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Abstract. We show that the Hilbert functor of points on an arbitrary
separated algebraic stack is an algebraic space. We also show the al-
gebraicity of the Hilbert stack of points on an algebraic stack and the
algebraicity of the Weil restriction of an algebraic stack along a finite
flat morphism. For the latter two results, no separation assumptions are
necessary.

Introduction

The purpose of this note is to give a short and elementary proof of the
algebraicity of the Hilbert functor of points HilbdX for an arbitrary separated
algebraic space or stack X, cf. Theorem (4.1). The key fact is that given
an étale (resp. smooth) presentation f : U → X there is an open subspace
HilbdU→X of HilbdU and a representable étale (resp. smooth) surjective map
f∗ : HilbdU→X → HilbdX . To show that HilbdX is algebraic, it is thus enough
to show that HilbdU is algebraic. When U is affine, this is well-known [Nor78,
GLS07a].

When X is not separated, the Hilbert functor is not representable [LS08].
A replacement for the Hilbert functor is then the Hilbert stack which was
briefly introduced by M. Artin [Art74, App.]. Applying the same method
as for the Hilbert functor, we deduce the algebraicity of the Hilbert stack
of points from the affine case, cf. Theorems (4.3) and (4.4). Along the way
we also prove the algebraicity of the Weil restriction of an algebraic stack
along a finite flat morphism and the algebraicity of Hom-stacks when the
source is finite flat, cf. Theorems (3.7) and (3.12). In Section 5, we show
that the open substack parameterizing étale families coincides with the stack
quotient of the dth fiber product Xd by the symmetric group. This is the
stack of zero-dimensional branchvarieties [AK10].
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Let us indicate the relationship between our methods and more standard
representation techniques. Thus consider the following diagram of subcate-
gories of algebraic spaces over some fixed base scheme:

Aff AF-Sch� � //

QProjfp
� _

��

AlgSpfp,sep
� � //

AlgSpsep

� _

��

� � //

AlgSpfp
� � //

AlgSp.

� _

��
� � //

Here Aff (resp. QProj, resp. AF-Sch, resp. AlgSp) denotes the category
of affine schemes (resp. quasi-projective schemes, resp. AF-schemes, resp.
algebraic spaces). A scheme is AF if every finite set of points lies in an
affine open subscheme. The subscripts “fp” and “sep” stand for “locally of
finite presentation” and “separated”.

Let X be an algebraic space in one of these categories and consider a func-
tor or stack of objects on X such as the Hilbert functor HilbX . The classical
approach is to work in the category QProjfp and show that the functor can
be embedded into a projective scheme [FGA, No. 221]. Alternatively, we
can work in the bigger category AlgSpfp,sep where Artin’s algebraization
theorems [Art69, Art74] apply. In this category, the algebraicity of the
Hilbert functor, Hilbert stack and Weil restriction is well-known, cf. [Art69,
Cor. 6.2], [Sta06, Rmk. 4.5] and [Lie06, §2.1].

In this paper we will primarily be interested in the second line of the
diagram and show that in the zero-dimensional case we can use more el-
ementary and constructive methods to deduce algebraicity. As a bonus,
we need neither finiteness nor separatedness assumptions. Similar methods
were applied in [GLS07a, GLS07b] for Hilbert and Quot schemes of affine
and AF-schemes.

In a subsequent paper, we will turn the attention to the category AlgSpfp

and use Artin’s algebraization theorem to show the algebraicity of the Hilbert
stack parameterizing higher-dimensional families on a given, possibly non-
separated, scheme or algebraic space. This relies on variants of Chow’s
lemma and Grothendieck’s existence theorem for non-separated spaces.

As it is easier to first establish the algebraicity of the Hilbert stack and
then a posteriori verify that it is quasi-separated we work with general
algebraic spaces and algebraic stacks without any separation assumptions,
cf. Appendix A.

Acknowledgments. I would like to thank D. Laksov, R. Skjelnes and the
referee for useful comments and discussions.

1. The Hilbert functor and the Hilbert stack

For simplicity, we work over a fixed base scheme S. If X is a scheme or an
algebraic stack over S, then a property of X/S always refers to a property
of the structure morphism X → S.

Definition (1.1). We say that a finite morphism f : X → Y is flat of rank d
if f∗OX is a locally free OY -module of constant rank d.
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Definition (1.2). Let X/S be a separated scheme (resp. separated alge-
braic space, resp. separated algebraic stack). The Hilbert functor of points
HilbdX/S is the functor which to an S-scheme T assigns the set of closed
subschemes (resp. subspaces, resp. substacks) Z ↪→ X ×S T such that the
second projection p : Z → T is finite and flat of rank d.

