is flat and Zs ↪→ Xs is a
Cartier divisor for every s ∈ S [EGAIV, Prop. 19.2.4].
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Definition (11.6). Let X/S be (n+ 1)-flat. We say that a subscheme Z ↪→ X is
n-Cartier if Z|U ↪→ X|U is a relative Cartier divisor for some open subset U ⊆ X
containing all point of relative codimension n+ 1.

By definition, if Z ↪→ X is n-Cartier, then Z/S is n-flat. An n-flat subscheme
Z ↪→ X is n-Cartier if and only if Zs ↪→ Xs is n-Cartier.

Theorem (11.7). Let X/S be locally of finite type and 1-smooth. There is a one-to-
one correspondence between relative Weil divisors on X/S and subschemes Z ↪→ X
which are 0-Cartier and such that NU extends to Z. The pull-back of relative Weil
divisor corresponds to the pull-back of 0-flat morphisms. We also have the following
correspondences.

(i) If S is reduced, then there is a one-to-one correspondence between relative
Weil-divisors on X/S and subschemes Z ↪→ X which are 0-Cartier.

(ii) If X/S is (n+1)-smooth, for some n ≥ 1, then there is a one-to-one corre-
spondence between relative Weil divisors on X/S and subschemes Z ↪→ X
which are n-Cartier.

Proof. Follows from Theorem (9.15) as in the proof of Theorem (11.5). �

Corollary (11.8). Let X/S be smooth of dimension r + 1. Then Chowr(X/S)
is isomorphic to the functor Div(X/S) parameterizing relative Cartier divisors on
X/S.

When X/S is smooth of relative dimension r + 1, then the morphism

Hilbr−1(X/S) → Chowr−1(X/S) ∼= Div(X/S),

taking a proper family of subschemes of dimension r − 1 to the corresponding
equidimensional relative cycle, can be described as follows. Let F be a quasi-
coherent sheaf on X with support of dimension r − 1 such that F is flat over S.
Then F has finite Tor-dimension over X by Lemma (7.12). The determinant of
F , denoted det(F) is the alternating determinant of a locally free resolution of
F [GIT, Ch. 5, §3], [Fog69, §2], [KM76]. This is a locally free sheaf on X and there
is a section of det(F) which is unique up to a unit in OX . This determines an
effective Cartier divisor on X and the corresponding relative cycle coincides with
NF by Proposition (7.13). The morphism Hilbr−1(X/S) → Div(X/S) was used by
Fogarty to study the Hilbert scheme of a smooth surface [Fog68].

In [Fog71], Fogarty considers families of Weil divisors on a projective (R1)-scheme
X/k which is equidimensional of dimension r. He then defines a relative Weil-divisor
on X ×k S/S as a subscheme Z ↪→ X × S which is Cartier over the smooth locus
of X. Thus, when either S is reduced or X/k is (R2), Fogarty’s definition agrees
with our definition. Fogarty then shows [Fog71, Prop. 4.4] that the classical Chow
construction, reviewed in Section 17, extends to give a morphism Chowr−1,d(X) →
Divd(G) under one of the following conditions.

(i) S is normal.
(ii) X/k is (R2) and (S2).
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The results of Section 17 shows that such a morphism exists if either S is reduced
or X/k is (R2). Conjecturally, this morphism exists without any assumptions on S
andX, but then the elements of Chowr−1(X)(S) are not represented by subschemes
of X × S.

Fogarty also shows [Fog71, §5], assuming that S is reduced or X/k is (R2), that
the morphism Chowr−1,d(X)(S) → Divd(G)(S) is injective. Finally [Fog71, §6]
he shows that the normalization of Chowr−1,d(X) is representable (this is simply
the normalization of the classical Chow variety) and that if X/k is (R2), then
Chowr−1,d(X)red is representable (i.e., the classical Chow variety is independent of
the embedding in this case).

12. Relative normal cycles

In this section we prove a generalized version of Hironaka’s lemma. The standard
version of Hironaka’s lemma is that if S is the spectrum of a discrete valuation ring
and X → S is an equidimensional morphism such that the generic fiber is normal,
the special fiber is generically reduced and the reduction of the special fiber is
normal, then the special fiber is normal. In the terminology of the previous section,
Grothendieck and Seydi’s [GS71] generalization of Hironaka’s lemma states that
if S is reduced and X → S is 0-smooth and equidimensional and such that the
reduction of any fiber is normal, then X → S is normal.

The version of Hironaka’s lemma that we will prove states that for arbitrary
S, any 1-smooth equidimensional morphism X → S such that the reduction of its
fibers are normal, is normal.

Lemma (12.1). Let S be a locally noetherian scheme and let X be a locally noether-
ian S-scheme. Let X ′ = H0

X/Z(2)(OX) be the Z(2)-closure of X [EGAIV, 5.10.16].

(i) If Xred is (S2), then X ′ → X is finite and X ′
red = Xred. In particular X ′

red

is (S2).
(ii) If X is (S1) and X ′ ×S Sred is reduced then X ′ = X. In particular, X is

(S2) and X ×S Sred is reduced.

Proof. The question is local on S and X and we can thus assume that S = Spec(A),
X = Spec(B) and X ′ = Spec(B′). As taking reduced rings commutes with direct
limits [EGAIV, Cor. 5.13.2], it follows from the definition of the Z(2)-closure that
it commutes with the reduction. In particular, if Xred is (S2) then X ′

red = Xred.
By [EGAIV, Prop. 5.11.1], it follows that the Z(2)-closure of X is finite if and only
if the Z(2)-closure of Xred is finite. As the last closure is trivial, it follows that
X ′ → X is finite.

Now assume that X is (S1) and X ′
red = X ′ ×S Sred. Then B → B′ is injective

and B/NB → B′/NAB
′ is an isomorphism. Thus B′ = B + NBB

′ and it follows
by Nakayama’s Lemma that B′ = B. �

Lemma (12.2). Let S be a local artinian scheme and let X be a locally noetherian
S-scheme. Let S1 ↪→ S be a small nil-immersion, i.e., ker(OS → OS1)NOS

= 0.
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Assume that X is (S2) and that X → S is flat with (S1)-fibers at every point x ∈ X
of codimension at most 1. Then X×SS1 is (S1), i.e., has no embedded components.

Proof. The question is local on S and X and we can thus assume that S = Spec(A),
S1 = Spec(A1) and X = Spec(B). Let I = ker(A→ A1), let NA be the nilradical of
A and let k = A/NA. Then INA = 0 by hypothesis and this makes I a k-module.
Now let u ∈ B such that there exists a non-zero divisor f ∈ B with uf ∈ IB. To
show that B/IB is (S1) it is enough to show that u ∈ IB.

