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Abstract. Most existing specification languages for runtime verifica-
tion describe the properties of the entire system in a top-down manner,
and lack constructs to describe concurrency in the specification directly.
CSPE is a runtime-monitoring framework based on Hoare’s Commu-
nicating Sequential Processes (CSP) that captures concurrency in the
specification directly. In this paper, we define the syntax of CSPE and
its formal semantics. In comparison to quantified event automata (QEA),
as an example, CSPE describes a specification for a concurrent system in
a bottom-up manner, whereas QEA lends itself to a top-down manner.
We also present an implementation of CSPE , which supports full CSPE

without optimization. When comparing its performance to that of QEA,
our implementation of CSPE requires slightly more than twice the time
required by QEA; we consider this overhead to be acceptable. Finally, we
introduce a tool named stracematch, which is developed using CSPE .
It monitors system calls in (Mac) OS X and verifies the usage of file
descriptors by a monitored process.
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1 Introduction

Runtime monitoring is a technique for monitoring program execution. In a sub-
field of run-time monitoring called specification-based monitoring [36], program
execution is monitored against a given specification. The specification is given
by a formal language, such as temporal logic, automata, grammar, or rule-based
systems. Thus, specification-based monitoring lies somewhere between tests—
which usually test only input/output contracts or assertions—and traditional
formal methods such as model checking or theorem proving, which try to prove
the correctness of a program along all possible execution paths.



This work focuses on parametric monitoring. In parametric monitoring, pro-
gram execution consists of a sequence of events, and each event is associated
with one or more parameters, such as a file name or an IP address.

Many frameworks for parametric monitoring have been proposed. One group
of frameworks is based on automata. Another is based on formal languages such
as regular expressions or context-free grammars, and still others are based on
temporal logic or rule-based systems. However, most of these frameworks do
not allow for a direct description of the concurrency of a monitored program.
Because a bug related to concurrency often surfaces only at runtime, runtime
monitoring of a concurrent system is important. In this paper, we investigate
the following research questions.

1. Can we design a monitoring language that specifies a concurrent system
in a bottom-up fashion—in a way that first describes the specifications of
components and then combines them?

2. Can process calculi, which are studied extensively to specify concurrent sys-
tems, be used for this particular purpose?

The first question is important because a concurrent system is often specified by
the specifications of its components and how they interact. On the other hand,
the traditional monitoring languages listed above concentrate on specifying the
global properties of systems, regardless of the specifications of their components.
This is useful, for instance, when we want to specify a safety property for the
whole system, regardless of its components. However, it would be difficult to
describe the correct interaction of the components in the system using such
methods, because they lack constructs to compose the specifications of systems
based on the specifications of their components.

The second question addresses using process calculi in a new context. Process
calculi were developed to reason about concurrent systems. In process calculi,
programs are processes, which are composed of simpler processes using sequential
or concurrent composition. Processes which compose a program can communi-
cate with each other using communication primitives such as events or channels.
In particular, we focus on Hoare’s Communicating Sequential Processes (CSP)
[37, 47]. CSP is a process calculus that uses events as communication primitives.
Thus, CSP is effective for describing event sequences generated by a concurrent
system.

In this paper, we introduce CSPE , a runtime-monitoring framework based
on CSP. Because it is based on CSP, CSPE has constructs that allow for the
direct description of concurrency in the specification. In this paper, we define the
language of CSPE and its formal semantics. However, our goal is not to intro-
duce a completely new language. Rather, our goal is to show that, with a slight
modification, CSP is amenable to monitoring. In fact, to obtain CSPE from
CSP, we merely add a Failure constant to express already-failed processes. We
show that CSPE can neatly describe a system of Unix-like processes and file de-
scriptors. We also implement a domain-specific language (DSL) based on CSPE

and compare its performance with quantified event automata (QEA) [5, 36, 46,
45] implemented in [14], using a simulated event log of the Unix-like processes



and file descriptors. QEA is an automata-based monitoring framework, which,
according to [38], is one of the most expressive of this kind. Further, it is easi-
est to understand by engineers [38]. Finally, MarQ, an implementation of QEA,
came top in the offline and Java track in first international competition on Run-
time Verification (2014) [22]. We use an implementation [14] that is a successor
of MarQ. In this comparison, our CSPE implementation requires slightly more
than twice the time that QEA takes; we consider this overhead to be acceptable.

