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Abstract

We present a small extension to Haskell called the Key monad. With
the Key monad, unique keys of different types can be created and
can be tested for equality. When two keys are equal, we also obtain
a concrete proof that their types are equal. This gives us a form
of dynamic typing, without the need for Typeable constraints. We
show that our extension allows us to safely do things we could not
otherwise do: it allows us to implement the ST monad (inefficiently),
to implement an embedded form of arrow notation, and to translate
parametric HOAS to typed de Bruijn indices, among others. Although
strongly related to the ST monad, the Key monad is simpler and
might be easier to prove safe. We do not provide such a proof of
the safety of the Key monad, but we note that, surprisingly, a full
proof of the safety of the ST monad also remains elusive to this day.
Hence, another reason for studying the Key monad is that a safety
proof for it might be a stepping stone towards a safety proof of the
ST monad.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords Functional programming, Haskell, Higher-order state,
ST monad, Arrow notation, Parametric HOAS

1. Introduction

The ST monad (Launchbury and Peyton Jones 1994) is an impressive
feat of language design, but also a complicated beast. It provides
and combines three separate features: (1) an abstraction for global
memory references that can be efficiently written to and read
from, (2) a mechanism for embedding computations involving
these memory references in pure computations, and (3) a design
that allows references in the same computation to be of arbitrary,
different types, in a type-safe manner.

In this paper, we provide a new abstraction in Haskell (+ GADTs
and rank-2 types) that embodies only feature (3) above: the combi-
nation of references (which we call keys) of different, unconstrained
types in the same computation. In the ST monad, the essential invari-
ant that must hold for feature (3), is that when two references are the
same, then their types must also be the same. Our new abstraction
splits reasoning based on this invariant into a separate interface, and

type KeyM s a

type Key s a

instance Monad (KeyM s)
newKey ::KeyM s (Key s a)
testEquality ::Key s a → Key s b → Maybe (a :∼: b)
runKeyM :: (∀ s.KeyM s a)→ a

data a :∼: b where Refl :: a :∼: a

Figure 1. The Key monad interface

makes it available to the user. The result is a small library called the
Key monad, of which the API is given in Figure 1.

The Key monad KeyM is basically a crippled version of the
ST monad: we can monadically create keys of type Key s a using
the function newKey , but we cannot read or write values to these
keys; in fact, keys do not carry any values at all. We can convert a
computation in KeyM into a pure value by means of runKeyM ,
which requires the argument computation to be polymorphic in s ,
just like runST would.

The only new feature is the function testEquality , which com-
pares two keys for equality. But the keys do not have to be of the
same type! They just have to come from the same KeyM compu-
tation, indicated by the s argument. If two keys are not equal, the
answer is Nothing . However, if two keys are found to be equal,
then their types must also be the same, and the answer is Just Refl ,
where Refl is a constructor from the GADT a :∼: b that functions
as the “proof” that a and b are in fact the same type1. This gives us a
form of dynamic typing, without the need for Typeable constraints.

Why is the Key monad interesting? There are three separate
reasons.

First, the Key monad embodies the insight that when two Keys
are the same then their types must be the same, and makes reasoning
based on this available to the user via testEquality . This makes the
Key monad applicable in situations where the ST monad would not
have been suitable. In fact, the bulk of this paper presents examples
of uses of the Key monad that would have been impossible without
testEquality .

Second, the Key monad is simpler than the ST monad, because
it does not involve global references, or any updatable state at all.
We would like to argue that therefore, the Key monad is easier to
understand than the ST monad. Moreover, given the Key monad, the
ST monad is actually implementable in plain Haskell, albeit in a less

1 It is actually possible to add testEquality to the standard interface of
STRef s, which would provide much the same features in the ST monad as
the Key monad would, apart from some laziness issues. However, because
of its simplicity, we think the Key monad is interesting in its own right.
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time- and memory-efficient way than the original ST monad (that is,
missing feature (1) above, but still providing features (2) and (3)).

This second reason comes with a possibly unexpected twist.
After its introduction in 1994, several papers have claimed to

establish the safety, fully or partially, of the ST monad in Haskell
(Launchbury and Peyton Jones 1994; Launchbury and Sabry 1997;
Ariola and Sabry 1998; Moggi and Sabry 2001). By safety we mean
three things: (a) type safety (programs using the ST monad are
still type safe), (b) referential transparency (programs using the ST

monad are still referentially transparent), and (c) abstraction safety
(programs using the ST monad still obey the parametricity theorem).
It came as a complete surprise to the authors that none of the papers
we came across in our literature study actually establishes the safety
of the ST monad in Haskell!

So, there is a third reason for studying the Key monad: A safety
proof for the Key monad could be simpler than a safety proof for the
ST monad. The existence of such a proof would conceivably lead to
a safety proof of the ST monad as well; in fact this is the route that
we would currently recommend for anyone trying to prove the ST

monad safe.
This paper does not provide a formal safety proof of the Key

monad. Instead, we will argue that the safety of the Key monad is
just as plausible as the safety of the ST monad. We hope that the
reader will not hold it against us that we do not provide a safety
proof. Instead, we would like this paper to double as a call to arms,
to find (ideally, mechanized) proofs of safety of both the Key monad
and the ST monad!

Our contributions are as follows:

• We present the Key monad (Section 2), its implementation
(Section 6), and informally argue for its safety (Section 5).

• We show that the added power of the Key monad allows us to
do things we cannot do without it, namely it allows us

to implement the ST monad (Section 2);

to implement an embedded form of arrow notation (Section
3);

to represent typed variables in typed representations of
syntax (Section 4);

to translate parametric HOAS to nested de Bruijn indices,
which allows interpretations of parametric HOAS terms, such
as translation to Cartesian closed categories, which are not
possible otherwise (Section 4).

• We identify some key missing pieces in the correctness proof of
the ST monad (Section 7). The Key monad may be a stepping
stone to finding the complete proof.

The Haskell code discussed in this paper can be found online at:
https://github.com/koengit/KeyMonad

2. The Key Monad

In this section, we describe the Key monad, what it gives us, and its
relation to the ST monad.

The interface of the Key monad (Figure 1) features two abstract
types (i.e., types with no user-accessible constructors): Key and
KeyM . The Key monad gives the user the power to create a new,
unique value of type Key s a via newKey . The only operation that
is supported on the type Key is testEquality , which checks if two
given keys are the same, and if they are returns a “proof” that the
types associated with the names are the same types.

2.1 Unconstrained Dynamic Typing

The power to prove that two types are the same allows us to
do similar things as with Data.Typeable, but without the need

for Typeable constraints. For instance, we can create a variant of
Dynamic using Keys instead of type representations. When given
a key and value, we can “lock up” the value in a box, which, like
Dynamic, hides the type of its contents.

data Box s where

Lock ::Key s a → a → Box s

If we have a Key and a Box , we can try to unlock the box to recover
the value it contains.

unlock ::Key s a → Box s → Maybe a

unlock k (Lock k ′ x ) =
case testEquality k k ′ of

Just Refl → Just x

Nothing → Nothing

If we used the right key, we get Just the value in the box, and we
get Nothing otherwise.

Note that the only way to unlock a Box successfully involves
using the Key that was used to create it, not merely a Key with the
right type. The function testEquality only returns Just Refl when
the keys are identical, not when the types are the same. Thus, the
Key monad does not provide a means of checking type equality at
run-time.

