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Abstract—Combinatorial testing aims at reducing the cost of
software and system testing by reducing the number of test cases
to be executed. We propose an approach for combinatorial testing
that generates a set of test cases that is as small as possible,
using incremental SAT solving. We present several search-
space pruning techniques that further improve our approach.
Experiments show a significant improvement of our approach
over other SAT-based approaches, and considerable reduction of
the number of test cases over other combinatorial testing tools.

I. INTRODUCTION

Combinatorial testing (cf. [28]) covers interactions of pa-
rameters in the system under test. A well-chosen sampling
mechanism can reduce the cost of software and system testing
by reducing the number of test cases to be executed. It has
been empirically shown that a significant amount of defects
can be detected by a test suite (a set of test cases) which covers
all possible t-way interactions at least once with relatively
small t [24].

In many systems, test cases involving arbitrary combinations
of parameters are not necessarily executable. For instance,
consider a web application that is expected to work in a various
environments listed as follows:

Parameter Values
CPU Intel, AMD
OS Windows, Linux, Mac

Browser IE, Firefox, Safari

The table specifies three parameters CPU, OS and Browser,
each having two or three possible values. However, not all
the combinations of these values are admitted. We have the
following constraints:

1) IE is available only for Windows.
2) Safari is available only for Mac.
3) Mac does not support AMD CPUs.
There is substantial work on combinatorial testing taking

such constraints into account. There are greedy approaches [9,
12, 11, 31], approaches based on simulated-annealing [11, 17],
and (Max)SAT-based approaches [23, 2, 25, 1]. They are
evaluated on two measures: computation time for test case
generation and the number of generated test cases.

Recent advances in greedy approaches significantly im-
proved the speed of test case generation, even in the presence

of complex constraints [31]. However, greedy approaches
often require more test cases to execute, in comparison with
the other two approaches. Making a test suite as small as
possible can be worth a high computation time, especially
when test execution is expensive as with system or field tests
that require human interaction.

Simulated-annealing-based approaches often yield a fairly
small test suite. However, the result is not guaranteed to be op-
timal; simulated annealing is non-deterministic optimization,
which may fall into a local optimum far from the global one.

SAT-based approaches [23] encode the possibility of a test
suite of certain size into a boolean formula, and ask a SAT
solver for its solution. In theory, the approach can generate a
globally optimal test suite, as well as proving its optimality.
In practice, however, it is often hard to decide satisfiability
when the size of allowed test suites is close to the optimum.
Moreover, since it is difficult to estimate the optimum size
beforehand, the SAT-based approach requires many runs of
SAT solving, making the approach less scalable.

This paper aims at making optimal test case generation
applicable in practice. To this end, we improve applicability
of the SAT-based approach. We propose
• the use of incremental SAT solving for optimizing a

combinatorial test suite,
• search-space pruning techniques that guide the effective

reasoning of SAT solvers, and
• cooperation with efficient greedy testing tools.
We report on experiments using large-scale examples from

[11] to verify practicality of our method. The results show that
our method significantly improves the SAT-based approach,
and also outperforms other approaches in terms of size of
generated test suites.

The remainder of the paper is organized as follows. In
the next section, we present basic notions required for the
paper. Section III explains SAT encoding of combinatorial
test problem. Section IV describes our test suite optimization
technique, and then Section V gives a series of improvements
to the proposed method. Section VI explains related work.
Through experiments, Section VII measures our contribution
to existing SAT-based approaches, and compares our tool with
existing tools. Section VIII concludes this paper.



II. PRELIMINARIES

A. Incremental SAT Solving

Satisfiability (SAT) [5] solvers are tools that decide if a
boolean formula over a set X of boolean variables can be
true under some assignment α on the boolean variables, i. e.,
a mapping α : X → {TRUE, FALSE}. An assignment α
satisfies a formula φ, written α |= φ, iff φ evaluates to TRUE
after replacing every variable x in φ by α(x). Standard SAT
solvers accept a boolean formula in conjunctive normal form
(CNF). To simplify the discussion, we assume that SAT solvers
can accept arbitrary boolean formulas; cf. the well-known
transformation by Tseitin [30].