Remark (1.3). It is easily seen, using [EGAIV, Thm. 12.2.1 (i), (ii)], that
HilbdX/S is an open and closed subfunctor of the full Hilbert functor HilbX/S
which parameterizes closed subspaces (or substacks) which are flat, proper
and of finite presentation. Note that an object of HilbdX/S(T ) is a closed
substack Z ↪→ X ×S T such that p : Z → T is finite and hence Z is always
a scheme even if X is an algebraic stack.

Remark (1.4). Using Artin’s criteria for algebraicity it can be shown that
the Hilbert functor HilbX /S is a separated algebraic space locally of finite
presentation when X /S is a separated algebraic stack locally of finite pre-
sentation. In this generality, the result is due to M. Olsson [Ols05, Thm. 1.5]
but also see [OS03] for boundedness results when X is a Deligne–Mumford
stack.

We will now define the Hilbert stack of points [Art74, App.]. The dif-
ference between the Hilbert stack and the Hilbert functor is that in the
stack we consider flat families Z → T with morphisms Z → X without the
condition that Z → X ×S T is a closed immersion.

Definition (1.5). Given an algebraic stack X /S, let H d
X be the category

with objects pairs of morphisms (p : Z → T , q : Z → X ) where T is an S-
scheme and p is finite and flat of rank d. The morphisms are triples (ϕ,ψ, τ)
fitting into a 2-commutative diagram

Z1
ϕ

//

p1
��

q1

""

�� ��
�� τ

Z2

p2
��

q2 // X

T1
ψ

// T2

�

such that the square is cartesian. The category H d
X is fibered in groupoids

over Sch/S and by étale descent of affine schemes [SGA1, Exp. VIII, Thm. 2.1]
it follows that H d

X is a stack. We call H d
X the Hilbert stack of d points

on X .
When X /S is a separated algebraic stack, then the Hilbert functorHilbdX /S

is an open substack of the Hilbert stack H d
X , cf. Proposition (1.9) below.

Example (1.6). The Hilbert stack H 1
X is equivalent to X . If X is sepa-

rated, then the Hilbert functor Hilb1
X equals the automorphism-free locus

of X .
In the remainder of this section we will review more general Hilbert stacks

present in the literature. These are not used in the subsequent sections.
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Definition (1.7). Let X be an algebraic stack. The Hilbert stack HX

is the stack parameterizing flat and proper algebraic stacks p : Z → T of
finite presentation together with a representable morphism q : Z → X .
The substack of objects such that (q, p) : Z → X ×S T is locally quasi-
finite (resp. unramified) is denoted H qfin

X (resp. H unram
X ). The substack of

objects such that p is representable, i.e., Z is an algebraic space, is denoted
H repr

X .

Lemma (1.8). Let f : X → Y be a morphism of algebraic spaces, locally of
finite type.

(i) The locus of points in X where f is quasi-finite is open.
(ii) The locus of points in X where f is unramified is open.
(iii) If f is proper, then the subfunctor Y ′ ⊆ Y consisting of morphisms

T → Y such that X ×Y T → T is a closed immersion, is an open
subspace.

Proof. (i) is [EGAIV, Cor. 13.1.4] as the question is étale-local on X and
Y . The locus where f is unramified is the complement of the support of
Ω1
f and thus open. To show (iii) we can assume that f is quasi-finite and

hence finite [LMB00, Cor. A.2.1] since the locus of Y where f is quasi-finite
is open by (i). That Y ′ ⊆ Y is an open subspace now follows by Nakayama’s
lemma. �

Proposition (1.9). Let X /S be an algebraic stack. Then
(i) H repr

X ⊂ HX is an open substack.
(ii) H d

X ⊂ H repr
X is an open and closed substack.

(iii) H unram
X ⊂ H qfin

X ⊂ HX are open substacks.
(iv) If X /S is a separated algebraic stack, then the Hilbert functor

HilbX is an open subfunctor of the Hilbert stack HX .

Proof. Let T be a scheme and let (p : Z → T, q : Z → X ) be an object of
HX (T ). We let T repr = T ×HX

H repr
X ⊆ T and similarly for T unram and

T qfin.
Note that since p is separated, the inertia stack IZ → Z is proper.

By Lemma (1.8) (iii) applied to IZ → Z the automorphism-free locus
Z ′ ⊆ |Z | is open. Thus T repr = T \ p(Z \ Z ′) is an open subscheme of
T . This shows (i). The second statement follows from [EGAIV, Thm. 12.1.1
(i), (ii)].