2.2 Heterogeneous Maps

We can use Boxes to create a kind of heterogeneous maps: a data
structure that that maps keys to values of the type corresponding
to the key. The interesting feature here is that the type of these
heterogenous maps does not depend on the types of the values that
are stored in it, nor do the functions have Typeable constraints. We
can implement such maps straightforwardly as follows2:

newtype KeyMap s = KM [Box s ]

empty ::KeyMap s

empty = KM [ ]

insert ::Key s a → a → KeyMap s → KeyMap s

insert k v (KM l) = KM (Lock k v : l)

lookup ::Key s a → KeyMap s → Maybe a

lookup k (KM [ ]) = Nothing

lookup k (KM (h : t)) =
unlock k h ‘mplus‘ lookup k (KM t)

(!) ::KeyMap s → Key s a → a

m ! k = fromJust (lookup k m)

2.3 Implementing the ST Monad

Armed with our newly obtained KeyMaps, we can implement an
(inefficient) version of the ST monad as follows. The implementation
of STRef s is simply as an alias for Keys:

type STRef s a = Key s a

We can now use the Key monad to create new keys, and use a
KeyMap to represent the current state of all created STRef s.

newtype ST s a =
ST (StateT (KeyMap s) (KeyM s) a)
deriving (Functor ,Applicative,Monad)

It is now straightforward to implement the operations for STRef s:

newSTRef :: a → ST s (STRef s a)
newSTRef v = ST $

2 For simplicity, this is a rather inefficient implementation, but a more
efficient implementation (using IntMaps) can be given if we add a function
hashKey ::Key s a → Int to the Key monad.
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do k ← lift newKey

modify (insert k v)
return k

readSTRef :: STRef s a → ST s a

readSTRef r = ST $ (! r)<$> get

writeSTRef :: STRef s a → a → ST s ()
writeSTRef k v = ST $modify (insert k v)

Finally, the implementation of runST simply runs the monadic
computation contained in the ST type:

runST :: (∀ s. ST s a)→ a

runST m = runKeyM $ case m of

ST n → evalStateT n empty

2.4 Relation with the ST Monad

While the Key monad can be used to implement the ST monad, the
converse is not true. The problem is that there is no function:

testEquality :: STRef s a → STRef s b →
Maybe (a :∼: b)

It is straightforward to implement this function using unsafeCoerce:

testEquality x y

| x ≡ unsafeCoerce y = Just (unsafeCoerce Refl)
| otherwise = Nothing

The unsafeCoerce in x ≡ unsafeCoerce y is needed because the
types of the references might not be the same. Hence, another way
to think of this paper is that we claim that the above function is safe,
that this allows us to do things which we could not do before, and
that we propose this as an extension of the ST monad library.

With the above testEquality function for STRef s it is possible
to implement something similar to the Key monad, but the Key
monad is more lazy. In particular, for the Key monad, the following
holds:

⊥>>m ≡ m

This does not hold even for the lazy ST monad, which will give ⊥
on for example ⊥>> newSTRef 0.

The extra laziness of the Key monad allows us to create an
infinite list of Keys for example:

newKeys ::KeyM s [Key s a ]
newKeys = liftM2 (:) newKey newKeys

This is something you can only do using unsafeInterleaveST in
the ST monad.

Why is the testEquality function for STRef s safe? The reason
is that if two references are the same, then their types must also
be the same. This invariant must already be true for ST references,
because otherwise we could have two references pointing to the
same location with different types. Writing to one reference and
then reading from the other would coerce the value from one type
to another! Hence, the Key monad splits reasoning based on this
invariant into a separate interface and makes it available to the user
via testEquality .

Following the same line of reasoning, it is already possible to
implement a similar, but weaker, version of testEquality using
only the standard ST monad functions. If we represent keys of type
Key s a as a pair of an identifier and an STRef containing values of
type a , then we can create a function that casts a value of type a to b,
albeit monadically, i.e. we get a monadic cast function a → ST s b
instead of a proof a :∼: b:

data Key s a = Key {ident :: STRef s (),
ref :: STRef s a }

newKey :: ST s (Key s a)
newKey = Key <$> newSTRef ()<*> newSTRef ⊥

testEqualityM ::Key s a → Key s b →
Maybe (a → ST s b)

testEqualityM ka kb

| ident ka 6≡ ident kb = Nothing

| otherwise = Just $ λx →
do writeSTRef (ref ka) x

readSTRef (ref kb)

This implementation, although a bit brittle because it relies on strong
invariants, makes use of the insight that if the two references are
actually the same reference, then writing to one reference must
trigger a result in the other.

2.5 Relation to Typeable

The base library Data.Typeable provides similar functionality to
the Key monad. Typeable is a type class that provides a value-level
representation of the types that implement it. The Typeable library
provides a function

eqT :: ∀ a b. (Typeable a,Typeable b)⇒ Maybe (a :∼: b)

where (:∼:) is the GADT from Figure 1. This function gives
Just Refl if both types are the same, whereas testEquality from
the Key monad only gives Just Refl if the keys are the same. If
we have two keys with the same type, but which originate from
different newKey invocations, the result of testEquality will be
Nothing .

Another difference is that with the Key monad, to obtain a key
for a type a , we do not need a constraint on the type a , which we do
need to get a value-level type representation using Typeable . These
constraints can leak to the user-level interface. For example, we
can also implement a variant of the ST monad using Typeable, by
storing in each STRef a unique number and a representation of its
type. We will then need to change the interface such that we have
access to the value-level type representations, by adding Typeable
constraints. For example, the type of newSTRef then becomes

newSTRef :: Typeable a ⇒ a → ST s (STRef s a)

In fact, all example usages of the Key monad in this paper can
also be implemented by using Typeable and unique numbers and
adding constraints to the user interface. We could even implement
the Key monad itself by adding a Typeable constraint to newKey .
However, using the Key monad has the benefit that it is uncon-
strained: we can use it even when Typeable dictionaries are unavail-
able.

2.6 Key Monad Laws

Informally, the Key monad allows us to create new keys and compare
them, maybe obtaining a proof of the equality of their associated
types. To give a more precise specification and to allow equational
reasoning, we also present the Key monad laws shown in Figure 2,
which we will now briefly discuss.

The sameKey and distinctKey laws describe the behavior of
testEquality . The commutative law states that the Key monad is
a commutative monad: the order of actions does not matter. The
purity law might be a bit surprising: it states that doing some Key
computation and then throwing away the result is the same as not
doing anything at all! The reason for this is that the only property of
each key is that it is distinct from all other keys: making keys and
then throwing them away has no (observable) effect on the rest of
the computation.

The last two laws, runReturn and runF , state how we can
get the values out of a KeyM computation with runKey . The
runF law states that we can lazily get the results of a (potentially)
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do k ← newKey

f (testEquality k k)
=

do k ← newKey

f (Just Refl)
(sameKey)

do k ← newKey

l ← newKey

f (testEquality k l)
=

do k ← newKey

l ← newKey

f Nothing

(distinctKey)

do x ← f

y ← g

h x y

=

do y ← g

x ← f

h x y

(commutative)

m >> n = n (purity)

runKey (return x ) = x (runReturn)

runKey (f <$>m) = f (runKey m) (runF )
(if m :: ∀ s.KeyM s a)

Figure 2. Key monad laws

class Arrow a where

arr :: (x → y)→ a x y

(>>>) :: a x y → a y z → a x z

first :: a x y → a (x , z ) (y , z )
second :: a x y → a (z , x ) (z , y)
second x = flip >>> first x >>> flip

where flip = arr (λ(x , y)→ (y , x ))

Figure 3. The arrow type class.

infinite KeyM computation. The side condition that m has type
∀ s.KeyM s a (for some type a) rules out wrong specialization of
the law, such as:

runKey (f <$> newKey) = f (runKey newKey)

This specialization does not hold because, the left hand side type-
checks, but the right hand side does not: the “s” would escape.