Incremental SAT solving facilitates checking satisfiability
for a series of closely related formulas. It is particularly im-
portant [29, 13] in the context of bounded model checking [4].
State-of-the-art SAT solvers like Lingeling [3] implement the
assumption based incremental algorithm, as pioneered by the
highly influential SAT solver MiniSAT [14].

Incremental SAT solvers remember the current state and
do not just exit after checking the satisfiability of one input
formula. Additional formulas can be asserted and are taken
into account in further satisfiability checks. The interface of
an incremental SAT solver is expressed in an object-oriented
notation as follows:1

class solver {
literal newVar();
void assert(formula φ);
bool solve();
assignment model ; // refers to a solution if exists

};

B. Combinatorial Testing

We define several notions for combinatorial testing. First,
we define a model of a system under test (SUT).

Definition 1. An SUT model is a triple 〈P, V, φ〉 s. t.
• P is a finite set whose elements are called parameters,
• V = {Vp}p∈P assigns each p ∈ P a finite set Vp, whose

elements are called the values of p, and
• φ, called the SUT constraint, is a boolean formula whose

variables are pairs 〈p, v〉 of p ∈ P and v ∈ Vp. Hereafter,
we write p.v instead of 〈p, v〉.

Example 1. Consider the web-application mentioned in the
introduction. The SUT model 〈P, V, φ〉 for this example should
consist of the following parameters and values:

P = {CPU,OS,Browser}
VCPU = {Intel,AMD}
VOS = {Windows,Linux,Mac}

VBrowser = {IE,Firefox,Safari}

1 Usually incremental SAT solvers have a method to specify assumption
formulas [14], which will be valid only for the next call of satisfiability check.
We do not use this functionality in this paper.

TABLE I
AN (OPTIMAL) TEST SUITE FOR THE EXAMPLE SUT.

No. CPU OS Browser
1 Intel Windows Firefox
2 Intel Mac Firefox
3 Intel Windows IE
4 Intel Linux Firefox
5 Intel Mac Safari
6 AMD Windows IE
7 AMD Linux Firefox

The constraints 1), 2), and 3) in the introduction are expressed
by the following SUT constraint:

φ =


(Browser.IE⇒ OS.Windows) ∧
(Browser.Safari⇒ OS.Mac) ∧
(CPU.AMD⇒ ¬OS.Mac)

A test case is a choice of values of parameters that does not
violate the given constraint. It is defined as follows.

Definition 2 (test cases). A test case is a mapping γ from P
to
⋃
V which satisfies γ(p) ∈ Vp for every p ∈ P and γ̂ |= φ;

here, γ̂ is the following assignment:

γ̂(p.v) :=

{
TRUE if γ(p) = v

FALSE otherwise

We call a set of test cases a test suite.

Example 2. A test suite for the SUT model of Example 1,
consisting of seven test cases, is shown in Table I.

A basic observation supporting combinatorial testing is that
faults are caused by interaction of values of a few parameters.
To catch such interactions, the following notions are defined.

Definition 3 (tuples). Let an SUT 〈P, V, φ〉 be given. A
parameter tuple is a subset π ⊆ P of parameters. A value
tuple, or simply a tuple is a mapping τ over some π ⊆ P s. t.
τ(p) ∈ Vp for every p ∈ π.

As in standard mathematics, we also consider a tuple τ as
the following relation between parameters and values:

τ = { p.v | τ(p) = v is defined }

Note that here we write p.v instead of 〈p, v〉.

Definition 4 (covering tests). We say that a test case γ covers
a tuple τ iff τ(p) = γ(p) whenever τ(p) is defined, and a tuple
is possible iff it is covered by some test case (satisfying the
constraints). Given a set T of tuples, we say that a test suite
Γ is T -covering iff every τ ∈ T is covered by some γ ∈ Γ.
The covering test problem is to find a T -covering test suite.