Our DSL is shallowly embedded in the Scala programming language [43]; this
language is also named CSPE . An event monitor can be defined by using the
CSPE language. A monitor that is defined by CSPE sequentially consumes the
events from an event stream. If at some point the monitor fails to proceed, this
indicates that something unexpected has occurred.

The language of CSPE was discussed in part in [3]. In this paper, we fully
explain the syntax, semantics, and implementation of CSPE . In [3], the process
construct is used for a recursive definition. In this paper, we use the built-in def

construct in Scala for a recursive definition. If a process construct is needed, it
can be derived from the def construct.

We develop denotational semantics for CSPE , based on the trace semantics of
CSP. Our technical contribution to formal semantics is a proof that the semantic
space of CSPE can still be defined as a complete partial order (CPO) — a
mathematical structure which allows a recursive definition.

This paper is organized as follows. In Section 2, we discuss related work.
In Section 3, we discuss the syntax of CSPE using a motivating example. In
Section 4, we discuss the formal semantics of CSPE and prove that it forms
a complete partial order. This makes it possible to define monitors recursively.
In Section 5, we discuss our implementation of CSPE . In Section 6, we show a
benchmark for our CSPE implementation and a QEA implementation [14] using
the motivating example. In Section 7, we introduce a tool named stracematch.
This tool analyzes a log of system calls and verifies the correct usage of file
descriptors in a real program. Finally, Section 8 concludes the paper.

2 Related work

Many specification-based runtime-monitoring frameworks have been proposed,
including four approaches to parametric monitoring: an automaton-based ap-
proach [5, 7, 15, 16, 18, 20, 28, 34]; a regular expression- and grammar-based ap-
proach [1, 18, 24]; an approach based on temporal logic [6, 8, 9, 18–20, 24, 32, 33,
39, 48–50]; and a rule-based approach [4, 6, 35].

Qadeer and Tasiran [44] surveyed monitoring methods for multi-threaded
programs. They identified several important classes of correctness criteria, such
as race freedom, atomicity, serializability, linearizability and refinement. Their
notion of refinement is different from the CSP context. In the CSP context, it
is a relation between specification, while a refinement relation in Qadeer and
Tasiran mean a relation between traces. Qadeer and Tasiran’s paper [44] deals



with specific properties and construction of specialized monitors, not general-
purpose specification languages like ours.

Among work on monitoring distributed systems, [10] and [23] concentrate
global properties which can be described by temporal logic. polyLarva [17] is an
extension of LARVA [15, 16] designed for distributed systems, by which a user
can control the location of verifiers in the distributed system explicitly. LARVA
specifies the properties of monitored systems by sets of automata which can
communicate each other through channels. In this respect, it has a similar spirit
to CSPE , because both aim to synthesize a specification of a whole system from
a specification of each component. However, LARVA is based on automata and
does not support launching new automata dynamically.

Compared to these other frameworks, our approach creates a new avenue
for specification languages. We employ a process calculus—namely, CSP—to
describe a specification of a monitored program. The advantage of using pro-
cess calculi is primarily that they are designed to describe a concurrent system,
thereby providing a way to describe concurrency in a monitored system easily
and directly. Another benefit is that process calculi, and in particular CSP, allow
for automatic model checking [52, 53]. Model checkers can check the refinement
relation between CSP specifications. A CSP specification is a refinement of an-
other CSP specification when the former is a more detailed specification of the
latter. Thus, by checking the refinement relation, we can guarantee that the
monitor will check for desirable properties that otherwise might not be able to
be monitored directly, especially when they are too general.

Theoretically, any model checker based on process calculi, such as CADP [25]
can be used to offline runtime monitoring. In particular, CADP has a tool called
SEQ.OPEN [24], which can convert traces to Labeled Transition System (LTS).
A trace can be converted to an LTS and then synchronously composed to a
specification. If the system in such a way exhibits a deadlock, this indicates that
the trace violates the specification. The difference of our approach is that, CSPE

does not need a full model checker, and thus is much more lightweight. Also
CSPE is a DSL which is embedded in a general-purpose programming language,
thus it is easy to extend. Finally, CSPE can be used for online monitoring. To use
model-checking approach above for online monitoring, a significant development
effort seems necessary. “exhibitor” and “evaluator” of CADP can check whether
traces confirm given specifications, if they are used together with SEQ.OPEN,
but they use regular expressions or alternation-free µ-calculus for specification
languages.