Let ε1, ε2, . . . , εn ∈ I be a k-basis of I and let uf =
∑

i εibi where bi ∈ B. As f is
regular and B is (S2) we have that B/f is (S1) [EGAIV, Cor. 5.7.6]. As X ×S Sred

has no embedded components in codimension one, it follows that the image of f in
B/NAB is regular in codimension one. Thus, B/fB is flat in codimension zero as
Tor1(B/fB,A/NA) = 0 at points of codimension zero on Spec(B/fB).

Let C = Tot(B/f) be the total fraction ring of B/f . This is a zero-dimensional
ring which is flat over A and B/f ↪→ C. By the infinitesimal criterion of flatness, we
have that the images of the bi’s in C are in NAC. As B/f ↪→ C is faithfully flat, it
follows that the images of the bi’s inB/f are in NA(B/f), i.e., bi ∈ (f+NAB). Thus
uf =

∑
i εifb

′
i where b′i ∈ B. As f is regular, it follows that u =

∑
i εib

′
i ∈ IB. �

Proposition (12.3). Let S be a local artinian scheme and let X be a locally noe-
therian S-scheme. Assume that X is (S1), that Xred is (S2), and that X → S is flat
with reduced fibers at every point x ∈ X of codimension at most 1. Then X×S Sred

is reduced and hence (S2).

Proof. Let n be such that Nn
S = 0. We will show that X ×S Sred is reduced by

induction on n. If n = 0, then X is (R0) and (S1) and hence reduced.
Let S1 = Spec(OS/N

n−1
S ). Let X ′ be the Z(2)-closure of X. Then X ′ → X is

an isomorphism in codimension 1. By Lemma (12.1) (i) we have that X ′
red = Xred

and X ′ → X is finite. In particular, X ′ is noetherian and (S2). Thus X ′ → S
satisfies the conditions of Lemma (12.2) and it follows that X ′ ×S S1 is (S1). By
induction, it follows that X ′ ×S Sred is reduced. We now have that X ′ = X by
Lemma (12.1) (ii) and thus that X ×S Sred is reduced. �

Corollary (12.4). Let S be a local artinian scheme and let X be a locally noe-
therian S-scheme. Assume that X is (S1) and that X → S is flat with reduced
fibers at every point x ∈ X of codimension at most 1. Then X → S is flat with
(R0)+(S2)-fibers at all points at which Xred is (S2). This locus is open in X.

Proof. We can assume that S = Spec(A) and X = Spec(B) are affine. Let Xmax =
{x1, x2, . . . , xn} be the generic points of X. Let Z =

∐
i Spec(OX,xi) = Spec(C)

and let f : Z ↪→ X be the canonical inclusion. Then f is universally schematically
dominant relative to S by [EGAIV, Thm. 11.10.9] and Proposition (12.3). This
means that B ↪→ C remains injective after tensoring with any A-algebra A′. As C
is flat, we have the long exact sequence

0 → TorA
1 (C/B,A′) → B ⊗A A′ → C ⊗A A′ → C/B ⊗A A′ → 0
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and it follows that C/B is flat. Thus TorA
2 (C/B,A′) = 0 and it follows that

TorA
1 (B,A′) = 0 and hence B is flat as well. �

I recently became aware that Kollár [Kol95, Thm. 10], cf. Theorem (12.7), implies
a stronger version of Corollary (12.4). When S is artinian, he shows the following.
If X is (S1) and X → S is flat with (S1)-fibers at every point x ∈ X of codimension
at most 1, and (X ×S Sred)dom/S is (S2), then X → S is flat with (S2)-fibers. It is
not difficult to modify the proofs above to obtain this result.

We now have the following generalization of a theorem of Grothendieck and
Seydi [GS71, Thm. II 1]. In loc. cit., only the case where S is reduced is treated.

Theorem (12.5) (Generalized Hironaka’s lemma). Let S be a locally noetherian
scheme. Let f : X → S be locally of finite type and 0-smooth. Let x ∈ X such that
(Xf(x))red is geometrically normal at x. Assume that f is (locally) equidimensional
and that either one of the following conditions hold:

(i) S is reduced and excellent.
(ii) f is 1-smooth.

Then f is normal, i.e., flat with geometrically normal fibers, in a neighborhood of x.

Proof. Let U ⊆ X be the open subset of f such that f |U is smooth. It is by [GS71,
Prop. I 1.0] enough to show that U ⊆ X is universally schematically dominant with
respect to S. Moreover, it is by [GS71, Thm. I 2] enough to show this when S is
the spectrum of either a local artinian ring or a discrete valuation ring, and if S is
reduced and excellent only the second case is required. Note that since f is 0-flat,
it is universally equidimensional.

We can thus assume that either S is the spectrum of a DVR or that S is local
artinian and f is 1-smooth. The first case is the usual Hironaka lemma [EGAIV,
Prop. 5.12.8]. The second case is Corollary (12.4). �

Remark (12.6). The excellency condition in (i) is not necessary as follows by a
limit argument. Similarly, the theorem is valid without the noetherian assumption
if we assume that f : X → S is locally of finite presentation.

If f is normal at x then f is 1-smooth at x. Hence the theorem shows that condi-
tion (i) implies condition (ii). Under assumption (i) of the theorem, the hypothesis
that f is equidimensional is necessary as shown by Example (8.12). The hypothesis
that f is equidimensional is not needed in (ii). In fact, the following theorem is a
special case of Kollár’s theorem [Kol95, Thm. 10].

Theorem (12.7). Let S be a locally noetherian scheme. Let f : X → S be locally
of finite type and 1-smooth. Let x ∈ X such that Xf(x) is (S2) at x after removing
embedded components. Then f is (S2), i.e., flat with geometrically (S2)-fibers, in a
neighborhood of x.

Theorem (12.8). Let X/S be locally of finite presentation and let α be a relative
cycle on X/S which is multiplicity-free. The subset of points Znorm at which α is
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normal, is open. The morphism Z → S is normal over Znorm, i.e. flat, locally of
finite presentation and with geometrically normal fibers.

Proof. Follows by Theorem (12.5). �

Corollary (12.9). The functor Hilbequi
r (X) → Chowr(X) induces an isomorphism

between normal families of subschemes and normal families of cycles.

Theorem (12.10). Let X/S be locally of finite presentation and 2-smooth. Let α
be a relative Weil divisor on X/S represented by the subscheme Z ↪→ X. Let z ∈ Z
be a point over s ∈ S. If (Zs)emb is (S2) at z, then Z → S is flat over z. In
particular, a relative Weil divisor, parameterizing Weil divisors which are (S2), is
flat.

Proof. Follows by Kollár’s Theorem (12.7). �

Corollary (12.11). Let X/S be flat of relative dimension r + 1 with (R2)-fibers.
The functor Hilbr(X) → Chowr(X) induces an isomorphism between families of
Cartier divisors which are (S2) and families of Weil divisors which are (S2).