3. Embedding Arrow Notation

In this section, we show that the Key monad gives us the power to
implement an embedded form of arrow syntax. Without the Key
monad, such syntax is, as far as we know, only possible by using
specialized compiler support.

3.1 Arrows vs Monads

The Arrow type class, shown in Figure 3, was introduced by Hughes
(Hughes 2000) as an interface that is like monads, but which allows
for more static information about the constructed computations to
be extracted. However, in contrast to monads, arrows do not directly
allow intermediate values to be named; instead, expressions must
be written in point-free style.

As an example, an arrow computation which feeds the same
input to two arrows, and adds their outputs, can be expressed in
point-free style as follows:

addA :: Arrow a ⇒ a x Int → a x Int → a x Int

addA f g = arr (λx → (x , x ))>>> first f >>>

second g >>> arr (λ(x , y)→ x + y)

With monads, a similar computation can be written more clearly by
naming intermediate values:

addM ::Monad m ⇒ (x → m Int)→ (x → m Int)→
(x → m Int)

addM f g = λz →

do x ← f z

y ← g z

return (x + y)

To overcome this downside of arrows, Paterson introduced arrow no-
tation (Paterson 2001). In this notation, the above arrow computation
can be written as follows:

addA :: Arrow a ⇒ a b Int → a b Int → a b Int

addA f g = proc z → do

x ← f ≺ z

y ← g ≺ z

returnA ≺ x + y

Specialized compiler support is offered by GHC, which desugars
this notation into point free expressions.

With the Key monad, we can name intermediate values in arrow
computations using regular monadic do notation, without relying
on specialized compiler support. The addA computation above can
be expressed using our embedded arrow notation as follows:

addA :: Arrow a ⇒ a b Int → a b Int → a b Int

addA f g = proc $ λz → do

x ← f ≺ z

y ← g ≺ z

return $ (+)<$> x <*> y

We use a function conveniently called proc and use an infix function
conveniently called (≺). Slightly less nice is that we now have to use
the Applicative interface to combine values resulting from arrow
computations: we have to write (+)<$> x <*> y instead of x + y .
Note that proc is a function, which does all the plumbing to rewrite
the syntax to a point-free expression, which is normally done in a
compiler pass.

The difference between do notation and arrow notation is that
in arrow notation, one cannot observe intermediate values to decide
what to do next. For example, we cannot do the following:

ifArrow :: a Int x → a Int x → a Int x

ifArrow t f = proc z → do

case z of

0→ t ≺ z

→ f ≺ z

Allowing this kind of behavior would make it impossible to translate
arrow notation to arrow expressions, because this is exactly the
power that monads have but that arrows lack (Lindley et al. 2011). To
mimic this restriction in our embedded arrow notation, our function
(≺) has the following type:

(≺) :: Arrow a ⇒ a x y → Cage s x →
ArrowSyntax a s (Cage s y)

The type ArrowSyntax is the monad which we use to define our
embedded arrow notation. The input and output of the arrow compu-
tations are enclosed in Cages, a type which disallows observation
of the value of type x it “contains”.

3.2 Implementing Embedded Arrow Syntax

The implementation of a Cage is as follows:

newtype Cage s x = Cage {open ::KeyMap s → x }
deriving (Functor ,Applicative)

Informally, a Cage “contains” a value of type x , but in reality it
does not contain a value of type x at all: it is a function from a
KeyMap to a value of type x . Hence we can be sure that arrow
computations returning a Cage do not allow pattern-matching on
the result, because the result is simply not available. The expression
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(+) <$> x <*> y we saw earlier in the function addA, uses the
Applicative instance of Cages.

In our construction, we use Keys as names, and KeyMaps as
environments, i.e. mappings from names to values. Each result of an
arrow via (≺) has its own name. A Cage stands for an expression,
i.e. a function from environment to value, which may lookup names
in the environment. As seen before, the Key monad in conjunction
with KeyMaps allows us to model heterogeneous environments
which can be extended without changing the type of the environment,
which is exactly the extra power we need to define this translation.

By using (≺) and the monad interface, we can construct the
syntax for the arrow computation that we are expressing. Afterwards,
we use the following function to convert the syntax to an arrow:

proc :: Arrow a ⇒
(∀ s. Cage s x → ArrowSyntax a s (Cage s y))
→ a x y

Internally, the ArrowSyntax monad builds an environment
arrow: an arrow from environment to environment, i.e. an arrow
of type a (KeyMap s) (KeyMap s). The ArrowSyntax monad
creates names for values in these environments using KeyM .

newtype ArrowSyntax a s x =
AS (WriterT (EnvArrow a s) (KeyM s) x )

deriving (Functor ,Applicative,Monad)
newtype EnvArrow a s =

EnvArrow (a (KeyMap s) (KeyMap s))

The type declaration for EnvArrow suggests that this approach
would not have worked if we had used the ST monad instead of
the Key monad; KeyMaps are used as inputs as well as outputs for
general arrows, which needs KeyMaps to be tangible objects rather
than hidden inside a monadic computation, as they are in the ST

monad.
Like any arrow from a type x to the same type, EnvArrows

form a monoid as follows:

instance Arrow a ⇒ Monoid (EnvArrow a x ) where

mempty = EnvArrow (arr id)
mappend (EnvArrow l) (EnvArrow r) =

EnvArrow (l >>> r)

The definition of ArrowSyntax uses the standard writer monad
transformer, WriterT , which produces mempty for return , and
composes the built values from the left and right hand side of >>=
using mappend , giving us precisely what we need for building
arrows.

To define the operations proc and (≺), we first define some
auxiliary functions for manipulating environments. We can easily
convert a name (Key) to the expression (Cage) which consists of
looking up that name in the environment:

toCage ::Key s a → Cage s a

toCage k = Cage (λenv → env ! k)

We can introduce an environment from a single value, when given a
name (Key) for that value:

introEnv :: Arrow a ⇒ Key s x → a x (KeyMap s)
introEnv k = arr (λv → insert k v empty)

We also define an arrow to eliminate an environment, by interpreting
an expression (Cage) using that environment:

elimEnv :: Arrow a ⇒ Cage s x → a (KeyMap s) x
elimEnv c = arr (open c)

Apart from functions to introduce and eliminate environments, we
also need functions to extend an environment and to evaluate an
expression while keeping the environment:

extendEnv :: Arrow a ⇒ Key s x →
a (x ,KeyMap s) (KeyMap s)

extendEnv k = arr (uncurry (insert k))

withEnv :: Arrow a ⇒ Cage s x →
a (KeyMap s) (x ,KeyMap s)

withEnv c = dup >>> first (elimEnv c)
where dup = arr (λx → (x , x ))

With these auxiliary arrows, we can define functions that convert
back and forth between a regular arrow and an environment arrow.
To implement (≺), we need to convert a regular arrow to an
environment arrow, for which we need an expression for the input
to the arrow, and a name for the output of the arrow:

toEnvArrow :: Arrow a ⇒
Cage s x → Key s y →
a x y → EnvArrow a s

toEnvArrow inC outK a = EnvArrow $
withEnv inC >>> first a >>> extendEnv outK

We first produce the input to the argument arrow, by interpreting the
input expression using the input environment. We then execute the
argument arrow, and bind its output to the given name to obtain the
output environment.