Implementation-wise, CSPE is a shallow-embedded DSL in Scala [3]. In this
respect, it closely resembles TraceContract [7]. However, the application
program interface (API) of CSPE is considerably different from that of Trace-
Contract.



3 Introduction to CSPE

In this section, we introduce CSPE using a motivating example, and we compare
it to QEA [5, 36, 46, 45]. We argue that CSPE excels at describing properties that
are composed of local properties (i.e., to a process) yet interact globally.

3.1 Motivating example

Our motivating example is a system of Unix-like processes and file descriptors.
Each process and file descriptor have unique IDs. We assume that only Process
0 is running initially, and that Process 0 never exits. Each process can spawn
child processes. Any process other than Process 0 can exit anytime, without
waiting for its child processes to exit. Each process can open any file descriptor.
If a process opens a file descriptor, it must close it before exiting. Opening the
same file descriptor twice without closing it, or closing the same file descriptor
twice without opening it again, is not allowed. If a file descriptor is opened by a
process, the process can access it. Child processes can also access file descriptors
that were opened by their parent before they were spawned. Such file descriptors
must be closed by a child process before a child process exits.

3.2 CSPE Syntax

CSPE provides a DSL that is shallowly embedded in Scala. This DSL is also
called CSPE . Fig. 1 shown the above specification in CSPE .

The notable classes that appear in the example are Event and Process.

Event. The monitored system creates a stream of events. CSPE models events
using the Event case class, which is a subclass of AbsEvent. Every event takes a
symbol called an alphabet as its first argument, and it can have any number of
trailing arguments of Any type.

Process. A process class and its subclasses in CSPE are specifications of sys-
tems that are being monitored. They describe how a system produces sequences
of events. A process is often termed a monitor, because a process that is con-
structed by the CSPE accepts an event stream and judges whether it follows the
specification that the process describes. A process is constructed using meth-
ods that are defined by the CSPE library. In Fig. 1, system is the descrip-
tion of the entire system, while sysproc represents a process (and its subpro-
cesses). uniqProcess guarantees that process IDs are all unique for all process.
P1 || Set(’Spawn, ’Exit) || P2 means that P1 and P2 run concurrently and
share events which have alphabets ’Spawn and ’Exit. ?? {case ... => ...}

is a pattern match on incoming events, P1 ||| P2 is the interleaving of P1 and
P2, and SKIP is a process that does nothing and terminates normally. A process
can be defined by recursion, using the standard Scala def syntax. For the full
syntax, see Fig. 2 in BNF form.

Intuitively, each construct has the following meaning:



def sysproc(pid: Int, openFiles: Set[Int]): Process = ?? {

case Event(’Spawn, ‘pid‘, child_pid: Int) =>

sysproc(pid, openFiles) ||| sysproc(child_pid, openFiles)

case Event(’Open, ‘pid‘, fd: Int) if !openFiles(fd) =>

sysproc(pid, openFiles + fd)

case Event(’Access, ‘pid‘, fd: Int) if openFiles(fd) =>

sysproc(pid, openFiles)

case Event(’Close, ‘pid‘, fd: Int) if openFiles(fd) =>

sysproc(pid, openFiles - fd)

case Event(’Exit, ‘pid‘) if pid != 0 && openFiles.isEmpty => SKIP

}

def uniqSysproc(pidSet : Set[Int]) : Process = ?? {

case Event(’Spawn, _, child_pid : Int) if ! pidSet(child_pid) =>

uniqSysproc(pidSet + child_pid)

case Event(’Exit, pid : Int) if pidSet(pid) =>

uniqSysproc(pidSet - pid)

}

def system = sysproc(0, Set.empty) || Set(’Spawn, ’Exit) ||

uniqSysproc(Set(0))

var monitors = new ProcessSet(List(system))

Fig. 1. Motivating example in CSPE

– SKIP : A process that does nothing and terminates normally. For example,
e ->: SKIP represents a process that accepts event e and terminates.

– STOP : A process that does nothing and never terminates. For example,
e ->: STOP accepts event e but gets stuck.

– Failure : A process that has already failed. For example, e ->: Failure

accepts event e and then fails immediately. Using a process P which does not
consume e, the difference between STOP and Failure can be seen in the ex-
amples e ->: STOP ||| P and e ->: Failure ||| P. Both processes ac-
cept event e, but subsequently, the former runs provided that P accepts
events, whereas the latter fails immediately after event e. Using Failure

explicitly marks that a branch leads to an impossible state.