To show (iii), let Z ′ ⊆ Z be the locus where (q, p) : Z → X ×S T is
locally quasi-finite (resp. unramified). This locus is open by Lemma (1.8)
and thus T qfin (resp. T unram) is the open subscheme T \ p(Z \Z ′).

(iv) If X /S is separated, then (q, p) : Z → X ×S T is proper and by
Lemma (1.8) (iii), the locus of X ×ST over which (q, p) is a closed immersion
is open. We let Z ′ ⊆ Z be the inverse image of this locus. Then T ×HX

HilbX = T \ p(Z \Z ′) is an open subscheme of T . �

The stack HX is not algebraic in general as Grothendieck’s existence
theorem does not hold without any projectivity assumptions on either p or
(q, p). The algebraicity of H qfin,repr

X for a separated algebraic stack X with
finite diagonal, locally of finite presentation over S, is proved by J. Starr
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in [Sta06, Rmk. 4.5]. A. Vistoli studies the substack H unram,repr
X when X

is a separated Deligne–Mumford stack, locally of finite presentation over S
although he does not prove algebraicity [Vis91].

A sketch of the proof of the algebraicity of H qfin
X for a separated algebraic

stack, locally of finite presentation over S, is given by M. Lieblich in [Lie06,
Thm. 2.1, Cor. 2.5]. More generally, it is expected that H qfin

X is algebraic
when X /S is an algebraic stack locally of finite presentation with separated
and quasi-finite diagonal. Note that in this case (q, p) : Z → X ×S T is
quasi-finite and separated, hence quasi-affine so that OZ is (q, p)-ample.

The stack of branchvarieties, introduced by V. Alexeev and A. Knut-
son [AK10], is the open substack of H qfin

X parameterizing families Z → T
with geometrically reduced fibers.

The space of husks of a separated algebraic space X is the open sub-
space of H qfin

X parameterizing families Z → T with (S1)-fibers such that
(q, p) : Z → X×S T is birational onto its image. This is the space of algebra
husks of quotients of OX introduced by J. Kollár [Kol09, Rmk. 10]. When
limited to 1-dimensional husks this is M. Hønsen’s space of Cohen–Macaulay
curves [Høn04].

2. Representability of the Hilbert scheme

In this section we show that the Hilbert functor HilbdX is separated and
that it is represented by a scheme if X is an AF-scheme. As we do not
know a priori that HilbdX is quasi-separated, it is not enough to check the
valuative criterion for separatedness.

Lemma (2.1). Let S be a scheme and let X → S be a separated algebraic
stack. Then the diagonal of HilbdX /S → S is a closed immersion.

Proof. Let T be an S-scheme and let T → HilbdX /S ×S HilbdX /S be a mor-
phism corresponding to closed subschemes Z1 ↪→ X ×ST and Z2 ↪→ X ×ST .
Let T12 : Sch/T → Set be the functor defined as follows: for a T -scheme T ′,
we let T12(T ′) be the one-point set if Z1 ×T T ′ = Z2 ×T T ′ and the empty
set otherwise. Then T12 ↪→ T is represented by a closed subscheme [EGAI,
Lem. 9.7.9.1]. Since the natural diagram

HilbdX /S
� � ∆ // HilbdX /S ×S HilbdX /S

T12
� � //

OO

T

[Z1],[Z2]

OO

is cartesian, it follows that ∆Hilbd
X /S

is a closed immersion. �

Definition (2.2). Let X be a scheme. We say that X is an AF-scheme if
every finite set of points Z ⊆ X is contained in an affine open subset of X.

Remark (2.3). If S is an affine scheme and X → S is a locally quasi-finite
and separated morphism of algebraic spaces, then it follows from Zariski’s
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main theorem [LMB00, Thm. A.2] that every finite subset Z ⊆ X is con-
tained in a quasi-affine open subscheme of X. It then follows from [EGAII,
Cor. 4.5.4] that X is an AF-scheme.

Theorem (2.4). Let S be an affine scheme and let X/S be an AF-scheme.
Then HilbdX/S is represented by a separated scheme Hilbd(X/S).