The (≺) operation gets the arrow and the input expression as an
argument, creates a name for the output, and then passes these three
to toEnvArrow :

(≺) :: Arrow a ⇒
a x y →
(Cage s x → ArrowSyntax a s (Cage s y))

a ≺ inC = AS $
do outK ← lift newKey

tell (toEnvArrow inC outK a)
return (toCage outK )

In the other direction, to implement proc we need to convert an
environment arrow to a regular arrow, for which we instead need the
name of the input and an expression for the output:

fromEnvArrow :: Arrow a ⇒
Key s x → Cage s y →
EnvArrow a s → a x y

fromEnvArrow inK outC (EnvArrow a) =
introEnv inK >>> a >>> elimEnv outC

We first bind the input to the given name to obtain the input
environment. We then transform this environment to the output
environment by running the arrow from environment to environment.
Finally, we interpret the output expression in the output environment
to obtain the output.

The proc operation creates a name for the input and passes it to
the function as an expression to obtain the output expression and
the environment arrow. We then convert the obtained arrow from
environment to environment using fromEnvArrow :

proc :: Arrow a ⇒
(∀ s. Cage s x → ArrowSyntax a s (Cage s y))→
a x y

proc f = runKeyM $
do inK ← newKey

let AS m = f (toCage inK )
(outC , a)← runWriterT m

return (fromEnvArrow inK outC a)
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3.3 Discussion

Altenkirch, Chapman and Uustalu (Altenkirch et al. 2010) show a
related construction: in category theory arrows are a special case of
relative monads, which are themselves a generalization of monads.
In Haskell, a relative monad is an instance of the following type
class:

class RelativeMonad m v where

rreturn :: v x → m x

(·>>=) ::m x → (v x → m y)→ m y

The only difference with regular monads is that the values resulting
from computations must be wrapped in a type constructor v , instead
of being “bare”. The relative monad laws are also the same as the
regular (Haskell) monad laws. The construction of Altenkirch et al.
which shows that arrows are an instance of relative monads is not
a relative monad in Haskell, only in category theory. In particular
their construction uses the Yoneda embedding, which does not allow
us freely use bound values, instead it requires us to manually lift
values into scope, in the same fashion as directly using de Bruijn
indices.

Because all the operations in ArrowSyntax (namely (≺)) return
a Cage, it might be more informative to see it as a relative monad,
i.e.:

data ArrowRM a s x = ArrowRM

(ArrowSyntax a s (Cage s x ))
instance RelativeMonad (ArrowRM a s) (Cage s)

(≺) :: a x y → Cage s x → ArrowRM a s y

proc :: (∀ a. Cage s x → ArrowRM a s y)→ a x y

In this formulation, it is clear that the user cannot decide what to
do next based on the outcome of a computation: all we can get
from a computation is Cages. The monadic interface does not add
extra power: while we cannot decide what to do next based on the
output of a computation of type ArrowSyntax s (Cage s x ), we
can, for example, decide what to next based on the outcome of a
computation of type ArrowSyntax s Int . This does not give our
embedded arrow notation more power than regular arrow notation or
the relative monad interface: the value of the integer cannot depend
on the result of an arrow computation and hence must be the result
of a pure computation. This is essentially the same trick as described
in Svenningsson and Svensson(Svenningsson and Svensson 2013).

As an aside, more generally, this trick can be used to give a
monadic interface for any relative monad:

data RelativeMSyntax rm v a where

Pure :: a → RelativeMSyntax rm v a

Unpure :: rm a → (v a → RelativeMSyntax rm v b)
→ RelativeMSyntax rm v b

instance Monad (RelativeMSyntax rm v) where

return = Pure

(Pure x )>>= f = f x

(Unpure m f )>>= g = Unpure m (λx → f x >>= g)

fromRelativeM :: RelativeMonad rm v ⇒
rm a → RelativeMSyntax rm v (v a)

fromRelativeM m = Unpure m return

toRelativeM :: RelativeMonad rm v ⇒
RelativeMSyntax rm v (v a)→ rm a

toRelativeM (Pure x ) = rreturn x

toRelativeM (Unpure m f ) = m ·>>=(toRelativeM ◦ f )

The insight is that because a computation must eventually re-
turn a value of v a to convert a relative monad computation via
toRelativeM , any pure value that is used, can eventually be re-
moved via the monad law return x >>= f ≡ f x . Our embedded

arrow construction can be seen as a relative monad, where we apply
this trick to obtain a monadic interface.

Our construction hence suggests that arrows are also a special
case of relative monad in Haskell with the key monad, but a formal
proof (using the Key monad laws from Figure 2) is outside the
scope of this paper. In the code online, we also show that this
construction can be extended to use relative monadfix (with function
rmfix :: (v a → m a) → m a) to construct arrows using
ArrowLoop, but we cannot use recursive monad notation in this
case, because the above trick does not extend to Monadfix.

The Arrow Calculus(Lindley et al. 2010) describes a translation
of a form of arrow syntax (not embedded in Haskell) to arrows which
is very similar to the construction presented here. Their calculus has
five laws, three of which can be considered to be relative monad laws,
which they use to prove the equational correspondence between their
calculus and regular arrows. Due to the similarity, their paper should
provide a good starting point for anyone trying to prove the same
for this construction.

4. Representations of Variables in Syntax

What else can we do with the Key monad? The Key monad allows us
to associate types with “names” (Keys), and to see that if two names
are the same, then their associated types are also the same. Use
cases for this especially pop up when dealing with representations
of syntax with binders, as we will show next.

4.1 Typed Names

A straightforward way to represent the syntax of a programming
language is to simply use strings or integers as names. For example,
the untyped lambda calculus can be represented as follows:

type Name = Int

data Exp = Var Name

| Lam Name Exp

| App Exp Exp

If we want to represent a typed representation of the lambda calculus,
then this approach does not work anymore. Consider the following
GADT:

data TExp a where

Var :: Name → TExp a

Lam :: Name → TExp b → TExp (a → b)
App :: TExp (a → b)→ TExp a → TExp b

We cannot do much with this datatype. If we, for example, want to
write an interpreter, then there is no way to represent the environ-
ment: we need to map names to values of different types, but there
is no type-safe way to do so.

We could add an extra argument to Var and Lam containing
the type-representation of the type of the variable, obtained us-
ing Typeable . With the Key monad, we extend this simple naming
approach to typed representations without adding Typeable con-
straints. Consider the following data type:

data KExp s a where

KVar ::Key s a → KExp s a

KLam ::Key s a → KExp s b → KExp s (a → b)
KApp ::KExp s (a → b)→ KExp s a → KExp s b

Because the names are now represented as keys, we can represent
an environment as a KeyMap. We can even offer a Higher Order
Abstract Syntax (HOAS) (Pfenning and Elliott 1988) interface for
constructing such terms by threading the key monad computation,
which guarantees that all terms constructed with this interface are
well-scoped:
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class Hoas f where

lam :: (f a → f b)→ f (a → b)
app :: f (a → b) → (f a → f b)

newtype HoasKey s a =
HK {getExp ::KeyM s (KExp s a)}

instance Hoas (HoasKey s) where

lam f = HK $
do k ← newKey

b ← getExp $ f $ HK $ pure $KVar k

return (KLam k b)
app f x = HK $KApp <$> getExp f <*> getExp x

For instance, the lambda term (λx y → x ) can now be constructed
with: lam (λx → lam (λy → x )).