13. Push-forward

In this section we first define the push-forward of a (closed) relative cycle along
a finite morphism. This definition then extends to the push-forward along a proper
morphism, assuming that either the morphism is generically finite, i.e., that no
components are collapsed under the push-forward, or that the relative cycle is
represented by a flat subscheme in relative codimension one over depth zero points,
e.g., the cases (A1) and (B1)–(B9) in the introduction. In particular, the proper
push-forward is defined when the parameter scheme is reduced (A1) or when the
relative cycle has (R1)-fibers (B7).

Definition (13.1). Let f : X → Y be a morphism locally of finite type. We say
that f is proper onto its image if f(X) is locally closed and f |f(X) is proper.

A proper morphism is proper onto its image. A morphism which is proper at
each point of f(X) is proper onto its image [EGAIV, Cor. 15.7.6] (at least if Y is
locally noetherian).

Definition (13.2). Let f : X → Y be quasi-finite and let α be a relative cycle
on X/S with support Z. Assume that f |Z is proper onto its image, e.g., that Z
is closed and f is proper or that Z/S is proper and Y/S is separated. We let
f∗α be the relative cycle on Y/S with support f(Z) such that for any projection
(U,B, T, p, g) of Y/S adapted to f(Z) we have that (f∗α)U/B/T = (π1)∗αU×XY/B/T .
Here π1 : U ×X Y → U is the projection on the first factor.

It is easily verified that f∗ cycl(α) = cycl(f∗α). The addition of two cycles α and
β is the push-forward of α q β along the morphism X qX → X.
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(13.3) Hilbert stack — Let X/S be locally of finite presentation. The Hilbert stack
H (X/S), parameterizes proper flat families p : Z → T equipped with a morphism
q : Z → X such that (q, p) : Z → X ×S T is quasi-finite. Even if X/S is proper,
this stack is very non-separated and does not have finite automorphism groups. If
X/S is separated, then the Hilbert stack is algebraic [Lie06]. It is also expected that
the Hilbert stack of a non-separated scheme is algebraic [Art74, App.], in contrast
to the Hilbert functor of a non-separated scheme which is not representable. Indeed,
the algebraicity for zero-dimensional families is shown in [Ryd08a].

Proposition (13.4). Let X/S be separated and locally of finite presentation. There
is a morphism from the Hilbert stack Hr(X/S), parameterizing r-dimensional proper
flat families, to the Chow functor Chowr(X/S). This morphism takes a family Z/T
to the relative cycle (q, p)∗(NZ/T )r on X ×S T/T .

Remark (13.5). Branchvarieties — LetX/S be separated. The stack of branchvari-
eties of Alexeev and Knutson [AK06] is the substack of the Hilbert stack parameter-
izing proper and flat morphisms p : Z → T together with a morphism q : Z → X
such that (q, p) is quasi-finite and p has geometrically reduced fibers. This stack is
proper and has finite stabilizers but it is not Deligne-Mumford in positive charac-
teristic. The open substack such that (q, p) is a closed immersion coincides with
the open subset of the Hilbert scheme parameterizing reduced families. In partic-
ular, the morphism Branchr(X/S) → Chowr(X/S) is an isomorphism over normal
embedded families, Corollary (12.9), and a monomorphism over reduced embed-
ded families, Corollary (9.10). The morphism Branchr(X/S) → Chowr(X/S) is
injective over the open locus parameterizing normal families Z → T such that
Z → X ×S T is birational onto its image. I do not know if this is a monomorphism
but it seems likely.

Remark (13.6). Cohen-Macaulay curves — The space of Cohen-Macaulay curves
[Høn05], is the open subset of the Hilbert stack parameterizing Cohen-Macaulay
curves Z → T together with a morphism Z → X ×S T which is birational onto its
image. This is a proper algebraic space.

There is thus a plethora of moduli spaces which all maps into the Chow functor.
This also includes the stack of stable maps as we will see in Corollary (13.11). To
show this, we first need to define the push-forward of a relative cycle along a proper
morphism. For simplicity we only define the push-forward for relative cycles with
equidimensional support.

Definition (13.7). Let X/S and Y/S be algebraic spaces locally of finite type over
S. Let f : X → Y be a morphism and let Z ⊆ X be a locally closed subset such
that Z/S is equidimensional and f |Z is proper onto its image. Let U ⊆ f(Z) be
the open subset over which Z → f(Z) is quasi-finite. We let f∗(Z) ⊆ f(Z) be the
closure of U .
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Remark (13.8). If f |Z : Z → Y is quasi-finite at the generic points of Z, then
f∗(Z) = f(Z).

Lemma (13.9). Let f : X → Y be a morphism and let Z ⊆ X be a locally closed
subset such that Z/S is equidimensional and such that f |Z is proper onto its image.
Let U ⊆ f(Z) be the open subset over which Z → f(Z) is quasi-finite. Then f∗(Z)
is equidimensional over S and U ⊆ f∗(Z) is fiberwise dense. In particular, f∗(Z)
commutes with base change, i.e., for any morphism g : S′ → S we have that

g−1(f∗(Z)) = f ′∗(g
−1(Z))

Proof. Let s ∈ S and let y ∈ f∗(Z)s be a generic point and let r be the dimension
of f∗(Z)s at y. Let W ⊆ f∗(Z) be an irreducible component containing y and let
V ⊆ Z be an irreducible component mapping onto W such that V → W is quasi-
finite. Then as V is equidimensional, it follows that W is equidimensional at y and
that V →W is quasi-finite over y. This shows that y ∈ U . �

Theorem (13.10). Let S be locally noetherian, let X/S and Y/S be locally of finite
type, let f : X → Y be a morphism and let F be a coherent OX-module which is flat
over S. Let Z = Supp(F) and assume that f |Z is proper onto its image and that
Z/S is equidimensional. Let U ⊆ f(Z) be the open subset over which Z → f(Z) is
quasi-finite. Let V = f−1(U). Then the relative cycle f∗

(
NF|V

)
on U/S extends

uniquely to a relative cycle on Y/S with support f∗(Z). This cycle is denoted by
f∗NF/S.

Proof. Replacing X with the closed subscheme defined by AnnOX
(F), and Y with

its image, we can assume that f is proper.
First assume that f is not only proper but also projective. Let L be an invertible

sheaf on X which is f -ample. Then for sufficiently large n, we have that Rif∗(F ⊗
Ln) = 0 for all i > 0 and that G = f∗(F ⊗ Ln) is coherent and flat over S. As
f∗(F⊗Ln)|U and f∗(F)|U are locally isomorphic, it follows that NG is an extension
of f∗(NF|V ).

In general, Rf∗(F) is a perfect complex relative to S [SGA6, Exp. III, Prop. 4.8]
and NRf∗(F)/S is the required extension, cf. Remark (7.11). �

Corollary (13.11). Let X/S be separated and locally of finite presentation. For
any genus g, number of marked points n and homology class β, there is a functor
from the Kontsevich space M g,n(X/S, β) of stable maps into X to the Chow functor
Chow1(X/S) taking a stable curve onto its image cycle.