Proof. When X is an affine scheme then it is known that HilbdX/S is rep-
resented by a scheme [Nor78, GLS07a] and this also follows independently
from Theorem (4.3). If X is an AF-scheme, then let X =

⋃
α Uα be an open

cover of X by affines such that every subset of d points of X lies in some
Uα. It is then easily seen that

∐
αHilbdUα

→ HilbdX is a Zariski covering
and thus HilbdX is represented by a scheme. That Hilbd(X/S) is separated
is Lemma (2.1). �

3. Weil restriction and push-forward of Hilbert stacks

In this section we show that the Weil restriction of an algebraic space
or algebraic stack along a finite flat morphism is algebraic. As a conse-
quence the push-forward of Hilbert stacks is algebraic. We also provide a
list of properties for the Weil restriction and the push-forward of Hilbert
stacks. This section generalizes the results of Bosch, Lütkebohmert and
Raynaud [BLR90, §7.6].

Definition (3.1). Let X → S′ and g : S′ → S be morphisms of algebraic
spaces. The Weil restriction RS′/S(X) is the functor from S-schemes to
sets that takes an S-scheme T to the set of sections of XT → S′T , i.e.,

RS′/S(X)(T ) = HomS′(S′ ×S T,X).

Similarly, if X → S′ is an algebraic stack, then RS′/S(X ) is the stack
with T -points the groupoid HomS′(S′ ×S T,X ) and the natural notion of
pull-back. If f : X → Y is a morphism of algebraic stacks, then there is a
natural morphism of stacks

RS′/S(f) : RS′/S(X ) → RS′/S(Y )

taking a morphism s : S′ ×S T → X to the morphism f ◦ s : S′ ×S T → Y .
The Weil restriction is also sometimes denoted ΠS′/SX or g∗X and is also

known as restriction of scalars, cf. [FGA, No. 195, §C 2] and [Ols06]. The
Weil restriction can also be defined on 2-morphisms so that RS′/S becomes
a strict 2-functor from the 2-category of stacks over S′ to the 2-category of
stacks over S. This functor is left exact, i.e., takes 2-fiber products to 2-fiber
products and the terminal object S′ to the terminal object S. Indeed, RS′/S

is a right 2-adjoint to the pull-back functor g−1.

Definition (3.2). Let f : X → Y be a morphism of algebraic stacks. There
is a natural morphism f∗ : H d

X → H d
Y taking an object (p : Z → T, q : Z →

X ) to (p, f ◦ q).

Definition (3.3). Let P be a property of morphisms of stacks. We say that
P is stable under base change if for every morphism f : X → Y with P and
every morphism Y ′ → Y the base change f ′ : X ×Y Y ′ → Y ′ has P . We
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say that P can be checked on affines, if a morphism f : X → Y has P if
and only if f : X ×Y T → T has P for every affine scheme T and morphism
T → Y .

A stable property which is fppf-local on the base can be checked on affines.
An example of a non-fppf local property that can be checked on affines is
the property “strongly representable”, i.e., represented by schemes.

Lemma (3.4). Let P and Q be two properties of morphisms of stacks. As-
sume that these properties are stable under base change and that Q is a
property that can be checked on affines. Let d be a positive integer. The
following are equivalent:

(i) If S′ → S is a finite flat morphism of rank d between algebraic spaces
and if f : X → Y is a morphism of algebraic stacks over S′ with
property P then RS′/S(f) : RS′/S(X ) → RS′/S(Y ) has property Q.

(ii) If S is an affine scheme, if S′ → S is finite flat of rank d and if X →
S′ is a morphism of stacks with property P , then RS′/S(X ) → S
has property Q.

(iii) If f : X → Y is a morphism of algebraic stacks over S with prop-
erty P then f∗ : H d

X /S → H d
Y /S has property Q.

Proof. We have that (i) =⇒ (ii) since S = RS′/S(S′).
(ii) =⇒ (iii): Let f : X → Y be a morphism of algebraic S-stacks, let T

be an affine S-scheme and let h : T → H d
Y /S be a morphism corresponding

to a family (Z → T,Z → Y ). Then the diagram

(3.4.1)

RZ/T (X ×Y Z) //

��

T

h
��

H d
X /S

f∗
// H d

Y /S

�

is cartesian and thus (ii) =⇒ (iii).
(iii) =⇒ (i): Let g : S′ → S be finite flat of rank d and let f : X → Y be

a morphism of algebraic S′-stacks. Let h : S → H d
S′/S be the morphism cor-

responding to the family (g, idS′). Then from the cartesian diagram (3.4.1)
we obtain the cartesian diagram

RS′/S(X )
RS′/S(f)

//

��

RS′/S(Y ) //

��

h

��

S ∼= HilbdS′/S

H d
X /S

f∗
// H d

Y /S
//

�

H d
S′/S

�

and the lemma follows. �

Proposition (3.5). Let S be a scheme and let S′ → S be a finite flat
morphism of finite presentation. Let f : X → Y be a morphism of stacks
over S′. If f has one of the properties:

(i) locally of finite presentation,
(ii) formally étale,
(iii) formally unramified,
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(iv) formally smooth,
(v) surjective and smooth,
(vi) a closed immersion,
(vii) an open immersion,
(viii) an isomorphism,
(ix) affine;

then so has RS′/S(f) (also see Proposition (3.8) for further properties).