– e ->: P : A process that accepts event e and behaves like P. For example,
e1 ->: e2 ->: SKIP accepts events e1 and e2 and then terminates.

– ?? (f : Event -> Process) : A process that accepts event e and then
behaves like f(e). The function f typically uses pattern matching in order
to select the behavior that matches that of e. If e does not match any pattern,
?? f behaves like Failure.

– ??? (f : Event -> Process) : Similar to ??, but unlike ??, if the incoming
event e does not match any pattern, ??? f waits for another event.

– P1 <+> P2 : A process that behaves like either P1 or P2, depending on
which of them can accept the event that is input to P1 <+> P2. If both
P1 and P2 can accept the event, both possibilities remain. For example,



P ::= SKIP | STOP | Failure |
e ->: P |
?? f | ??? f |
P <+> P |
P || a || P |
P ||| P |
P $ P

Fig. 2. Full syntax for CSPE : Here, SKIP, STOP, Failure are constants, e is an event,
f is a partial function which maps a event to a process, and a is a set of alphabets.

e ->: e1 ->: SKIP <+> e ->: e2 ->: Failure first accepts e. Then, if
it accepts e1, it terminates normally; if it accepts e2, however, it fails im-
mediately. If both processes cannot accept the event, it behaves like Failure.

– P1 || a || P2 : Concurrent composition of P1 and P2, using events whose
alphabets are elements of a as synchronization events. For example, if a con-
tains the alphabet of e0 but a does not contain alphabets of e1 and e2,
then e0 ->: e1 ->: SKIP || a || e0 ->: e2 ->: SKIP accepts the se-
quences e0, e1, e2 and e0, e2, e1 but does not accept e0, e0, e1, e2.

– P1 ||| P2 : Interleaving of P1 and P2. e1 ->: SKIP ||| e2 ->: SKIP ac-
cepts the sequences e1, e2 and e2, e1.

– P1 $ P2 : A process that first behaves as P1 and then behaves as P2. If P1
fails, then P1 $ P2 fails. For example, e1 ->: SKIP $ e2 ->: SKIP accepts
e1 and e2 and then terminates normally.

Then, we generate a set of monitors with new ProcessSet(...) constructs. Be-
cause CSPE can track multiple possible states in the monitored system, we use
the set of monitors to monitor the system. Our system is similar to the one
presented in [37], but with unique differences, such as the inclusion of Failure.
Another difference is that our system has no internal choice, no τ , and no hid-
ing. Theoretically, we can implement such constructs, but they easily lead to
the state explosion of the monitors in which they are used. We designed the
syntax of CSPE in such a way that it closely resembles the original CSP syn-
tax. However, there are syntactical limitations, owing to the fact that CSPE is
embedded [3] in Scala. In Scala, the associativity and precedence of operators
are both determined by the established syntax of operators, and thus cannot be
changed. For example, to make the operator→ right-associative, we need to add
: to ->. Moreover, some symbols in Scala, such as [], are reserved for certain
kinds of operations. Thus, we use <+> rather than [] to indicate the choice oper-
ator. In the traditional CSP, the human-readable representation differs from the
machine-readable representation. For CSPE , we selected the machine-readable
code as a common representation for both types for simplicity. Because the



human-readable representation of CSPE and its embedding to Scala are the
same, both are termed CSPE .

3.3 Comparison with QEA

Because our specification contains a specification on file descriptors and a spec-
ification on processes, we split these specifications into two QEA automata:
fdMonitor and processMonitor. Using the textual representation used in [36],
each can be defined as shown in Fig. 3.

qea {

Forall(fd)

accept skip(init) {

spawn(parent, child) if [ parent in PS ]

do [ PS.add(child) ] -> init

open(pid, fd) if [ pid in PS ] -> failure

open(pid, fd) if [ not pid in PS ]

do [ PS.add(pid) ]-> init

access(pid, fd) if [ not pid in PS ] -> failure

close(pid, fd) if [ pid in PS ]

do [ PS.remove(pid) ] -> init

close(pid, fd) if [not pid in PS ] -> failure

exit(pid) if [ pid in PS ] -> failure

}

}

qea {

accept next(init) {

spawn(parent, child)

if [ (parent in PS || parent = 0) && not child in PS && child = 0]

do [ PS.add(child) ] -> init

exit(pid) if [ pid in PS ]

do [ PS.remove(pid) ] -> init

open(pid, fd) -> init

access(pid, fd) -> init

close(pid, fd) -> init

}

}

Fig. 3. QEA monitor for file descriptors and processes, respectively

Theoretically, CSPE , and QEA can represent any Turing computable prop-
erty, because we allow CSPE and QEA to have rich data-structures such as
Set; thus, we can encode a universal Turing machine using these data structures
as tapes. However, such theoretical representation is of no practical interest,
because such a monitor does not have much difference to a hand-coded monitor.