The terms t-way or t-wise testing and covering arrays (cf.
[28]) refer to a subclass of the covering test problems.

Definition 5 (t-way test suite). Let 〈P, V, φ〉 be an SUT and t
a positive integer. A t-way test suite is a T -covering test suite
where T is the set of all possible tuples of size t. The value t
is called the strength of combinatorial testing.

2



TABLE II
THE ORIGINAL MATRIX FOR TABLE I AND ITS ENCODING.

x1=? x2=? x3=?

No. x1 x2 x3 1 2 1 2 3 1 2 3

1 1 1 2 1 0 1 0 0 0 1 0
2 1 3 2 1 0 0 0 1 0 0 1
3 1 1 1 1 0 1 0 0 1 0 0
4 1 2 2 1 0 0 1 0 0 1 0
5 1 3 3 1 0 0 0 1 0 0 1
6 2 1 1 0 1 1 0 0 1 0 0
7 2 2 2 0 1 0 1 0 0 1 0

Example 3. The SUT model of Example 1 has 15 possible
tuples of size two. For instance, {CPU.Intel,OS.Windows},
{Browser.Safari,CPU.Intel}, and so on. Note that the tuple
{Browser.Safari,CPU.AMD} is not possible, although it is
not explicit in the SUT constraint φ.

The test suite in Table I is a 2-way covering test suite for
the SUT model and actually it is optimal:2

Definition 6. A T -covering test suite Γ is said to be optimal if
there exists no smaller T -covering test suite Γ′, i. e., |Γ| > |Γ′|.

III. ENCODING COVERING TESTS INTO SAT
In this section, we present an encoding of covering test

problems into SAT. We consider that P consists of k param-
eters and each Vp consists of gp values (i.e., |P | = k and
|Vp| = gp). To simplify the later discussion, we assume that
parameters and values for each parameter are identified by
their indices (i. e., P = {1, . . . , k} and Vp = {1, . . . , gp}).

A. Encoding Test Suites

We adopt the original matrix model of [22] for encoding a
test suite. Let Γ be a test suite of n test cases γ1, . . . , γn. The
original matrix for Γ is the following n-row k-column matrix:

X =

x
1
1 . . . x1k
...

...
xn1 . . . xnk


Here, each i-th row of the matrix represents the test case γi,
and each p-th column of the row represents the value of the
corresponding parameter; i. e., xip = γi(p).

The value of xip is represented using gp boolean variables
xip=1, . . . , xip=gp , where xip=v is assigned TRUE iff xip = v

(i. e. γi(p) = v). Here, xip must have a unique value. Thus,
we impose the following uniqueness constraint:

Uniquen :=

n∧
i=1

k∧
p=1

(
1 =

gp∑
v=1

xip=v

)
The encoding is also known as one-hot encoding [20].

An assignment α satisfying Uniquen induces a test suite
Γ = {γ1, . . . , γn}, which is defined as γi(p) = v if and only
if α(xip=v) = TRUE.

Example 4. The original matrix for the test suite of Example 2
and its encoding is illustrated in Table II.

2 The optimality can be shown using SAT-based approaches.

B. Encoding Uniqueness Constraints

Various encodings are known for constraints of the form

1 =

gp∑
v=1

xip=v (1)

that appear in formula Uniquen. Hnich et al. [22] adopted the
naive encoding, that represents (1) by the following CNF:( gp∨

v=1

xip=v

)
∧
gp−1∧
v=1

gp∧
w=v+1

(
¬xip=v ∨ ¬xip=w

)
Banbara et al. [2] adopted the order encoding; their en-

coding introduces gp − 1 boolean variables xip≥2, . . . , x
i
p≥gp

for each row i and parameter p. The boolean variable xip≥v
represents the constraint xip ≥ v. Transitivity of the standard
order ≥ imposes the following CNF:

Ordern :=

n∧
i=1

k∧
p=1

gp∧
v=1

(
xip≥v ⇐ xip≥v+1

)
Here we let xip≥1 denote TRUE and xip≥gp+1 denote FALSE.