Note that we only need the Key monad to create keys. Once we
have created the necessary keys, we can stay fully within normal,
non-monadic Haskell. The above example can also be done with the
ST monad (using STRef s as names), but we would have to perform
every computation that would do something with these names (for
example an interpreter) inside the ST monad.

4.2 Translating Well-scoped Representations

The datatype KExp does not ensure that any value of type KExp is
well-scoped. There are two well-known approaches to constructing
data types for syntax which ensure that every value is well-scoped.
The first is parametric Higher Order Abstract Syntax (HOAS) (Chli-
pala 2008; Oliveira and Löh 2013; Oliveira and Cook 2012), and the
second is using typed de Bruijn indices (Bird and Paterson 1999).

Previous work (Atkey 2009; Atkey et al. 2009) has shown how
to translate parametric HOAS terms to terms with typed de Bruijn
indices by relying on parametricty. Interestingly, it seems there is
no type-safe way to do this in Haskell without adding Typeable
constraints to the Phoas datatype or using unsafeCoerce . The Key
monad does allow us to cross this chasm.

In parametric HOAS, typed lambda terms are represented by the
following data type:

data Phoas v a where

PVar :: v a → Phoas v a

PLam :: (v a → Phoas v b)→ Phoas v (a → b)
PApp :: Phoas v (a → b)→ Phoas v a → Phoas v b

The reading of the type parameter v is the type of variables. For
example, the lambda term (λx y → x ) can be constructed as
follows:

phoasExample :: Phoas v (x → y → x )
phoasExample = PLam (λx → PLam (λy → x ))

An attractive property of parametric HOAS is that we use Haskell
binding to construct syntax, and that terms of type (∀ v .Phoas v a)
are always well-scoped (Chlipala 2008).

The second way to ensure well-scopedness is to use typed de
Bruijn indices. Here, we present our own modern variant of this
technique using Data Kinds and GADTs, but the idea is essentially
the same as presented by Bird and Paterson (Bird and Paterson
1999). Our representation of typed de Bruijn indices is an index in
a heterogeneous list (Figure 4). A typed de Bruijn index of type
Index l a is an index for a variable of type a in an environment
where the types of the variables are represented by the type level list
l . We can use these indices to represent lambda terms as follows:

data Bruijn l a where

BVar :: Index l a → Bruijn l a

BLam :: Bruijn (a : l) b → Bruijn l (a → b)
BApp :: Bruijn l (a → b)→ Bruijn l a → Bruijn l b

data Index l a where

Head :: Index (h : t) h
Tail :: Index t x → Index (h : t) x

data TList l f where

TNil :: TList [ ] f
(:::) :: f h → TList t f → TList (h : t) f

index :: TList l f → Index l a → f a

index (h ::: ) Head = h

index ( ::: t) (Tail i) = index t i

instance FFunctor (TList l) where

ffmap f TNil = TNil

ffmap f (h ::: t) = f h ::: ffmap f t

Figure 4. Heterogeneous list and indexes in them.

A closed term of type a has type Bruijn [ ] a .
The types (∀ v . Phoas v a) and (Bruijn [ ] a) both represent

well-scoped typed lambda terms (and ⊥), and translating from the
latter to the former is straightforward. However, there currently
seems to be no way to translate the former to the latter (without
using the Key monad). In other words there seems to be no function
of type:

phoasToBruijn :: (∀ v . Phoas v a)→ Bruijn [ ] a

This seems to be impossible not only in Haskell without extensions,
but in dependently typed languages without extensions as well.
For example, when using Phoas in Coq to prove properties about
programming languages, a small extension to the logic in the form of
a special well-scopedness axiom for the Phoas data type is needed
to translate Phoas to de Bruijn indices(Chlipala 2008).

The well-scopedness of a Bruijn value follows from the fact
that the value is well-typed. With Phoas , the well-scopedness relies
on the meta-level (i.e. not formalized through types) argument that
no ill-scoped values can be created using the Phoas interface. The
internal (i.e. formalized through types) well-scopedness of Bruijn ,
allows interpretations of syntax which seem to not be possible if
we are using terms constructed with Phoas . As an example of this,
consider translating lambda terms to Cartesian closed category
combinators (the categorical version of the lambda calculus), which
is useful for translating lambda terms to hardware (Elliott 2013).
This can be done if the lambda terms are given as Bruijn values;
we elide the translation for space reasons but it can be found in the
online repository for this paper. Without the Key monad, there seem
to be no way to do the same for terms constructed with the Phoas
terms, but with the Key monad we can for example first translate to
de Bruijn indices and then to Cartesian closed categories.

Our implementation of phoasToBruijn works by first translat-
ing Phoas to the KExp from the previous subsection, and then
translating that to typed de Bruijn indices. The first step in this trans-
lation is straightforwardly defined using the Hoas interface from
the previous subsection:

phoasToKey :: (∀ v . Phoas v a)→ KeyM s (KExp s a)
phoasToKey v = getExp (go v) where

go :: Phoas (HoasKey s) a → HoasKey s a

go (PVar v) = v

go (PLam f ) = lam (go ◦ f )
go (PApp f x ) = app (go f ) (go x )

We will now show how we can create a function of type:

keyToBruijn ::KExp s a → Bruijn [ ] a
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Using this function, we can then implement phoasToBruijn as
follows:

phoasToBruijn :: (∀ v . Phoas v x )→ Bruijn [ ] x
phoasToBruijn p =

runKeyM (keyToBruijn <$> phoasToKey p)

To implement the keyToBruijn function, we need a variant of the
Box we saw in Section 2.1:

data FBox s f where

FLock ::Key s a → f a → FBox s f

funlock ::Key s a → FBox s f → Maybe (f a)
funlock k (FLock k ′ x ) =

case testEquality k k ′ of

Just Refl → Just x

Nothing → Nothing

The difference with Box is that we now store values of type f a
instead of values of type a in the box. We provide a variant of fmap
for this container:

class FFunctor p where

ffmap :: (∀ x . f x → g x )→ p f → p g

instance FFunctor (FBox s) where

ffmap f (FLock k x ) = FLock k (f x )

We also need a variant of the KeyMap, where we store FBoxes
instead of regular boxes:

newtype FKeyMap s f = FKM [FBox s f ]
empty :: FKeyMap s f

insert ::Key s a → f a → FKeyMap s f → FKeyMap s f

lookup ::Key s a → FKeyMap s f → Maybe (f a)
instance FFunctor (FKeyMap s)

To translate to de Bruijn indices, we store the current “envi-
ronment” as an FKeyMap mapping each Key to an Index in the
current environment. When we enter a lambda-body, we need to
extend the environment: we add a mapping of the new variable to
the de Bruijn index Head , and add one lookup step to each other de
Bruijn index currently in the FKeyMap. This is be done as follows:

extend ::Key s h → FKeyMap s (Index t)→
FKeyMap s (Index (h : t))

extend k m = insert k Head (ffmap Tail m)

The type of extend suggests that we could not have used the
ST monad instead of the Key monad, because the internal state
of the computation (represented by the FKeyMap) changes type
after extend . To support this in the ST monad, we would need the
equivalent of ffmap, which would map a function over all existing
STRef s.