A major characteristic of CSPE is that it can represent the specification in a
bottom-up manner. The entire monitor is built from sysproc(pid, openFiles)

monitors, which run in an interleaving fashion, and uniqProcess, which guar-
antees that each process has a unique ID. Moreover, sysproc(pid, openFiles)

can be further decomposed into concurrent monitors. Thus, it can describe the
specification in the term near its implementation yet abstracted from unneces-
sary details. A major characteristic of QEA is that, insofar as it is based on state
machines, it requires specifying the states and transitions of the whole system
in order to describe the specification.

4 Formal Semantics

In this section, we define the formal semantics of CSPE . Because it is outside the
scope of this paper to define a language that contains all of the Scala constructs,
we consider a language that consists of all the constructs explicitly described in
Section 3.2, along with purely functional Scala expressions.

In the context of a runtime-monitoring framework, the term formal semantics
refers to the formal definition of actions of a monitor when it is given a finite
sequence of events (trace). For each trace, there are three possibilities:

1. The trace is accepted as a successful and complete execution of the monitored
program.

2. The trace is successful thus far, but not yet complete.
3. The trace is rejected as a failure.

Every possible trace falls into one of these three categories. To distinguish
these three cases, it is enough to give a set of traces which satisfy either cases
1 or 2. We call such a set a trace semantics of a monitor. In the given trace
semantics T , we interpret each trace as follows:

1. A trace t ∈ T that ends with X is interpreted as a successful and complete
execution.

2. A trace that is contained in T and does not end with X is interpreted as an
incomplete trace.

3. A trace that is not contained in T is interpreted as a failure.

The semantic space T of all possible trace semantics consists of the set of
traces T that satisfies the following:

1. If t ∈ T and t′ is a prefix of t, then t′ ∈ T , and
2. for all t ∈ T , the X appears only at the end of t.

This definition allows for the ∅ to be included as a member of T , unlike the usual
definition of CSP trace semantics [37, 47]. Let T c denote all completed traces in
T , T i denote all incomplete traces in T , and T f denote all traces that are not
contained in T . We allow for the possibility that a trace t ∈ T is interpreted as
successful thus far, despite the failure of all of its successors—for example, when



〈〉 ∈ STOP. From here, we abuse notations and use STOP, SKIP and Failure

to denote their semantics. The STOP specification is required to be used for
concurrent composition. If STOP is coupled with other processes concurrently,
STOP will get stuck, whereas other processes will continue to run. If Failure is
coupled with other processes concurrently, on the other hand, Failure causes
an immediate failure in the entire system.

Because we allow for a recursive definition of monitors, fixed points of reason-
able sets of operators are needed in the semantic space T . We follow the usual
approach by introducing a structure known as a complete partial order (CPO)
into the semantic space T . We define the order relation T1 v T2 to hold for ele-
ments T1, T2 in T , if T1 ⊆ T2. CPO is a partial order of which directed subsets
have supremums. A directed subset is a subset of a partial order such that it is
non-empty and every pair in it has an upper bound in it. A complete lattice is
a partially ordered set of which all subsets have supremums and infimums. If all
subsets have supremums, they also have infimums [47].

Theorem 1. T is a complete lattice.

Proof. For a set (Ti)i∈X of elements in T , its least upper bound T =
⊔

i∈X Ti is
defined as T =

⋃
i∈X Ti (i.e., the union of (Ti)i∈X as sets). It is routine to check

whether T ∈ T .