The order encoding, as well as the mixed encoding of [2]
does not introduce variables xip=v for representing the orig-
inal matrix X . Our encoding uses both variables xip≥v and
xip=v; the latter variables are required when considering SUT
constraints. Correspondence of these variables are ensured by
further imposing the following formula:

Correspn :=

n∧
i=1

k∧
p=1

gp∧
v=1

(
xip=v ⇔ xip≥v ∧ ¬xip≥v+1

)
Note that Ordern and Correspn can be considered as the
constraints introduced by adopting the ladder encoding [18]
for formula (1).

C. Encoding SUT-Constraints

We adopt the straightforward translation of Nanba et al. [25]
for encoding SUT-constraints. Every test case of a test suite
(i. e., every row of an original matrix) must satisfy a given SUT
constraint. To express this, an SUT-constraint φ is translated
to a formula Tri(φ) over variables xip=v , by simply replacing
each occurrence of p.v by xip=v . Using this transformation,
we define the following formula:

Mapn(φ) :=

n∧
i=1

Tri(φ)

Proposition 1. If α |= Uniquen ∧Mapn(φ) then α induces a
test suite for the SUT model 〈P, V, φ〉.

D. Encoding Coverage Criteria

In this section we show how to encode the coverage criteria.
To this end, we introduce the following notion.

Definition 7 (Cover flags). Let T be a set of tuples. A T -
cover flag array (T -CFA) of a test suite Γ = {γ1, . . . , γn} is
an n-row |T |-column boolean array C = (ciτ ) s. t. γi covers
τ whenever ciτ = TRUE.
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TABLE III
A 2-WAY CFA FOR THE TEST SUITE OF TABLE I.

x1x2 x2x3 x3x1

No. x1 x2 x3 11 12 13 21 22 11 ... 33 11 ... 31
1 1 1 2 1
2 1 3 2 1
3 1 1 1 1 1 1
4 1 2 2 1
5 1 3 3 1 1 1
6 2 1 1 1 1
7 2 2 2 1

Example 5. Consider again the test suite of Example 2. The
CFA for the test suite is illustrated in Table III. Note that some
columns, e. g. a column for ‘2 3’ in the x1x2 group and one
for ‘3 2’ in the x3x1 group are missing in the table. These
missing columns correspond to tuples that are not possible.

We represent a T -CFA C = (ciτ ) of a test suite Γ by boolean
variables ciτ in an obvious manner. To ensure that C is a T -
CFA, we introduce the following CNF:

CoverFlagsn(T ) :=

n∧
i=1

∧
τ∈T

∧
p.v∈τ

(
ciτ ⇒ xip=v

)
Note that xip=v holds for every p.v ∈ τ , if and only if the
tuple τ is covered by the test case γi. Thus, ciτ is true only if
τ is covered by γi.

It is straightforward to show the following result:

Proposition 2. If α |= Uniquen ∧ CoverFlagsn(T ), then (ciτ )
is a T -CFA of the test suite induced by α.

Now we encode the condition that every tuple τ ∈ T is
covered by some test case γi ∈ Γ. This is easily encoded as
the following formula:

Coveredn(T ) :=
∧
τ∈T

n∨
i=1

ciτ

In the rest of the paper, CoveringTestn(T, φ) denotes the
following formula:

Uniquen ∧Mapn(φ) ∧ CoverFlagsn(T ) ∧ Coveredn(T )

Proposition 3. If α |= CoveringTestn(T, φ), then α induces
a T -covering test suite for the SUT model 〈P, V, φ〉.

Proposition 4. The formula CoveringTestn(T, φ) is satisfiable
if and only if there exists a T -covering test suite Γ for the SUT
model 〈P, V, φ〉 s. t. |Γ| = n.