With this machinery in place, we can translate KExp to Bruijn
as follows:

keyToBruijn ::KExp s a → Bruijn [ ] a
keyToBruijn = go empty where

go :: FKeyMap s (Index l)→ KExp s x → Bruijn l x

go e (KVar v) = BVar (e ! v)
go e (KLam k b) = BLam (go (extend k e) b)
go e (KApp f x ) = BApp (go e f ) (go e x )

Note that keyToBruijn fails if the input KExp is ill-scoped. This
cannot happen when keyToBruijn is called from phoasToBruijn
because phoasToKey will always give well-scoped values of type
KExp. This relies on the meta-level argument that values of type
PHoas are always well-scoped. We stress that hence the key monad
extension cannot serve as a replacement of well-scopedness axiom
used in a dependently typed setting.

5. Safety of the Key Monad

In this section, we state more precisely what we mean by safety, and
informally argue for the safety of the Key monad.

5.1 Type Safety

The first safety property that we conjecture the Key monad has is
type safety: testEquality will never allow us to prove that a :∼: b if
a and b are distinct types. Informally, the justification for this is that
a key value k of type Key s a together with the type s , which we
call the scope type variable, uniquely determines the associated type
a of the key. Hence, when two key values and scope type variables
are the same3, their associated types must be the same as well.

The argument why the scope type variable s and the key value k
together uniquely determine type a goes as follows:

1. Each execution of a Key monad computation has a scope type
variable s that is distinct from the scope type variables of all
other Key monad computations. This is ensured by the type of
runKeyM , namely (∀ s. KeyM s a) → a , which states that
the type s cannot be unified with any other type.

2. Each newKey operation in such a Key monad computation
gives a value that is unique within the scope determined by s ,
i.e. distinct from other keys created in the same computation.

3. Each key only has a single type associated with it. This is ensured
by the type of newKey , which only allows us to construct a
key with a single type, i.e. not a key of type ∀ a. Key s a .
The type of a hypothetical function newPolymorphicKey ::
KeyM s (∀ a. Key s a) does not unify with the type of
newKey .

5.2 Referential Transparency

The second safety property that we are concerned with is referential
transparency. More precisely, in an otherwise pure language with
the Key monad extension, does the following still hold?

(let x = e in f x x ) ≡ f e e

In other words, referential transparency means that an expression
always evaluates to the same result in any context. Our implementa-
tion of the key monad only relies on unsafeCoerce; it does not use
unsafePerformIO, nor does it use unsafeCoerce to convert an IO a
action to a pure value (if we assume type safety) and hence referen-
tial transparency cannot be broken by this implementation. Since the
ST monad can be implemented using the Key monad, the same can
be said for the ST monad. However, more efficient implementations
of the ST monad use global pointers respectively, which do rely on
features that might potentially break referential transparency.

5.3 Abstraction Safety

Abstraction safety is the property that we cannot break the abstrac-
tion barriers which are introduced through existential types. For
example, consider the following existential type:

data AbsBool where

AbsBool :: Eq a ⇒ a → a → (a → b → b → b)
→ AbsBool

Let us consider two different uses of this type:

boolBool =
AbsBool True False (λc t f → if c then t else f )

boolInt =
AbsBool 0 1 (λc t f → if c ≡ 0 then t else f )

3 Even though users cannot compare keys explicitly, implementations of the
Key monad internally represent keys by some underlying value that can be
compared for equality.

153



If a language is abstraction safe, then it is impossible to observe
any difference between boolBool and boolInt . This property is
formalized by parametricity (which also gives “free” theorems
(Wadler 1989)). A typical example of a primitive which is not
abstraction safe (but is type-safe) is a primitive that allows us to
check the equality of any two types:

badTest :: a → b → Maybe (a :∼: b)

The primitive testEquality is similar to the badTest primitive
above, and indeed our operations on Box do allow us to “break the
abstraction barrier”: if unlock succeeds, we have learned which type
is hidden in the Box . However, finding out which type is hidden by
an existential type can not only be done with the Key monad, but
also by the established Generalized Algebraic Data types extension
of Haskell. For example, suppose we have the following type:

data IsType a where

IsBool :: IsType Bool

IsInt :: IsType Int

IsChar :: IsType Char

We can then straightforwardly implement a variant of testEquality :

testEquality :: IsType a → IsType b → Maybe (a :∼: b)
testEquality IsBool IsBool = Just Refl

testEquality IsInt IsInt = Just Refl

testEquality IsChar IsChar = Just Refl

testEquality = Nothing

There are, however, formulations of parametricity which state
more precisely exactly which abstraction barrier cannot be crossed
(Vytiniotis and Weirich 2007; Bernardy et al. 2012). In these
formulations, boolBool and boolInt are indistinguishable. We can
think of runKeyM as an operation which dreams up a specific Key
GADT for the given computation, for example:

data Key A a where

Key0 ::Key A Int

Key1 ::Key A Bool

...

Here A is a globally unique type associated with the computation.
This interpretation is a little tricky: since a Key computation might
create an infinite number of keys, this hypothetical datatype might
have an infinite number of constructors. Alternatively, we can
interpret keys as GADTs that index into a type-level list or type-
level tree, as we do in Section 6. We conjecture that there is a variant
of parametricity for Haskell extended with the Key monad in which,
in analogy with parametricity for GADTs, boolBool and boolInt
above are considered to be indistinguishable.

5.4 Normalization

A fourth desirable property of a type system extension is preserva-
tion of normalization, i.e., the property that ensures well-typed terms
always have a normal form. Although standard typed λ-calculi (such
as System F) are normalizing, Haskell is not, as we can write non-
terminating programs. Even without term-level recursion, we can
create programs that do not terminate by using type-level recursion.
However, if we disallow contravariant recursion at the type level (i.e.
type-level recursive occurrences that occur to the left of a function
arrow), then all Haskell programs without term-level recursion do
terminate.

It turns out that extending a normalizing language with the Key
monad breaks normalization. We show this by implementing a
general fixpoint combinator fix which uses neither contravariant
recursion at the type level nor term-level recursion.

Figure 5 presents the implementation of fix . First, we introduce
a datatype D s a for domains representing models of the untyped

data D s a

= Fun (Box s → D s a)
| Val a

lam ::Key s (D s a)→ (D s a → D s a)→ D s a

lam k f = Fun (f . fromJust . unlock k)

app ::Key s (D s a)→ D s a → D s a → D s a

app k (Fun f ) x = f (Lock k x )

fix :: (a → a)→ a

fix f = runKeyM $
do k ← newKey

let f ′ = lam k (Val . f . unVal)
xfxx = lam k (λx → app k f ′ (app k x x ))
fixf = app k xfxx xfxx

return (unVal fixf )
where unVal (Val x ) = x

Figure 5. Implementing a general fixpoint combinator without
term-level recursion nor type-level contravariant recursion

lambda calculus. (We are going to encode the standard fixpoint
combinator λf → (λx → f (x x )) (λx → f (x x )) in this
domain.) An element of D s a is either a function over D s a or
a value of type a . Normally, we would use contravariant recursion
for the argument of Fun , but we are not allowed to, so we mask it
by using a Box s instead. As a result, D s a is not contravariantly
recursive, and neither are any of its instances.

Second, we introduce two helper functions: lam , which takes
a function over the domain, and injects it as an element into the
domain, and app, which takes two elements of the domain and
applies the first argument to the second argument. Both need an
extra argument of type Key s (D s a) to lock/unlock the forbidden
recursive argument.

Third, the fixpoint combinator takes a Haskell function f , wraps
it onto the domain D s a resulting in a function f ′, and then uses
lam and app to construct a fixpoint combinator from the untyped
lambda calculus. Lastly, we need to convert the result from the
domain D s a back into Haskell-land using unVal .