Proof. Let P be one of the properties and assume that f has P . Since
P is Zariski-local, we can assume that S′ → S has constant rank d. By
Lemma (3.4) we can further assume that S is affine, and that Y = S′.

Properties (i)–(v) of RS′/S(X ) are verified using the functorial charac-
terization of morphisms which are locally of finite presentation [EGAIV,
Prop. 8.14.2], [LMB00, Prop. 4.15] and the infinitesimal criteria for formally
étale, unramified and smooth maps. Property (vi) follows from [EGAI,
Lem. 9.7.9.1] and properties (vii) and (viii) are obvious. For (ix) it is by (vi)
enough to show that RS′/S(X) is represented by a scheme affine over S when
X is the spectrum of a polynomial ring over OS′ . This is straight-forward.
We refer to [BLR90, §7.6, Prop. 2, pf. of Thm. 4, Prop. 5] for details. �

Theorem (3.6) ([BLR90, §7.6, Thm. 4]). Let S be an affine scheme and
let g : S′ → S be a finite flat morphism of finite presentation. Let X → S′

be a morphism of schemes. If X is an AF-scheme then RS′/S(X) is an
AF-scheme.

Proof. LetX =
⋃
α Uα be an open cover ofX by affines such that every finite

subset of points of X lies in some Uα. By Proposition (3.5), we have that
RS′/S(Uα) is affine and that RS′/S(Uα) → RS′/S(X) is an open immersion.
It is then easily seen that

∐
αRS′/S(Uα) → RS′/S(X) is a Zariski covering

so that RS′/S(X) is a scheme. Moreover, RS′/S(X) is an AF-scheme since
a finite number of points in RS′/S(X) corresponds to a morphism S′ ×S∐n
i=1 Spec(ki) → X and this factors through one of the Uα’s. �

We say that a morphism of stacks f : X → Y is algebraic if for every
affine scheme T and morphism T → Y the stack X ×Y T is an algebraic
stack.

Theorem (3.7). Let S′ → S be a finite flat morphism of finite presentation
between algebraic spaces. Let f : X → Y be a morphism of S′-stacks.

(i) If f is representable, locally quasi-finite and separated then RS′/S(f)
is strongly representable.

(ii) If f is representable then so is RS′/S(f).
(iii) If f is algebraic then so is RS′/S(f).

In particular, if X is an algebraic space (resp. an algebraic stack) then so
is RS′/S(X ).

Proof. By Lemma (3.4) we can assume that S is affine and Y = S′. If f
is as in (i), then X is an AF-scheme by Remark (2.3) so that RS′/S(X ) is
represented by a scheme according to Theorem (3.6).

(ii) If f is representable, then X is an algebraic space. Choose an étale
presentation U → X with U an AF-scheme (e.g., a disjoint union of affine
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schemes). By Theorem (3.6) we have that RS′/S(U) is a scheme. Further-
more, by Proposition (3.5) and (i) we have that RS′/S(U) → RS′/S(X ) is
étale, surjective and strongly representable. Thus, by definition RS′/S(X )
is an algebraic space.

(iii) If f is algebraic, then X is an algebraic stack. Choose a smooth
presentation U → X with U an algebraic space. Then RS′/S(U) is an
algebraic space by (ii) and RS′/S(U) → RS′/S(X ) is smooth, surjective and
representable by Proposition (3.5) and (ii). Thus RS′/S(X ) is an algebraic
stack. �

We now complement Proposition (3.5) with some additional properties.

Proposition (3.8). Let S be a scheme and let S′ → S be a finite flat
morphism of finite presentation. Let f : X → Y be a morphism of algebraic
stacks over S′ so that RS′/S(f) is a morphism of algebraic stacks over S. If
f has one of the properties:

(x) representable,
(xi) locally of finite type,
(xii) quasi-compact,
(xiii) quasi-affine,
(xiv) of finite type,
(xv) of finite presentation,
(xvi) monomorphism,
(xvii) representable and separated,
(xviii) quasi-separated,
(xix) separated diagonal,
(xx) affine diagonal,
(xxi) quasi-affine diagonal,
(xxii) unramified diagonal (i.e., relatively Deligne–Mumford);

then so has RS′/S(f).