Theorem (13.12). Let f : X → Y be a morphism and let α be a relative cycle on
X/S with equidimensional support Z such that f |Z is proper onto its image. Let
U ⊆ f(Z) be the open subset over which Z → f(Z) is quasi-finite. Then there is at
most one extension of f∗(α|f−1(U)) to f∗(Z). When such an extension exists, we
denote it by f∗α. An extension exists if one of the following conditions is satisfied:
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(1) Z → f(Z) is quasi-finite at points y ∈ f∗(Z) such that y has codimension
one in a fiber over a point of depth zero in S.

(1a) f |Z is generically finite, i.e., f∗(Z) = f(Z).
(2) There is an open subset V ⊆ Z containing all points x ∈ Z of relative

codimension one over points of depth zero of S, such that α|V = NV1/S

where V1 → S is flat and finitely presented.
(2a) S is reduced.
(2b) α has (R1)-fibers.
(2c) X → S is 2-smooth, e.g. (R2), and α is a relative Weil divisor.

Proof. Note that (1a) is a special case of (1) and that (2a)–(2c) are special cases
of (2). By Lemma (13.9), the open subset U ⊆ f(Z) contains all points of f∗(Z)
which are generic in their fibers over S. By Corollary (6.6) there is thus at most
one extension and an extension to f∗(Z) exists if an extension to all points of
f∗(Z) which are of codimension one in its fiber over a point s ∈ S of depth zero
exist. In (1) all such points are already in U and in (2) an extension exists by
Theorem (13.10). �

Conditions (2a)–(2c) contain the cases (A1) and (B1)–(B9) of the introduction.
It is likely that f∗α always is defined, i.e., that f∗(α|f−1U ) always extends to f∗(Z).

14. Flat pull-back and products of cycles

Let S be a locally noetherian scheme, let X/S be locally of finite type and let α
be a relative cycle on X/S with support Z. Let f : Y → X be a flat morphism,
locally of finite presentation. We would like to define the pull-back f∗α of α as a
relative cycle on Y/S. The pull-back should satisfy the following two conditions

(P1) f∗ cycl(α) = cycl(f∗α).
(P2) If F is a coherent sheaf on X which is flat over S, then f∗NF/S = Nf∗F/S .

Note that f∗ cycl(NF/S) = cycl(Nf∗F/S) so these two conditions are compatible.
When one of the following conditions holds

(A1) S is reduced.
(A2) α is multiplicity-free.
(A3) α is a relative Weil divisor and X/S is 1-smooth.

then there is at most one relative cycle f∗ cycl(α) satisfying (P1)–(P2) by Corol-
lary (6.6) and the results of Sections 8–9. Similarly, we obtain the following result
from Corollary (6.6).

Proposition (14.1). Let S be arbitrary and let α be a relative cycle on X/S with
support Z. Let f : Y → X be a flat morphism. Assume that there exists an open
subset U ⊆ Z containing all points z ∈ Z over s ∈ S with codimz Zs+depths S ≤ 1,
such that α is represented by a flat subscheme or cycle over U , cf. (B1), (B3)–(B9)
in the introduction. Then there is a unique cycle f∗ cycl(α) satisfying (P1)–(P2).

The proposition is also valid when S is semi-normal and α is arbitrary, i.e., in
the case (B2). This follows from Corollary (10.19) and the following discussion.
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Let us now discuss the general case. Locally on Y there exists a factorization
Y → U → X of f such that the first morphism is quasi-finite and the second
morphism is smooth. By Lemma (7.12), Y → U is of finite Tor-dimension. Locally,
U → X factors through an étale morphism U → An

X . If (U,B,An
S) is a projection

adapted to Z/S we then define

(f∗α)Y/B/S = αU/B/An
S
◦ NY/U .

If α satisfies condition (∗) of Section 5, then (f∗α)Y/B/S does not depend upon the
morphism B → An

S and is thus well-defined. Now, the problem is that a general
smooth projection (Y,B, S) adapted to f−1(Z) does not admit such a factorization.

If S is of characteristic zero and f is smooth, then any smooth projection (Y,B, S)
generically admits such a factorization. Indeed, let n be the relative dimension of
Y → X and let B → Ar+n

S be an étale morphism. Then the induced morphism
Y → X ×S Ar+n

S is quasi-finite. Thus, there is a projection Ar+n
S → An

S such that
Y → X ×S An

S is quasi-finite and hence generically étale fiberwise over X.
Now assume as before that f is smooth but let S be arbitrary. Then there

exists smooth projections (Y,B, S) such that Y → X ×S An
S cannot be chosen

so that it is generically étale. For example, let k be a field of characteristic p,
X = S = Spec(k), Y = Spec(k[t]) and B = Spec(k[tp]). For a generic choice of
(Y,B, S) we can however find a factorization Y → X ×S An

S which is generically
étale fiberwise over X.

Theorem (14.2). Let S be an arbitrary scheme, let α be a relative cycle on X/S
with support Z and let f : Y → X be a smooth morphism. Assume that α is
represented by a flat subscheme or a flat cycle over an open subset U ⊆ Z containing
all points of relative codimension at most one over points of depth zero in S. This
is the case if S is reduced or if α is as in (B1)–(B9) of the introduction. Then there
is a unique relative cycle f∗α on Y/S satisfying (P1)–(P2). Furthermore, for every
commutative diagram

U
p

//

��

Y
f

// X

��

B

��

T ′
g′

// T
g

// S

with p, g, g′ smooth, U → Y ×S T
′ étale and U → X ×S T étale, we have that

(f∗α)U/B/T ′ = αU/B/T .

Proof. First note that since α is represented by a flat subscheme or flat cycle in
relative codimension zero over depth zero points, α satisfies condition (∗). Let
(U,B, T ′, p, g′′) be a smooth projection of Y/S. As discussed above, there is then
a factorization of g′′ : T ′ → S into smooth morphisms g′ : T ′ → T and g :
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T → S such that U → X ×S T is quasi-finite (but not necessarily generically
étale in characteristic p). Picking a generic smooth projection and placing the two
projections in a family, we obtain a smooth projection and morphisms as above
such that U → X ×S T is generically étale, fiberwise over X, and such that the
original projection is obtained as a pull-back of this family.

As α is represented by a flat subscheme or flat cycle in relative codimension at
most one over depth zero points, it follows that the common definition of f∗α at
points of relative codimension zero over depth zero points extends. �

Similarly, we would like to define products of cycles, i.e., if α is a relative cycle
on X/S and β is a relative cycle on Y/S we would like to define α×β on X×S Y/S.
This relative cycle should satisfy obvious conditions such as cycl(α×β) = cycl(α)×
cycl(β) and cycl(NF×NG) = cycl(NF⊗G). When α and β are as in (A1)–(A3) then
there is at most one such product cycle and when α and β are as (B1)–(B9) there
exists a product cycle, cf. Proposition (14.1). I do not know if it is possible to
employ similar methods as in Theorem (14.2) to show the existence of a product
cycle when S is reduced.