It is well known that all complete lattices are CPO. We define T1tT2 as
⊔

i=1,2 Ti.
Here, T has the minimal element Failure, and Failure does not contain any
trace. Moreover, STOP consists solely of 〈〉. In the usual trace semantics, STOP is
the smallest element of the semantic space, but it is clear that Failure @ STOP.
We also define SKIP as SKIP = {〈〉, 〈X〉}. Next, we define the operators →,_
on T in order to define the semantic interpretations of ->: and $. We use the
operation e∧s and s a t on an event e and traces s, t in order to define→ and _.
Here, e∧s of the concatenation of the event e to s, and s a t is the concatenation
of s and t, but if s ends with a X, then this Xis removed. Let e denote an event
other than X, and let T, T1, T2 ∈ T .

e→ T = {〈〉} ∪ {e∧t | t ∈ T}
T1 _ T2 = T i

1 ∪ {s a t | s ∈ T c
1 , t ∈ T2}

Theorem 2. If e is an event and T, T1, T2 ∈ T , then e→ T, T1 _ T2 ∈ T .

Next, we define the concurrent composition T1||AT2 (X 6∈ A) by co-induction
on T1 and T2. T ∈ T is either empty (T = Failure) or it can be decomposed as
follows:

C t
⊔

e∈hd(T )

e→ T e (1)

where C is SKIP if T can successfully terminate immediately or STOP otherwise.
Here, hd(T ) is defined as {e | ∃t, e∧t ∈ T}. Intuitively, T1||AT2 is defined as
follows: first, we assume that T1 and T2 allow only one event, e1 for T1 and e2



for T2 at the first step, and after these events their behaviors are described by T e1
1

and T e2
2 respectively. If both events are not in A, we assume that T1||AT2 behaves

in an interleaved way, that is, T1||AT2 = e1 → (T e1
1 ||AT2) t e2 → (T1||AT e2

2 ). If
one of them, say, e2 fall into A but not e1, then first e1 occurs and the occurrence
of e2 is delayed e1 → (T e1

1 ||Ae2 → T e2
2 ). If both fall into A, then they must be

equal otherwise T1||AT2 = STOP. If e = e1 = e2, T1||AT2 = e → (T e
1 ||AT e

2 ). If
there are multiple possibilities for events which can occur at the first step, we
can write T1 =

⊔
e∈hd(T1)

e→ T e
1 . We define T1||T2 by distributivity: T1||AT2 =⊔

e∈hd(T1)
e → T e

1 ||AT2. Considering the possibility of immediate termination,

we reach the following conditions. Let a, a′ ∈ A and b, b′ 6∈ A ∪ {X}.

1. Failure||AT = Failure

2. SKIP||AT = T
3. STOP||AT = T\T c

4. a→ T a
1 ||Aa→ T a

2 = a→ (T a
1 ||AT a

2 )
5. a→ T a

1 ||Aa′ → T a
2 = STOP if a 6= a′

6. b→ T b
1 ||Aa→ T a

2 = b→ (T b
1 ||Aa→ T a

2 )
7. b→ T b

1 ||Ab′ → T b′

2 = b→ (T b
1 ||Ab′ → T b′

2 ) t b′ → (b→ T b
1 ||AT b′

2 )
8. (C t

⊔
e∈hd(T1)

e→ Te)||AT2 = (C||AT2) t
⊔

e∈hd(T1)
(e→ Te||AT2)

9. All symmetric cases of above rules.

Theorem 3. If T1, T2 ∈ T , T1||AT2 exists and is an element of T .

Theorem 4. The operators t,
⊔
,→, ||A, and _ are all monotonic.

Thus, Tarski’s fixed-point theorem can be applied, and the use of recursion is
justified [47].

We interpret Failure, STOP, and SKIP in the CSPE notation as Failure,
STOP, and SKIP in T , respectively, and ->:, <+>, ?? f, || a ||, and $ as →,
t,

⊔
e:Event e → f(e), ||A(a), and _, respectively. Here, A(a) is the set of events

that have elements of a as alphabets. Moreover, ??? and ||| can be defined by
using the operators above and a recursive definition.