Proof. As before we can assume that S is an affine scheme and that Y = S′.
Property (x) is Theorem (3.7) (ii).

(xi) Take a smooth surjective morphism U → X such that U is a dis-
joint union of affine schemes. If f is locally of finite type, then U → S′

factors through a closed immersion U ↪→W and a morphism W → S′ which
is locally of finite presentation. Thus by (vi), (i) and (v), it follows that
RS′/S(X ) is locally of finite type.

Similarly, for property (xii) take a smooth surjective morphism U → X
with U affine and the quasi-compactness of RS′/S(X ) follows from (ix).
Property (xiii) is the conjunction of properties (vii), (ix) and (xii).

As RS′/S preserves fiber products we have that RS′/S(∆f ) = ∆RS′/S(f).
Property (xvi) [resp. (xvii)] is equivalent to the diagonal being an isomor-
phism [resp. a closed immersion]. Property (xviii) is equivalent to the quasi-
compactness of the diagonal and its diagonal. Properties (xvi)–(xxii) thus
follows from applying the Proposition to the diagonal ∆f and its diagonal
∆∆f

with the properties (iii), (vi), (viii), (ix), (xii), (xiii).
Finally, properties (xiv) and (xv) follow from properties (i), (xi), (xii)

and (xviii). �
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Remark (3.9). If S′ → S is finite and étale then Proposition (3.5) also holds
for the properties “proper”, “flat” and “separated” [BLR90, §7.6, Prop. 5].

Example (3.10). Proposition (3.5) does not hold for the property “proper”
nor for the property “finite and étale”. In fact, let S be arbitrary and let
S′ → S be a finite flat ramified cover of degree d. Then RS′/S(S′qS′) → S

is étale and has generic rank 2d but has lower rank over the branch locus of
S′ → S. Thus RS′/S(S′ q S′) → S′ is not proper.

Similarly if X is a separated algebraic stack, i.e., has proper diagonal,
then RS′/S(X ) need not be separated unless S′/S is étale. For exam-
ple, let S′/S be a finite flat ramified covering of degree d as before and
let X = BG(S′) where G is a finite constant group. Then RS′/S(X ) is
an étale gerbe over S with generic geometric automorphism group Gd but
with automorphism group of lower rank over the points of S where S′/S is
ramified.

Theorem (3.11). Let f : X → Y be a morphism of algebraic stacks.
(i) The morphism f∗ : H d

X → H d
Y is algebraic.

(ii) If f is representable, locally quasi-finite and separated, then f∗ is
strongly representable.

(iii) If f has one of the properties (i)–(xxii) of Propositions (3.5) and (3.8),
then so has f∗.

Proof. This is the conjunction of Lemma (3.4), Theorem (3.7) and Proposi-
tions (3.5) and (3.8). �

Theorem (3.12). Let X → S be a finite flat morphism of finite presen-
tation and let Y → S be an arbitrary algebraic stack. Then the stack
H omS(X,Y ) is algebraic. If Y → S has one of the properties in Proposi-
tions (3.5) and (3.8), then so has H omS(X,Y ) → S.

Proof. As H omS(X,Y ) = RX/S(X ×S Y ) this follows immediately from
Theorem (3.7). �

Remark (3.13). The argument in [Ols06, §3.3] shows that Theorem (3.12)
remains true if X is an algebraic stack and X → S is proper, quasi-finite
and flat of finite presentation. Indeed, any such stack admits, étale-locally
on S, a finite flat presentation.

4. Algebraicity of the Hilbert functor and the Hilbert stack

Let f : U → X be a morphism of separated algebraic stacks. Let
HilbdU→X ⊆ HilbdU be the subfunctor parameterizing families Z ↪→ U ×S T
such that the composition Z ↪→ U ×S T → X ×S T is a closed immersion.
Then

HilbdU→X

f∗
//

��

HilbdX /S

��

H d
U /S

f∗
// H d

X /S

�

is cartesian and the two vertical morphisms are open immersions.
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Theorem (4.1). Let X /S be a separated algebraic stack. Then HilbdX /S

is a separated algebraic space.