E. Remark: Alternative Matrix Model and Mixed Encoding

Our encoding using cover flags looks naive but is equivalent
to the SAT encoding of the alternative matrix model of Hnich
et al. [22, 23], as well as the mixed encoding of Banbara et al.
[2]. The alternative matrix model [22] represents the coverage
criterion for t-way combinatorial testing. Let

(
P
t

)
denote the

set of all size t subsets of P . For each parameter tuple π ∈
(
P
t

)
,

we assume that possible tuples over domain π are indexed as
τπ1 , . . . , τ

π
mπ .

TABLE IV
THE ALTERNATIVE MATRIX FOR TABLE I AND ITS ENCODING.

y12=? y23=? y31=?

No. x1 x2 x3 y12 y23 y31 1 2 3 4 5 1 ... 5 1 ... 5
1 1 1 2 1 2 3 1
2 1 3 2 3 4 3 1
3 1 1 1 1 1 1 1 1 1
4 1 2 2 2 3 3 1
5 1 3 3 3 5 5 1 1 1
6 2 1 1 4 1 2 1 1
7 2 2 2 5 3 4 1

Definition 8 ([22]). The t-way alternative matrix for a test
suite {γ1, . . . , γn} is the n-row

(
k
t

)
-column matrix (yiπ) where

yiπ is the index j s. t. τπj ⊆ γi.

The SAT encoding of Hnich et al. and the mixed encoding
of Banbara et al. represent the alternative matrix by boolean
variables yiπ=j for all π and j ∈ {1, . . . ,mπ}, representing that
yiπ = j. Note here that each yiπ=j is equivalent to the cover
flag ciτ for τ = τπj . Hence, the formula CoverFlagsn(T ) can
be considered as a (simpler) representation of the channeling
constraints [22].

Example 6. Table IV presents the alternative matrix for the
test suite of Example 2. In contrast to the unconstrained case,
y12, y23, and y31 have only 5 values for each, since 1, 4, and 4
tuples are not possible, respectively. The right half of Table IV
represents the encoding of the alternative matrix. Observe the
correspondence of the encoding with the CFA of Table III.

IV. OPTIMIZING TEST SUITES BY INCREMENTAL SAT

In this section, we introduce a test suite optimization
approach using incremental SAT solving. The basic idea is
inspired by the MaxSAT approach by Ansótegui et al. [1].
Thus, we first revisit their approach in the next section, and
then describe our approach.

A. Optimization by Partial MaxSAT Solving

Ansótegui et al. [1] proposed use of partial MaxSAT [8]
solvers for optimizing test suites.

Definition 9 (partial MaxSAT problems). A soft CNF φ
consists of two sets of clauses: the hard part φh and the soft
part φs. A solution to a soft CNF φ is an assignment that
satisfies φh and maximizes the number of satisfied clauses in
φs, or equivalently minimizes the number unsatisfied clauses.

Their approach introduces n new variables u1, . . . , un. Each
ui encodes the property that the test case γi is “used” for
covering some tuple τ ∈ T . In our encoding, this condition
can be expressed by assuming that the cover flags ciτ can be
set to TRUE only if ui is TRUE.

Using(T ) :=
∧
τ∈T

n∧
i=1

(
ciτ ⇒ ui

)
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TABLE V
CFA AND USAGE FLAGS FOR EXAMPLE 7.

x1x2 x2x3 x3x1

No. ui x1 x2 x3 11 12 13 21 22 11 ... 33 11 ... 31
1 1 1 1 2 1
2 1 1 3 2 1
3 1 1 1 1 1 1 1
4 1 1 2 2 1
5 1 1 3 3 1 1 1
6 1 2 1 1 1 1
7 1 2 2 2 1
8 0 1 3 2
9 0 2 2 1
10 0 1 3 3

Then, the target is to minimize the number of used test cases:

minimize
( n∑
i=1

ui

)
(2)

This target is encoded as a partial MaxSAT problem using the
following set of n soft-clauses:

Softn := {¬u1, . . . ,¬un}

Proposition 5. There exists a T -covering test suite of size
m w. r. t. φ, if and only if a solution to the soft CNF
〈CoveringTestn(T, φ),Softn〉 satisfies m clauses in Softn.