15. Projections and intersections

Proposition (15.1) (Projection). Let α be a relative cycle on X/S, let Y → S
be smooth and let X → Y be a morphism such that Supp(α)|dom/Y → Y satisfies
(T). Then there is an induced relative cycle α′ on X/Y such that for any projection
(U,B,Ar

Y ) of X/Y adapted to Supp(α′) we have that α′U/B/Ar
Y

= αU/B/Ar
S
.

Proof. This follows from the fact, Proposition (5.3), that it is enough to consider
projections of the form (U,B,Ar

Y ) to define α′. �

Definition (15.2). Let α be a relative cycle on X/S with support Z. Let L be a
invertible sheaf on X/S and let f ∈ Γ(X,L) be a global section. Assume that the
closed subscheme V (f) defined by f intersects Z properly in every fiber, i.e., that
V (f)s does not contain an irreducible component of Zs for every s ∈ S. Locally on
X, the section f induces a projection (X,A1, S) and hence a relative cycle α′ on
X/A1. We let Lf ∩ α be the relative cycle with support Z ∩ V (f) defined locally
on X as the pull-back of α′ along the zero-section of A1 → S.

In particular, ifD is a relative Cartier divisor onX/S which intersects Z properly,
then we let D ∩ α = O(D)f ∩ α where f is the section given as the dual of ID =
O(−D) ↪→ OX .

If f1, f2, f3, . . . , fn is a sequence of sections of OX such that V (fi) intersects
V (fi−1) ∩ · · · ∩ V (f1) ∩ Z properly for i = 1, 2, . . . , n, then V (fn) ∩ V (fn−1) ∩
· · · ∩ V (f1) ∩ α is defined. It is clear that this relative cycle, which we denote
by V (f1, f2, . . . , fn) ∩ α, does not depend upon the ordering of the fi’s. On
the other hand, if g1, g2, . . . , gn is another sequence such that the relative cycle
V (g1, g2, . . . , gn) ∩ α exists and (f1, f2, . . . , fn) = (g1, g2, . . . , gn) as ideals, then it
is not clear that the corresponding cycles coincide.
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Assume that V (f1, f2, . . . , fn) ∩ α only depends on the ideal (f1, f2, . . . , fn) in
general. If Y ↪→ X is a regular immersion intersecting Z = Supp(α) properly, we
can then define a relative cycle Y ∩ α locally using any regular sequence defining
Y . Under this assumption, we can now define proper intersections of relative cycles
on smooth schemes:

Definition (15.3). Let X/S be smooth of relative dimension n and let α, β be
relative cycles on X/S, equidimensional of dimensions r and s respectively. Assume
that Supp(α) and Supp(β) intersect properly in each fiber, i.e., that Supp(α) ∩
Supp(β) is equidimensional of dimension r + s − n. Then Supp(α) ∩ Supp(β) =
∆X/S ∩

(
Supp(α)×Supp(β)

)
and the latter intersection is proper in each fiber. We

let α ∩ β = ∆X ∩ (α× β) when the relative cycle (α× β) is defined, cf. Section 14.

16. Relative fundamental classes of relative cycles

We briefly indicate the construction of relative fundamental classes and the re-
lation with Angéniol’s functor. Throughout this section, S is a locally noetherian
scheme over Spec(Q) and X/S is of finite type and separated.

Theorem (16.1). Let α be a relative cycle on X/S which is equidimensional of
dimension r. Then there exists an infinitesimal neighborhood j : Z ↪→ X of
Image(α) ↪→ X such that α is the push-forward of a relative cycle on Z along
j. Moreover, there is a class cα ∈ Ext−r

Z

(
Ωr

Z/S ,D
•
Z/S

)
, the relative fundamental

class of α, such that for any projection (U,B, T, p, g) the composition of the canon-
ical homomorphism h∗h

∗Ωr
B/S → h∗Ωr

Z/S and the trace tr(cα) : h∗Ωr
Z/S → Ωr

B/S,
coincides with the trace h∗Op−1(Z) → OB induced by αU/B/T after tensoring with
Ωr

B/S. Here h denotes the morphism p−1(Z) → U → B.

Proof. This can be proved using Bott’s theorem on grassmannians almost exactly
as in [AEZ78, §III]. We indicate the steps.

Note that Z is not unique, but if we have obtained Z and cα on an open cover,
then we can take a common infinitesimal neighborhood of the Z’s and on this
neighborhood the cα’s glue. We can thus assume that X and S are affine.

Let Z0 = Supp(α) and take an embedding X ↪→ An as in Lemma (9.6) and
consider the corresponding universal projection (An

G,B,G, p). To simplify the pre-
sentation, we will now let X = An. Let U ⊆ Z0 ×S G be the open subset over
which Z0×S G ↪→ An

G → B is quasi-finite. The subset U then contains all points of
relative codimension at most one over Z0 by Lemma (9.6).

Let Z ↪→ An
S be the image of Image(αU/B/G) along p, and denote the inclusion

with i. Let h : Z ×S G → B be the corresponding morphism, let Z ′ = U ∩Z ×S G
and denote the open immersion Z ′ ↪→ Z ×S G with j. On Z we have the sheaf
i∗(Ω1

An
S
)∨ which is free of rank n. Thus, we have that Z ×S G = Gr(i∗(Ω1

An
S
)∨). Let

H be the universal quotient sheaf on Z ×S G. It is then readily verified that there
is a natural isomorphism H ∼= h∗(Ω1

B/G)∨ [AEZ78, §I.3].
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Let W = Ext−r(OZ ,D•Z/S). The relative zero-cycle αU/B/G induces a global
section of

Ext−r
Z′

(
j∗h∗(Ωr

B/G),D•Z′/G
)

= Ext−r
Z′

(
j∗(∧rH∨), p∗D•Z/S

)
= j∗(∧rH)⊗OZ′ p

∗W
by (2.27). Bott’s theorem [AEZ78, Cor. I.2] shows that the canonical homomor-
phism

∧ri∗(Ω1
An

S
)∨ ⊗W → p∗

(
j∗(∧rH)⊗ p∗W

)
is an isomorphism. We thus obtain a global section of

i∗(Ωr
An

S
)∨ ⊗W = Ext−r

(
i∗Ωr

An
S
,D•Z/S

)
and this is the relative fundamental class of α as it can be shown that this factors
through Ωr

Z/S . What remains is to show that for any projection (U,B, S) the
trace cU/B/S is the trace of the zero-cycle αU/B/S . This is done almost exactly as
in [AEZ78, §III]. �

Let X/S be smooth of relative dimension n and let Z ↪→ X be a closed subset
which is equidimensional of dimension r over S. Let c be a class in Hn−r

Z (X,Ωn−r
X/S).