Proof. We can assume that S is affine. Let f : U =
∐
α Uα → X be a

smooth presentation such that the Uα’s are affine. Then U is an AF-scheme
and HilbdU/S is represented by a scheme according to Theorem (2.4). As
f is representable, smooth and surjective, so is f∗ : HilbdU→X → HilbdX /S

by Theorem (3.11). Thus HilbdX /S is an algebraic space. That HilbdX /S is
separated is Lemma (2.1). �

As for the Hilbert functor, the algebraicity of the Hilbert stack will be
an immediate consequence of Theorem (3.11) after we have verified that the
Hilbert stack of an affine scheme is algebraic.

In the finitely presented case, the following results follow from the more
general results of [Lie06, §2.1]. In the affine case treated below, the proofs
are a matter of elementary algebra.

Lemma (4.2). Let B be an A-algebra and let M be a locally free A-module
of finite rank. Then there is an A-algebra Q which represents B-algebra
structures on M . That is, for every A-algebra A′, there is a functorial one-
to-one correspondence between B′ = B ⊗A A′-algebra structures on M ′ =
M ⊗A A′ and homomorphisms Q → A′. If B is an A-algebra of finite type
(resp. of finite presentation), then so is Q.

Proof. AB′-algebra structure onM ′ is given by multiplication maps µ : M ′⊗A′

M ′ → M ′, m : B′ ⊗A′ M ′ → M ′, and a unit η : A′ → M ′. Such triples of
maps correspond to A-module homomorphisms

(M ⊗AM ⊗AM∨)⊕ (B ⊗AM ⊗AM∨)⊕M∨ → A′

and are thus represented by the symmetric algebra

P := Sym
(
(M ⊗AM ⊗AM∨)⊕ (B ⊗AM ⊗AM∨)⊕M∨)

.

That the multiplication µ is commutative, associative and compatible with
m and η can be expressed as the vanishing of the A′-homomorphisms

µ− µ ◦ τ : M ′ ⊗A′ M ′ →M ′

µ ◦ (µ⊗ idM ′)− µ ◦ (idM ′ ⊗ µ) : M ′ ⊗A′ M ′ ⊗A′ M ′ →M ′

µ ◦ (m⊗ idM ′)−m ◦ (idB′ ⊗ µ) : B′ ⊗A′ M ′ ⊗A′ M ′ →M ′

µ ◦ (η ⊗ idM ′)− idM ′ : M ′ →M ′

where τ : M ′ ⊗A′ M ′ →M ′ ⊗A′ M ′ swaps the two factors. This vanishing is
represented by a quotient Q of P according to [EGAI, Lem. 9.7.9.1].

If B is of finite type, then clearly so is P and hence Q. If B is of finite
presentation we use a limit argument to reduce to the noetherian case and
it follows that Q is of finite presentation. �

Theorem (4.3). Let X and S be affine schemes. Then H d
X/S is a quasi-

compact algebraic stack with affine diagonal. If X/S is of finite type (resp.
of finite presentation) then so is H d

X/S.
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Proof. There is a natural morphism H d
X/S → BGLd(S) which maps (Z, p, q)

to the locally free OT -module p∗OZ . The stack BGLd(S)/S is a finitely
presented algebraic stack with affine diagonal. Lemma (4.2) shows that
H d
X/S → BGLd(S) is represented by affine morphisms and the theorem

follows. �

Theorem (4.4). Let X /S be an algebraic stack. Then H d
X /S is algebraic.

If X /S has one of the properties: quasi-compact, quasi-separated, locally of
finite presentation, locally of finite type, separated diagonal, affine diagonal,
quasi-affine diagonal; then so has H d

X /S → S.

Proof. By Theorem (4.3), we have that H d
S/S is an algebraic stack over S of

finite presentation and with affine diagonal. The algebraicity of H d
X /S thus

follows from Theorem (3.11) (i). The properties of H d
X /S → S follows from

Theorem (3.11) (iii). �

Note that H d
X /S is not Deligne–Mumford nor has quasi-finite diagonal.

On the other hand, it can be seen that the open substack H d,unram
X /S is

Deligne–Mumford.

5. Étale families

Let S be a scheme and let X/S be an algebraic space. The stack of
branchvarieties [AK10] on X is the open substack of the Hilbert stack HX/S

parameterizing families (p : Z → T, q : Z → X) such that the geometric
fibers of p are reduced. For zero-dimensional families of rank d, this is the
open substack E tdX/S of H d

X/S parameterizing étale families of rank d. IfX/S
is separated, it is natural to also study the subspace ETd

X/S parameterizing
étale families Z → T of rank d such that Z → X×S T is a closed immersion.
Following the notation of [LMB00, Cons. 6.6] we let SECd

X/S be the open
subset of (X/S)d = X×S · · ·×SX which is the complement of the diagonals.
The symmetric group Sd acts by permutations on (X/S)d and this action
is free over SECd

X/S . We have the following descriptions of these stacks:

Theorem (5.1). Let X/S be an arbitrary algebraic space. There is a natural
isomorphism E tdX/S → [(X/S)d/Sd]. If X/S is separated, then the open
substack ETd

X/S is identified with the algebraic space SECd
X/S/Sd.