What this shows is that (1) adding the Key monad to a normal-
izing language may make it non-normalizing, (2) the Key monad
is a genuine extension of Haskell without term-level recursion and
type-level contravariant recursion. Incidentally, this is also the case
for the ST monad. In a stratified type system with universe levels,
such as Agda or Coq, it should be possible to omit this problem by
making keys of a higher level than their associated types. In Haskell,
this would defeat the “unconstrained” part of the title of the paper;
then we could just as well have used Typeable .

6. Implementing the Key Monad

Is the Key monad expressible in Haskell directly, without using
unsafeCoerce? Can we employ more recent advancements such as
GADTs to “prove” to the type system that the Key monad is safe? In
this section, we explore how far we can get (and fail).

The question of whether or not the Key monad is implementable
in Haskell (with extensions) is related to the question of whether or
not the ST monad is implementable in Haskell (with extensions): a
negative answer to the latter implies a negative answer to the former.
The latter question, about ST, was (as far as we know) first publicly
asked by the second author on the Haskell mailing list in 2001
(Claessen 2001), accompanied by a proposal of an early version of
the Key monad, then called the “Object monad”. Since then, the
question has regularly popped up on online discussion forums (e.g.
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(alexeyr 2015)). The question has never been answered positively,
which we take as a strong indication that the Key monad is also not
implementable in Haskell (with extensions).

6.1 Implementation Using unsafeCoerce

To get a feel for possible implementations of the Key monad, let us
first consider a straightforward implementation, using unsafeCoerce,
in which we give each key a unique name. One could implement
generating unique names using a state monad, but the (purity)
key monad law (m >> n ≡ n) would then not hold. Instead, we
implement the Key monad using a splittable name supply (McBride
and McKinna 2004), with the following interface:

newNameSupply :: NameSupply

split :: NameSupply →
(NameSupply ,NameSupply)

supplyName :: NameSupply → Name

One implementation of the NameSupply uses paths in a binary
tree:

data TreePath = Start | Left TreePath | Right TreePath

When reading left-to-right, these paths are given in reverse order
from the root: the path Left (Right Start) is a path to the left child
of the right child of the root. A name is then a path to leaf in a tree,
and a name supply is a path to a subtree. To split a NameSupply ,
we convert a path to a node into a path to the two children of that
node:

type NameSupply = TreePath

type Name = TreePath

newNameSupply = Start

split s = (Left s,Right s)
supplyName = id

Using such name supplies, the implementation of the Key monad
is as follows:

data KeyM s a =
KeyM {getKeyM :: NameSupply → a }

data Key s a = Key Name

newKey ::KeyM s (Key s a)
newKey = KeyM $ λs → Key (supplyName s)

instance Monad (KeyM s) where

return x = KeyM $ \ → x

m >>= f = KeyM $ λs →
let (sl , sr) = split s

in getKeyM (f (getKeyM m sl)) sr

runKeyM :: (∀ s.KeyM s a)→ a

runKeyM (KeyM f ) = f newNameSupply

testEquality (Key l) (Key r)
| l ≡ r = Just (unsafeCoerce Refl)
| otherwise = Nothing

A KeyM computation consisting of >>=,return and newKey
can also be seen as a binary tree where binds are nodes, newKeys
are leaves and returns are empty subtrees. The Name associated
with each key is the path to the newKey that created it, in the tree
that corresponds to the KeyM computation. For example, the Key
resulting from the newKey in the expression:

runKeyM $ (m >> newKey)>>= f

will get the name Right (Left Start).
Note that the Key monad laws from Figure 2 only hold for this

implementation up to observation. If we have access to the definition
of Keys, we can discriminate between, for example, m >> n and n .

However, in the interface Key is an abstract type, and thus users
can be blissfully ignorant of this.

A downside of this implementation is that testEquality is linear
in the length of the tree paths. A more efficient implementation of
the Key monad uses Integers to represent keys and deals out unique
names by unsafely reading and updating a mutable variable which is
unsafely created in runKey . A full implementation of this version
of the Key monad can be found in the code online.

6.2 The Key Indexed Monad

Can we formalize through types the invariant that when two keys
are the same their types must also be the same? It turns out we can,
but this adds more types to the interface, leading to a loss of power
of the construction.

The crucial insight is that is needed for this implementation,
is that it is possible to implement to compare two indices in a
heterogeneous list (Fig 4), and if they are equal, then produce a
proof that the types are equal, as follows:

testEquality :: Index l a → Index l b → Maybe (a :∼: b)
testEquality Head Head = Just Refl

testEquality (Tail l) (Tail r) = testEquality l r

testEquality = Nothing

We can employ the same insight to construct testEquality
function for other data types. Instead of indexes in a heterogeneous
list, we add types to the paths in a tree to obtain paths in a
heterogenous tree. For this datatype we need to be able to construct
type-level trees, for which we use the following data type as a data-
kind:

data Tree a = Empty | Single a | Tree a :++: Tree a

With this datatype, we can construct types of kind Tree ∗ such as:

Single Int :++: (Single Bool :++: Single String)

We can now adapt the datatype TreePath to provide paths in type-
level trees instead of value-level trees, in a similar fashion to how
Index is an index in a type-level list instead of a value-level list:

data TTreePath p w where

Start :: TTreePath w w

Left :: TTreePath (l :++: r) w → TTreePath l w

Right :: TTreePath (l :++: r) w → TTreePath r w

We can now construct a testEquality-like function of the fol-
lowing type:

samePath :: TTreePath p w → TTreePath p′ w

→ Maybe (p :∼: p′)

The implementation of this function is a bit more involved than for
Index , but is unsurprising:

samePath Start Start = Just Refl

samePath (Left l) (Left r) = weakL <$> samePath l r

samePath (Right l) (Right r) = weakR <$> samePath l r

samePath = Nothing where

weakL :: ((l :++: r) :∼: (l ′ :++: r ′))→ l :∼: l ′

weakL x = case x of Refl → Refl

weakR :: ((l :++: r) :∼: (l ′ :++: r ′))→ r :∼: r ′

weakR x = case x of Refl → Refl

We can use this function to implement a function that produces a
proof that if two paths to a leaf are the same, then their associated
types are the same:

sameLeaf :: TTreePath (Single p) w →
TTreePath (Single p′) w →
Maybe (p :∼: p′)
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sameLeaf l r = weakenLeaf <$> samePath l r where

weakenLeaf :: (Single p :∼: Single p′)→ p :∼: p′

weakenLeaf x = case x of Refl → Refl

Now that we have encoded the invariant that when two key
values are the same then their associated types must also the same,
we can use this to implement a typed name supply with the following
interface:

type TNameSupply l s = TTreePath l s

type TName s a = TTreePath (Single a) s

newTNameSupply :: TNameSupply s s

tsplit :: TNameSupply (l :++: r) s
→ (TNameSupply l s,TNameSupply r s)

supplyTName :: TNameSupply (Single a) s → TName s a

sameName :: TName s a → TName s b →
Maybe (a :∼: b)

A typed name supply of type TNameSupply l s gives unique
names for the types in the subtree l which can be tested for equality,
using sameName , with all names which are created in the context
s . The implementations of the name supply functions are completely
analogous to their untyped counterparts.