5 Implementation

In this section, we discuss an implementation of CSPE , which is available at [54].
CSPE was implemented as an internal shallow-embedded DSL in the Scala pro-
gramming language. Artho et al. discussed in depth the use of a DSL in the con-
text of verification [3]. The proposed CSPE is a combinator library that can be
used to define an object of the Process class, which represents a monitor. An ob-
ject of the Process class includes a method called accept, which accepts an event
object and returns new monitors. To monitor an event sequence, ProcessSet is
first instantiated by a list of monitors that are defined by CSPE . ProcessSet
also includes a method named accept, which accepts an event and returns a new
ProcessSet. ProcessSet represents multiple possible system states that are be-
ing monitored. Each monitor contained in ProcessSet represents one possible



system state. ProcessSet includes a method named isFailure, which returns a
Boolean value. If it returns true, there is no possible state that can be interpreted
as a correct system state, thus signifying the occurrence of an error. ProcessSet
includes a method named canTerminate, which also returns a Boolean value.
If it returns true, the system can exit at that point. If it returns false and the
system exits, the exit is an error.

As stated above, the Process object returns new Process objects when it
accepts a new event, rather than changing its internal state. This design simpli-
fies the implementation of non-determinism and concurrency. However, it also
requires immutable data structures for the internal state of a Process object. A
data structure for holding sets of processes is crucial in terms of performance,
especially when there are many processes running concurrently. The current im-
plementation uses the standard Scala List, which allows for duplicate entries. A
set in the standard library and multisets [51] have more efficient representations,
but we found that using them degrades the performance. Removing duplicate
entries appears to be unnecessary, because the current implementation gener-
ates many closures. Closures in Scala are compared by their physical equality,
thus all closures which are generated at different times are distinct. Thus, the
considerable amount of time needed to compute hashes and compare objects is
superfluous. Furthermore, we attempted to enhance the performance and reduce
memory usage by caching the results of accept. Alas, this slowed the library,
contrary to our expectations. In that experiment, we used ScalaCache [11] to-
gether with Google Guava [27].

6 Benchmark

We compared the performance of our implementation of CSPE with an imple-
mentation of QEA [14], using a randomly generated event sequence that correctly
simulates our motivating example. The benchmark generated an event sequence
and fed this into the CSPE and QEA monitors inside the same program, without
using an external log file. The program generated a sequence of Event objects
using a Stream and put its first 300,000 elements into a List to avoid record-
ing the time required to generate the sequence in the benchmark. Then, the
benchmark program first fed these elements into the CSPE monitor, recording
the real time from the first event to each 1,000 events. The benchmark program
also did the same to the QEA monitor, and finally formatted the result into the
CSV format. The time required for the JVM startup and the initialization of
the monitors is not included. The benchmark program is included in the test

directory of the CSPE distribution [54].
The benchmark uses Java 1.8.0_77-b03 and Scala 2.11.8 on Mac OS X El

Capitan, which we executed on a Mac Pro (late 2013 model), with a 3.7 GHz
Quad-Core Intel Xeon E5 and 64 GB of 1866 MHz DDR3 ECC.

Fig. 4 shows the results of this experiment. The time required to process
n events is roughly quadratic to n, because the number of processes in the
monitored system increases linearly to n and for each event, checking that every
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Fig. 4. Benchmark with the motivating example

process follows the specification requires time linearly to n. We can observe that
QEA is slightly more than twice as fast as CSPE . Nevertheless, because the
current implementation of CSPE has not yet been optimized, this shows that
CSPE is a feasible approach to monitoring concurrent systems.

7 Application: stracematch

stracematch is contained in the example directory of the CSPE distribution [54].
CSPE is used to implement a complete model of open and closed system calls
for file descriptors, the fork system call, and the execve system call. It ac-
cepts the dtruss -f output on OS X from the standard input, and then verifies
that the program correctly handles file descriptors. dtruss is based on DTrace

[12]. DTrace can instrument kernel events using D-script (not related to the D

programming language), and do an arbitrary complex task at each kernel event.
dtruss is a wrapper of DTrace and traces system calls and produces a log,

similar to strace in Linux. However, there are limitations: 1) dtruss cannot
obtain file descriptors which are created by socketpair and pipe, 2) dtruss

cannot catch the invocation of execve system call, which causes errors, 3) dtruss
outputs the trace to stderr, while it also outputs error messages to stderr,
therefore, if an error happens, the error message has to be removed from the
log manually. In the future work, we may consider using directly DTrace to
circumvent these limitations.

Owing to these limitations of dtruss, stracematch verifies that (a) a process
does not close the same file descriptor twice, and (b) if stracematch detects



the opening of a file descriptor, it is closed in the same thread. We applied
stracematch to several programs, as indicated in Table 1, where the “log size”
represents the number of lines in the log, and “time” denotes the amount of
time in seconds that stracematch required to analyze the log, which includes
the time to start the JVM.