This class lifts to a class in Ext−r
X ((jm)∗OZm ,Ω

n−r
X/S) for some infinitesimal neigh-

borhood jm : Zm ↪→ X of Z.
If (U,B, T, p, g, ϕ) is any smooth projection adapted to Z, there is an induced

trace homomorphism tr(c) : ϕ∗(jm)∗Ωr
p−1(Zm)/T → Ωr

B/T which induces a homo-
morphism tr(c) : ϕ∗(jm)∗OZm → OB .

Now if c is a Chow class [Ang80, Def. 4.1.2] then tr(c) is the trace correspond-
ing to a relative zero-cycle cU/B/T on U with image contained in Zm by [Ang80,
Prop. 2.3.5 and Thm. 1.5.3]. These zero-cycles define a relative cycle on X/S.

Theorem (16.2). The morphism from Angéniol’s Chow-space Angr(X/S)(T ) to
the Chow functor Chowr(X/S)(T ) taking a Chow class onto the corresponding
relative cycle is a monomorphism. When T is reduced, or when restricted to
multiplicity-free cycles or relative Weil-divisors, this morphism is an isomorphism.
Proof. Let c be a Chow class. Then c is determined by the induced relative zero-
cycles cU/B/T . In fact, c is determined by cU/B/G for a universal projection as in
the proof of Theorem (16.1).

Let α be a relative cycle on X/S and let (U,B, S, p, g, ϕ) be a smooth pro-
jection. The corresponding class c is a Chow class if the trace homomorphism
ϕ∗(jm)∗Ωr

Zm/S → Ωr
B/S satisfies the conditions of [Ang80, Thm. 4.1.1]. These

conditions can be checked on depth zero points of B.
In the three special cases listed, αU/B/S is represented by a flat subscheme or a

flat cycle on a schematically dense open subset of B. That c is a Chow class then
follows from [Ang80, Prop. 7.1.1]. �

Corollary (16.3). Let X be a quasi-projective scheme over C. Then the reduction
of the Chow functor Chowr(X) is represented by the Chow variety ChowVarr,d(X).
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Proof. By the theorem, we have that Chowr(X)red = Angr(X)red and the latter
space coincides with the Barlet space [Ang80, Thm. 6.1.1]. As the Barlet space
coincides with the Chow variety [Bar75, Ch. IV, Cor. of Thm. 7] the result follows.

�

17. The classical Chow embedding and representability

In this section, we briefly review the classical construction of the Chow variety, cf.
[CW37, Sam55, GKZ94, Kol96], and the extension of this construction to arbitrary
relative cycles.

(17.1) The incidence correspondence — Let S be a scheme and E a locally free
sheaf on OS of rank N + 1. There is a natural commutative square

P(E)

S

��

F1,N−r(E)
p

oo

q

��

S GN−r(E)oo

where G = GN−r(E) is the grassmannian parameterizing linear subvarieties of
codimension r + 1 in P(E) and I = F1,N−r(E) is the flag variety parameterizing
linear subvarieties of codimension r+1 with a marked point. The morphisms p and
q are grassmannian fibrations and in particular smooth.

If Z ↪→ P(E) is equidimensional of dimension r, then p−1(Z) is equidimensional
of dimension r + (N − r − 1)(r + 1) = (N − r)(r + 1) − 1. It is easily seen that
q|p−1(Z) is generically finite, fiberwise over S, and thus CH(Z) := q(p−1(Z)) is a
hypersurface in G. If S = Spec(k), and Z has degree d, then CH(Z) has degree d
with respect to the Plücker embedding of G. Note that if S = Spec(k), then CH(Z)
is a Cartier divisor on G.

Remark (17.2). A variant of the incidence correspondence is often used, cf. [CW37,
GIT, Kol96]. Instead of grassmannians and flag varieties, we take G as the multi-
projective space P(E∨)r+1 and I as the subscheme of P(E) × P(E∨)r+1 given as
the intersection of the r + 1 universal hyperplanes. Then q(p−1(Z)) becomes a
hypersurface of multi-degree d, d, . . . , d in G.

(17.3) The Chow variety — Using Chevalley’s theorem on the semi-continuity of
the fiber dimension, it is easily seen that there is a closed subset of Divd(G/S)
corresponding to cycles on P(E) of dimension r and degree d [Kol96, I.3.25.1].

Definition (17.4). Let X ↪→ P(E) be a subscheme and let α be a proper equidi-
mensional relative cycle of dimension r on X/S such that the smooth pull-back is
defined, cf. (14.2), then we let CH(α) = q∗p

∗(α).
Note that q is generically finite over p−1(Supp(α)) so the existence of q∗ follows

by Theorem (13.12). As CH(α) is a relative Weil divisor and G/S is smooth, we
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obtain by Theorem (9.15) a morphism

CH : Chowr,d(X/S) → Divd(G/S).

If α is a relative cycle on X/S, then cycl(CH(α)) = q∗p
∗(cycl(α)) so this mor-

phism extends the usual map of cycles. If Z ↪→ X is a closed subscheme which is
flat and proper over S, then

CH
(
NZ/S

)
= CH

(
Nq∗(p−1(Z)⊗L)

)
for some sufficiently q-ample sheaf L on I. That the corresponding Cartier divisor
coincides with the divisor constructed by Mumford [GIT, Ch. 5, §3] with the Div-
construction follows from Proposition (7.13).

Proposition (17.5). Let X/S be a quasi-projective scheme with a projective em-
bedding morphism X ↪→ P(E). Let α be a relative cycle on X/S, equidimensional
of dimension r. Assume that one of the following holds:

(i) S is reduced.
(ii) X/S is of relative dimension r + 1 and 1-smooth.
(iii) α is multiplicity-free.

Then α can be recovered from CH(α).
Proof. If S is reduced, it is enough to show that αs can be recovered for any generic
point s. We can thus assume that S is the spectrum of a algebraically closed field.
As the CH-morphism is additive, we can also assume that α corresponds to an
irreducible variety V . Then V = X \ p(q−1(G \ CH(V ))).

Under the hypothesis in (ii) and (iii), α is represented by a subscheme Z ↪→ X
which is either a relative Cartier divisor or smooth over S on a schematically dense
subset U of Z. To show that α can be recovered from CH(α) it is enough to
construct Z|U . This can be done as in [Fog71, §5]. �

Questions (17.6). In characteristic zero, we have that

Chowr,d(X/S)red = Angr,d(X/S)red = ChowVarr,d(X/S)

and thus the morphism Chowr,d(X/S)red → Divd(G) is an immersion. This leads
to the following questions:

• Is Angr,d(X/S) → Divd(G) an immersion?
• In positive characteristic, is Chowr,d(X/S) → Divd(G) an immersion for

sufficiently ample embeddings X ↪→ P(E)?
• In positive characteristic, is Chowr,d(X/S)red → Divd(G) an immersion

for sufficiently ample embeddings X ↪→ P(E)?