By using the typed name supply instead of the regular name
supply and altering the types in the interface to reflect this change,
we obtain an implementation of what we call the indexed Key monad,
with the following interface:

newKeyIM ::KeyIM s (Single a) (Key s a)

rreturn :: a → KeyIM Empty s a

(·>>=) ::KeyIM s l a → (a → KeyIM s r b)
→ KeyIm s (l :++: r) b

runKeyIM :: (∀ s.KeyIM s l a)→ a

testEquality ::Key s a → Key s b → Maybe (a :∼: b)

The implementation of this interface is completely analogous to
the implementation of the Key monad in the previous subsection.
The only difference is that testEquality now uses sameName,
omitting the need for unsafeCoerce . This interface is an instance of
the parametric effect monad type class(Orchard and Petricek 2014).

Note that in the implementation of runKeyIm the universally
quantified type variable s gets unified with l in order to use
newTNameSupply . This “closes the context”, stating that the
context is precisely the types which are created in the computation.
In contrast, in runKeyM the type variable was not given an
interpretation.

While we have succeeded in avoiding unsafeCoerce, this con-
struction is less powerful than the regular Key monad because the
types of the keys which are going to be created must now be stati-
cally known. All example use cases of the Key monad in this paper
rely on the fact that the type of the keys which are going to be created
do not have to be statically known. For example, it is not possible
to implement a translation from parametric HOAS to de Bruijn in-
dices with KeyIM , because the type of the keys which would have
to be created is precisely the information that a parametric HOAS

representation lacks.

6.3 Attempting to Recover the Key Monad

Can we formalize the invariant through types and provide the regular
Key monad interface? We believe not.

An obvious attempt at this is hiding the extra type of KeyIM :

data KeyM s a where

KeyM ::KeyIM s p a → KeyM s a

We denote this type by ∃ p. KeyIM s p a for presentational pur-
poses, although it is not valid Haskell. While this allows us to pro-

vide type-safe implementations of testEquality , fmap, newKey
and return , things go awry for join (or >>=) and runKeyM .

Here is the problem that arises for runKeyM . We get the type:

runKeyM :: (∀ s. ∃ p.KeyIM s p a)→ a

But to use runKeyIM the type should be:

runKeyM :: (∃ p. ∀ s.KeyIM s p a)→ a

These types are not equivalent: the latter implies the former, but not
the other way around. In the former, the type which is bound to p
may depend on s , which cannot happen in the latter.

Let us take a look at what happens if we allow this coercion
and p does depend on s , for example when we create a key of type
Key s (Key s Int). When the type s is now unified with the tree
of types of the keys, it leads to a cyclic type:

s ∼ (Key s Int) :++: t

In the previous section, we demonstrated that allowing such keys,
where the type of the key mentions s , allows us to write fix without
recursion. In the worst case, allowing such cyclic types may lead to
type unsoundness.

For join other problems arise. We need an implementation of
type:

join :: (∃ p.KeyIM s p (∃ q .KeyIM s q a))→
∃ r .KeyIM s r a

Expanding the definition of KeyIM , the type of the argument we
have is:

∃ p. TNameSupply p s → ∃ q . TNameSupply q s → a

However, to use the implementation of join of KeyIM , we need
the argument to be of type:

∃ p q . TNameSupply p s → TNameSupply q s → a

Again, these two types are not equivalent: the latter implies the
former, but not the other way around. In general, q may depend on
the value of TNameSupply p s . However, this is not the case in
this implementation of KeyM because the name supply and Key
types are abstract and hence cannot influences the choice of type q .
Unfortunately, invariants like these are very hard to express in the
type system. Also, when a computation creates a potentially infinite
number of keys, will also lead to an infinite type, which may again
lead to type unsoundness.

7. Discussion on the ST Monad Proof

The ST monad was introduced in (Launchbury and Peyton Jones
1994) and contained some safety statements and also a high-level
description of a proof. The proof sketch mentions the use of
parametricity, which is a doubtful proof technique to use because
it is not established that parametricity still holds for a language
with the ST monad. A follow-up paper (Launchbury and Sabry
1997) mentions another problem with the first paper, in particular
that implementations of the lazy ST monad may actually generate
the wrong result in a setting that is more eager. The follow-up
paper claims to fix those issues with a new semantics and a proof
sketch. However, a bug in this safety proof was discovered, which
led to a series of papers (Launchbury and Sabry 1997; Ariola
and Sabry 1998) formalizing the treatment of different versions of
encapsulating strict and lazy state threads in a functional language,
culminating in (Moggi and Sabry 2001). This final paper gives
different formulations of strict and lazy state threads, one of them
corresponding more or less to lazy state threads in Haskell (although
not using global pointers). The aim of this final paper is to establish
type safety of state threads. However, the paper only provides a proof
sketch of type safety for one of the formulations, and only claims
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type safety (without a proof) for the other ones. With the exception
of the original paper (Launchbury and Peyton Jones 1994), all these
papers consider only local state, that is, each state thread has its own
memory, in contrast to the actual implementation of the ST monad.

Even if type safety may now be considered to have been estab-
lished by these papers, we are still left with referential transparency
and abstraction safety. We are unaware of any work that establishes
parametricity or referential transparency in the presence of the ST

monad. Referential transparency is quite tricky for actual implemen-
tations of the ST monad since efficient implementations use global
pointers. Abstraction safety is also very important because most
people assume that parametricity in Haskell actually holds, without
giving it a second thought that the ST monad may destroy it.

Now, we actually believe that the ST monad (and also the Key
monad) is safe in all of these senses. But we have also realized that
there exist no actual proofs of these statements in the published
literature. We think that the Key monad, which is arguably simpler
than the ST monad, could be a first step on the way to proving the
ST monad safe.

8. Conclusions

In the ST monad, one of the invariants that must hold is that when
two references are the same, then their types must also be the same.
We presented the Key monad, which splits reasoning based on this
invariant into a separate interface, and makes it available to the
user. We showed that this new interface gives a form of dynamic
typing without the need for Typeable constraints, which allows
us to do things we could not do before: it allows us to implement
heterogeneous maps, to implement the ST monad, to implement an
embedded form of arrow syntax and to translate parametric HOAS

to typed de Bruijn indices. The Key monad is simpler than the ST

monad, since the former embodies just one aspect of the latter. A
full proof of the safety of the ST monad remains elusive to this day.
We feel that the Key monad might be the key to the proof of the ST

monad.
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Oliveira, B. C. d. S. and Löh, A. (2013). Abstract syntax graphs for domain
specific languages. In Proceedings of the ACM SIGPLAN 2013 Workshop

on Partial Evaluation and Program Manipulation, PEPM ’13, pages
87–96, New York, NY, USA. ACM.

Orchard, D. and Petricek, T. (2014). Embedding effect systems in haskell. In
Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell
’14, pages 13–24, New York, NY, USA. ACM.

Paterson, R. (2001). A new notation for arrows. In Proceedings of the Sixth

ACM SIGPLAN International Conference on Functional Programming,
ICFP ’01, pages 229–240, New York, NY, USA. ACM.

Pfenning, F. and Elliott, C. (1988). Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN 1988 Conference on Programming

Language Design and Implementation, PLDI ’88, pages 199–208, New
York, NY, USA. ACM.

Svenningsson, J. and Svensson, B. J. (2013). Simple and compositional
reification of monadic embedded languages. In ICFP, pages 299–304.

Vytiniotis, D. and Weirich, S. (2007). Type-safe cast does not harm.

Wadler, P. (1989). Theorems for free! In Proceedings of the Fourth

International Conference on Functional Programming Languages and

Computer Architecture, FPCA ’89, pages 347–359, New York, NY, USA.
ACM.

157