Proof. We will construct canonical morphisms in both directions. Let (p : Z →
T, q : Z → X) be a T -point of E tdX/S . The scheme (Z/T )d is étale of rank dd

over T . The diagonals of this scheme are open and closed, and their com-
plement SECd

Z/T is étale of rank d!. This can be verified over algebraically
closed points where it is trivial. The scheme SECd

Z/T is an Sd-torsor and
comes with an Sd-equivariant morphism SECd

Z/T → (X/S)d. This defines
a T -point of [(X/S)d/Sd].

Conversely, let W → T be a T -point of [(X/S)d/Sd], i.e., let W/T be
an Sd-torsor together with an Sd-equivariant morphism W → (X/S)d. Let
Sd−1 be the subgroup of Sd acting by permuting the first d − 1 factors
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of (X/S)d. This group acts freely on W and the quotient Z = W/Sd−1

is an algebraic space, étale of rank d over T . Moreover, the composition
of W → (X/S)d with the last projection is Sd−1-invariant and induces a
morphism Z → X. We have thus constructed a T -point of E tdX/S .

It is clear that these constructions are functorial and thus defines mor-
phisms F : E tdX/S → [(X/S)d/Sd] and G : [(X/S)d/Sd] → E tdX/S . It is not
difficult to show that these are (quasi-)inverses. In fact, if (Z, p, q) is a T -
point of E tdX/S , then we have a canonical morphism SECd

Z/T /Sd−1 → Z

and that this is an isomorphism can be checked over algebraically closed
points. Conversely, if W/T is an Sd-torsor, then we obtain a morphism
W → ((W/Sd−1)/T )d where the ith factor is the composition of τin : W →
W and the quotient W → W/Sd−1. Again, it is easily verified that W →
((W/Sd−1)/T )d induces an isomorphism of W onto SECd

(W/Sd−1)/T . �

Remark (5.2). The universal Sd-torsor of [(X/S)d/Sd] is (X/S)d. The
above isomorphism shows that [(X/S)d/Sd−1] = [(X/S)d−1/Sd−1] ×S X
is the universal étale rank d family on E tdX/S .

Appendix A. Algebraic spaces and stacks

A sheaf of sets F on the category of schemes Sch with the étale topology is
an algebraic space if there exists a scheme X and a morphism X → F which
is represented by surjective étale morphisms of schemes [RG71, Déf. 5.7.1],
i.e., for any scheme T and morphism T → F , the fiber product X ×F T is a
scheme and X ×F T → T is surjective and étale. A stack X is a category
fibered in groupoids over Sch with the étale topology satisfying the usual
sheaf condition [LMB00, Déf. 3.1].

A morphism f : X → Y of stacks is representable if for any scheme T
and morphism T → Y , the 2-fiber product X ×Y T is an algebraic space.
A stack X is algebraic if there exists a smooth presentation, i.e., a smooth,
surjective and representable morphism U → X where U is a scheme (or
algebraic space). A morphism f : X → Y of stacks is quasi-separated if the
diagonal ∆X /Y is quasi-compact and quasi-separated, i.e., if both ∆X /Y

and its diagonal are quasi-compact.
We do not require that algebraic spaces and stacks are quasi-separated

nor that the diagonal of an algebraic stack is separated. The diagonal of a
(not necessarily quasi-separated) algebraic space is represented by schemes.
This follows by effective fppf-descent of monomorphisms which are locally
of finite type. Indeed, more generally the class of locally quasi-finite and
separated morphisms is an effective class in the fppf-topology (cf. [Mur66,
App.], [SGA3, Exp. X, Lem. 5.4] or [RG71, pf. of 5.7.2]). The diagonal
of an algebraic stack X is representable. This follows by [LMB00, pf. of
Prop. 4.3.1] as [LMB00, Cor. 1.6.3] generalizes to arbitrary algebraic spaces.

In particular, if X is an algebraic space (resp. an algebraic stack) and
S and T are schemes (resp. algebraic spaces) with morphisms S → X and
T → X, then S ×X T is a scheme (resp. an algebraic space).
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