Appendix A. Duality and fundamental classes

Let f : X → S be a morphism of schemes. We assume that S is noetherian and
that f is separated and of finite type. Then f admits a compactification, i.e. there
is a proper morphism X → S and a schematically dominant immersion X ↪→ X
of S-schemes. This is a famous theorem by Nagata [Nag62, Lüt93]. Nagata’s
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compactification result has been generalized by Raoult to algebraic spaces when
either X is normal or S is the spectrum of a field [Rao71, Rao74] but we do not
need this.

Using that separated, finite type morphisms are compactifiable, one constructs
a pseudo-functor !, the twisted (or extraordinary) inverse image, from the category
of noetherian schemes and finite type separated morphisms to the corresponding
derived category. If f : X → S is a finite type separated morphism of noetherian
schemes then f !(OS) = D•X/S is the relative dualizing complex constructed by
Deligne [Har66, App. by Deligne]. If g : U → X is an étale morphism then g! = g∗

and if f : X → S is a proper morphism, then f ! is a right adjoint to f∗ (in the
derived category). If f is a finite type separated morphism of finite Tor-dimension,

then f !(F) = f∗(F)
L
⊗OX

D•X/S . If f : X → S is smooth of relative dimension r,
then D•X/S = Ωr

X/S [r].
As g! = g∗ for étale morphisms, we can extend the definition of ! to the category

of noetherian algebraic spaces with finite type separated morphisms. We will use
the following duality theorem:

Theorem (A.1) ([Har66, Ch. III, Thm. 6.7]). Let f : X → Y be a finite mor-
phism of noetherian schemes. Let F• and G• be complexes of sheaves on X and Y
respectively. Then there is a quasi-isomorphism

f∗RExtX(F•, f !G•) → RExtY (f∗F•,G•).

In particular, we have that

Extn
X(F•, f !G•) → Extn

Y (f∗F•,G•)

for every integer n.
We briefly recall some of the main results of [EZ78]. Let k be a field. If X/k is

smooth of dimension r, then the fundamental class of X/k is the canonical class

cX ∈ Ext−r
X (Ωr

X/k,D
•
X/k) = HomX(Ωr

X/k,Ω
r
X/k)

given by the identity. If X/k is geometrically reduced, then there is a unique class

cX ∈ Ext−r
X (Ωr

X/k,D
•
X/k),

the fundamental class ofX/k, such that over the smooth locus U ⊆ X, the pull-back
cX |U = cU coincides with the class defined above. The uniqueness of cX follows
by Corollary (A.4) below. The existence of the fundamental class cX for arbitrary
X/k is shown by El Zein [EZ78, Ch. III, Thm.]. When X/k is not geometrically
reduced, cX is uniquely determined as follows. If the irreducible components of X
are Xi, then

cX =
∑

i

micXi
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where mi is the multiplicity of Xi, i.e., the length of the local ring of OX at the
generic point of Xi, cf. Remark (A.8). If K/k is a perfect extension of k, then

Ext−r
X (Ωr

X/k,D
•
X/k) → Ext−r

XK/K(Ωr
XK/K ,D

•
XK/K)

is injective and the image of cX is cXK
[EZ78, Ch. III, No. 4, Prop.]. Note that

when k is of characteristic p > 0, then cX is zero at every irreducible component
Xi where p divides the geometric multiplicity, i.e. the multiplicity of (Xi)K .

Assume that X can be smoothly embeddable, i.e., that there exists a closed
immersion j : X ↪→ Y into a smooth scheme Y/k of pure dimension n. Then we
define the algebraic de Rham homology of X by

HdR
q (X) = H2n−q

X (Y,Ω•Y/k),

the hypercohomology, with supports in X, of the algebraic de Rham complex on Y .
If k has characteristic zero, then this homology group is independent on the choice
of smooth embedding [Har75, Ch. II, Thm. 3.2].

We have a canonical homomorphism

Ext−r
X (Ωr

X/k,D
•
X/k) → Ext−r

X (j∗Ωr
Y/k, j

!Ωn
Y/k[n])

∼= Ext−r
Y (j∗j∗Ωr

Y/k,Ω
n
Y/k[n])

∼= Extn−r
Y (j∗OX ,Ωn−r

Y/k )

→ Hn−r
X (Y,Ωn−r

Y/k ).

By abuse of notation, we also denote the image of the fundamental class cX in
Hn−r

X (Y,Ωn−r
Y/k ) by cX . El Zein [EZ78, Ch. III, Thm.] shows that cX is in the kernel

of the differential

d′ : Hn−r
X (Y,Ωn−r

Y/k ) → Hn−r
X (Y,Ωn−r+1

Y/k ).

Thus cX is the image of an element in the hypercohomology

Hn−r
X (Y,Ωn−r

Y/k → Ωn−r+1
Y/k → . . . )

which we also denote by cX . Finally, we have the image of this element in the
algebraic de Rham homology:

H2(n−r)
X (Y,Ω•Y/k) = HdR

2r (X).

In characteristic zero, this class coincides with the homology class η(X) defined by
Hartshorne [Har75, Ch. II, 7.6]. This is not proved by El Zein but not difficult to
show. In fact, as cX =

∑
imicXi

where Xi are the irreducible components of X
and mi their multiplicities, we can assume that X is integral. Then HdR

2r (X) ∼=
HdR

2r (X \Xsing) and we can thus assume that X is smooth. Then with the choice
X = Y , we have that cX is the identity homomorphism Ωr

X/S → Ωr
X/S .

In this paper, we are mostly interested in the relative case. Let X/S be a scheme
of relative dimension r. A relative fundamental class of X/S will be a class in
Ext−r(Ωr

X/S ,D
•
X/S) satisfying certain properties as stated below. The construction

of this class is local:
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Lemma (A.2) ([AEZ78, Lem. II.1]). Let S be a noetherian scheme and let X → S
be equidimensional of relative dimension r. Then

Ext−r(F ,D•X/S) = Γ
(
X, Ext−r(F ,D•X/S)

)
for every OX-module F .

We will use the following duality isomorphism which is a special case of Theo-
rem (A.1):

Proposition (A.3) ([EZ78, Ch. IV, Prop. 2]). Let X → S be equidimensional of
relative dimension r and let Y → S be a smooth morphism of relative dimension r.
Let f : X → Y be a finite S-morphism. Then there is a canonical isomorphism

Tf : Ext−r(Ωr
X/S ,D

•
X/S)

∼=−→ Hom(f∗Ωr
X/S ,Ω

r
Y/S).

Corollary (A.4) ([EZ78, Ch. IV, Prop. 4]). Let X → S be equidimensional of
relative dimension r and let Y → S be a smooth morphism of relative dimension r.
Let f : X → Y be a finite S-morphism. Let U ⊆ Y be a schematically dense open
subset. Then the canonical homomorphism

Ext−r(Ωr
X/S ,D

•
X/S) → Ext−r(Ωr

f−1(U)/S ,D
•
f−1(U)/S)

is injective.
Recall that if f : X → Y is a finite and flat morphism, then f∗OX is locally

free and there is a trace homomorphism f∗OX → OY . By tensoring with Ωr
Y/S we

obtain the homomorphism

tr(f) : f∗f∗Ωr
Y/S → Ωr

Y/S .