Table 1. Benchmark of stracematch

Program Log size Result Time [s]

ls 156 Passed 0.370
wget (short) 267 Fd not closed 0.377
wget (long) 28,901 Fd not closed 1.145
Emacs 2,678 Fd not closed 0.750
Chrome 166,090 Stopped at 2,935 0.810
Ruby ehttpd 11,034 Closed fd twice at 1,168 0.648
Sinatra 3,191 Closed fd twice at 1,170 0.673
bash 1,218 Closed fd twice at 946 0.575

ls [2] is a Unix command which lists the contents of a directory. “ls” shows
the result on a trace which was obtained by invoking ls -l in a directory.
wget [31] is a command line tool to download the contents of a Web page or
a Web site. “wget (short)” shows the result on a trace which was obtained
by downloading a single web page. “wget (long)” shows the result on a trace
which is obtained by downloading an entire web site recursively. Emacs [30] is
a popular text editor. “Emacs” shows the result on a trace which was obtained
by invoking and terminating Emacs on the terminal. Chrome [26] is a popular
Web browser. “Chrome” shows the result on a trace which was obtained by
starting and exiting Chrome. Ruby ehttpd is a web server which is included
in the standard Ruby [40] programming language distribution. Sinatra [42] is a
simple web framework. “Ruby ehttpd” and “Sinatra” shows the results on traces
which were obtained by running these web servers on a simple static web site
and downloading the entire web site by wget. bash is a popular Unix command
shell. “bash” [29] shows the result on a trace which was obtained by running
an artificial shell script which was extracted from sbt, a build system which is
used mainly for Scala programming language. The shell script which was used,
is available upon request.

Our tool can process any logs within less than 1.2 seconds. With the excep-
tion of the case of “ls”, stracematch ended with errors. When stracematch

encounters an error, it stops and prints the line number and the contents of the
line. In Table 1, the location of each termination is indicated by the line number
at which stracematch stopped. One group of errors involved some file descrip-
tors that were still open at the end of the execution. This may be an indication
of a leak of that file descriptor. Another group of errors involved closing the
same file descriptor twice without re-opening it in between. This can cause a
rare bug in which another thread or a signal handler opens a file descriptor after



that file descriptor is closed for the first time and then the same file descriptor is
closed again; thus, that other thread or that signal handler cannot use this file
descriptor after that point. In the “Chrome” case, stracematch stopped because
invocations of fork appeared in the log, but only for child processes; and there
were no record of the invocation of fork for the parent processes. In such a case,
stracematch will become confused and stop working.

We contacted the developers of wget and bash, but the bash developer an-
swered that the error is harmless. The wget developers did not respond.

8 Conclusion

In this paper, we presented CSPE , an event-monitoring framework for concurrent
systems inspired by Hoare’s CSP. Monitoring concurrent systems is important,
because concurrent systems are now ubiquitous, and unit tests are incapable
of detecting concurrency bugs. Unlike most of other monitoring frameworks,
CSPE can describe a concurrent system in a bottom-up fashion, by composing
specifications of system components. This is often a natural way of specifying
concurrent systems.

CSPE is implemented as an internal DSL in Scala. Consequently, it can
be easily adapted to the needs of specific applications. Although the current
implementation has not yet been optimized, it incurs acceptable overhead, as we
demonstrated by comparing it to a QEA implementation to monitor a simulated
event sequence of a highly concurrent system. We presented the formal semantics
for CSPE in Section 4. Thus, CSPE is amenable to theoretical analysis. The
semantics are closely similar to the standard trace semantics of CSP. To interpret
the Failure construct, however, we allow the ∅ as a valid element in the semantic
space. We showed that even in such a setting, the semantic space forms a CPO,
thus allowing for fixed-point construction.

There are several directions for future research. Currently, a CSPE monitor
can only determine whether a given event trace is correct, outputting a Boolean
value. This makes it difficult to find the cause of an error. In addition, there is
no mechanism for error recovery. Rather, a monitor simply terminates when it
first encounters an error. We plan to add functionality that records the event
sequence to the error, providing error recovery based on diagnostics. CSPE does
not currently offer an easy way to share states among monitors running con-
currently. Global variables in Scala cannot be used for this purpose, because
they are also shared between monitors that represent the different states of the
system. We shall consider a mechanism and a language feature that can record
the global states among monitors.
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