Definition (A.5) ([EZ78, Ch. IV, Def. 2]). Let S be reduced and let X → S be
equidimensional of relative dimension r. We say that a class c ∈ Ext−r(Ωr

X/S ,D
•
X/S)

satisfies the property of the trace, if for every open subset U ⊆ X, every smooth
morphism Y → S of dimension r and every finite and flat morphism f : U → Y ,
we have that the composition of f∗f∗Ωr

Y/S → f∗Ωr
X/S and Tf (c) is the trace tr(f).

Proposition (A.6) ([AEZ78, Prop. II.3.1]). Let S be reduced and let X → S be
equidimensional of relative dimension r. There is at most one class

c ∈ Ext−r(Ωr
X/S ,D

•
X/S)

satisfying the property of the trace.

Proof. The question is local on X by Lemma (A.2). We can thus assume that there
is a closed immersion j : X → An. Let ϕ : An → Ar be a linear morphism such
that the composition f : X → Ar is generically finite. Note that as S is reduced,
we have that f is generically flat. The property of the trace determines c over the
image of j∗ϕ∗Ωr

Ar/S → j∗Ωr
An/S → Ωr

X/S . Let x be a generic point of X, the images
of ϕ∗Ωr

Ar/S → Ωr
An/S for every ϕ such that j◦ϕ is quasi-finite at x, generates Ωr

An/S

in a neighborhood of x. For details, see [AEZ78, loc. cit.]. �
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Definition (A.7). Let S be reduced and let X → S be equidimensional of relative
dimension r. The unique class cX/S ∈ Ext−r(Ωr

X/S ,D
•
X/S) satisfying the property

of the trace, if it exists, is called the relative fundamental class of X/S.
The fundamental class cX for a scheme X/k discussed above is the relative

fundamental class cX/k, cf. [EZ78, Ch. III, Cor.].

Remark (A.8). Let S be reduced and let X → S be equidimensional of relative
dimension r. If X has irreducible components Xi with multiplicities mi then it
follows that cX =

∑
imicXi . In fact, if f : X → Y is a finite morphism, then

tr(f) =
∑

imi tr(f |Xi) at the generic points of Y where all involved maps are flat.
The relative fundamental class exists in the following cases:

(i) S normal and X/S equidimensional of dimension r [EZ78, Ch. IV, No. 3].
(ii) S reduced and X/S flat [EZ78, Ch. IV, No. 4].

If S is not reduced things are slightly more complicated. We assume that X/S
is flat or at least of finite Tor-dimension. If S is without embedded components,
then the property of the trace as stated in Definition (A.5) is enough to ensure
uniqueness. In fact, if U ⊆ X is an open subset, Y/S is smooth of relative dimension
r, and f : U → Y is a quasi-finite morphism, then f is generically flat and finite.
In general, the property of the trace should be generalized to include morphisms
f : U → Y which are finite and of finite Tor-dimension but not necessarily flat.
The trace of such a morphism is defined by the alternating sum of the traces of
a flat resolution, cf. [AEZ78, Ch. II]. The main result of [AEZ78] is that for any
locally noetherian scheme S of characteristic zero and X/S of finite type and finite
Tor-dimension, there exists a relative fundamental class of X/S.

Appendix B. Schematically dominant families

Recall that a family of morphisms uλ : Zλ → X is schematically dominant if
the intersection of the kernels of OX → (uλ)∗OZλ

is zero [EGAIV, 11.10]. The
important fact is that a morphism from X is determined on {Zλ}, i.e., if Y is a
separated scheme, then

Hom(X,Y ) →
∏
λ

Hom(Zλ, Y )

is injective. In this section we show that if X → Y is a smooth morphism, then
the family of all subschemes Zλ ↪→ X which are étale over Y , is schematically
dominant.

Lemma (B.1). Let S and X be affine schemes and X → S a smooth morphism.
Let f ∈ Γ(X). Then there exists a locally closed subscheme j : Z ↪→ X such that
Z ↪→ X → S is étale and j∗(f) ∈ Γ(Z) is non-zero.

Proof. Let S = Spec(A) and X = Spec(B). By a standard limit argument, we can
assume that A is noetherian. Let x ∈ X be a point such that f is not zero in OX,x.
Let s ∈ S be the image of x. Let p ⊆ A be the prime ideal corresponding to s.
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By Krull’s intersection theorem there is an integer n ≥ 0 such that f ∈ pnBp

but f /∈ pn+1Bp. Consider the k(p)-module M = pnAp/p
n+1Ap ⊗k(p) B ⊗A k(p).

By flatness, this is the submodule pnBp/p
n+1Bp of Bp/p

n+1Bp. Choose a basis for
pnAp/p

n+1Ap and let g1, g2, . . . , gk ∈ B ⊗A k(p) be the coefficients in this basis of
the image of f in M . As f is not zero in M , there is at least one non-zero gi and
we let g = gi.

Let U ⊆ X be an open subset such that U ∩ Xs = (Xs)g. Choose a closed
point x ∈ (Xs)g such that k(s) → k(x) is separable. There is then by [EGAIV,
Cor. 17.16.3] a locally closed affine subscheme Z = Spec(C) ↪→ U , containing the
point x, such that Z → X → S is étale. In particular we have that g is invertible
in C ⊗A k(p). It follows that the image of f in pnCp/p

n+1Cp is non-zero. As C
is a flat A-algebra, this implies that the image of f in Cp/p

n+1Cp is non-zero. In
particular, the image of f in C is non-zero. �

Proposition (B.2). Let S be a scheme and let X → S be a smooth morphism.
Then the family of all subschemes Zλ ↪→ X which are étale over Y , is schematically
dominant.

Proof. It is enough to show that the family is schematically dominant when X and
S are affine. Let f, g ∈ Γ(X,OX) such that f is non-zero in Γ(Xg,OX). The above
lemma gives a locally closed subscheme Xf,g ↪→ Xg such that Xf,g → S is étale
and such that the pull-back of f to Xf,g is non-zero. It follows that the family
(Xf,g ↪→ X) is schematically dominant. �

Corollary (B.3). Let S be a scheme, S′ → S a smooth morphism and B′ → S′ a
flat morphism, locally of finite presentation. Then there is a family of locally closed
subschemes S′λ ↪→ S′ such that S′λ → S is étale and such that (S′λ ×′S B′ ↪→ B′) is
schematically dominant.

Proof. Take a schematically dominant family (S′λ ↪→ S′) as in the proposition. Then
the pull-back family (S′λ ×′S B′ ↪→ B′) is schematically dominant as well [EGAIV,
Thm. 11.10.5]. �
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