This encoding using the new variables u1, . . . , un is highly
symmetric which makes efficient reasoning difficult. To break
this symmetry, the following constraints are imposed:

Packedn :=

n−1∧
i=1

(
ui+1 ⇒ ui

)
Note that Packedn ensures that whenever m rows are used,
the first m-rows are used. This symmetry breaking measure is
reported to significantly improve the performance in [1].

Example 7. Consider obtaining a test suite within 10 rows
for the SUT model of Example 1. The corresponding cover-
flag array and its usage flags are illustrated in Table V. The
last three rows are not used to cover tuples, and thus the
corresponding usage flags (u8, u9, and u10) are falsified. The
remaining seven rows constitute the test suite of Example 2.

B. Optimization by Incremental SAT Solving

Under constraint Packedn, the target function of (2) satisfies∑n
i=1 ui < m if and only if um+1 is assigned false. This fact

suggests another way of optimization using incremental SAT
solving [29, 13].

Suppose that the following formula is satisfiable:

CoveringTestn(T, φ) ∧ Packedn

That is, there exists a T -covering test suite of size n. If we can
further find a satisfying assignment for the following formula:

CoveringTestn(T, φ) ∧ Packedn ∧ ¬un

then we know that there exists a T -covering test suite of size
n − 1. By repeating this procedure, we obtain an optimal T -
covering test suite of size i when the formula

CoveringTestn(T, φ)∧Packedn∧¬un∧· · ·∧¬ui+1 (3)

is satisfied, and the next formula becomes unsatisfiable:

CoveringTestn(T, φ)∧Packedn∧¬un∧· · ·∧¬ui+1∧¬ui (4)

Note that the only difference between (3) and (4) is the
addition of the unit clause ¬ui. For solving such a series
of SAT instances, incremental SAT solving [29, 13] can be
expected to improve performance. This incremental approach
not only reduces the cost of generating similar formulas again
and again, but also allows SAT solvers to reuse learned
clauses, which is expected to speed-up incremental SAT solver
calls and thus the overall process. Indeed, all the clauses
learned for formula (3) remain valid for formula (4).

The basic procedure of the proposed approach is presented
in Algorithm 1.

Algorithm 1: Optimization by Incremental SAT Solving

1 tool ← new solver ;
2 tool .assert(CoveringTestn(T ) ∧ Packedn);
3 for i = n, . . . , 1 do
4 if tool .solve() = Unsat then
5 return Γ; // optimum found

6 Γ← recover test cases(tool .model);
7 tool .assert(¬ui);

V. IMPROVEMENTS

In this section, we introduce several techniques that improve
the efficiency of our method.

A. Removing the New Variables

Recall that the variables u1, . . . , un are added to define the
target (2). Since we do not use a MaxSAT solver, we do not
actually need these variables.

To get rid of these variables, we modify a CFA to a
propagating CFA (ciτ ), such that ciτ = TRUE indicates that
τ has been covered by some test case γj with j ≤ i. This is
expressed by the following formula:

CoverFlags′n(T ) :=

n∧
i=1

∧
τ∈T

∧
p.v∈τ

(
ciτ ⇒ ci−1τ ∨ xip=v

)
Here we let c0τ denote FALSE.

Now, asserting ¬ui is equivalent to asserting the following:

Covered′i(T ) :=
∧
τ∈T

ciτ

5



TABLE VI
FIXING TUPLES IN A PROPAGATING CFA.

x1x2 x2x3 x3x1

No. x1 x2 x3 11 12 13 21 22 11 ... 33 11 ... 31
1 1 1 1 0 0 0 0
2 1 2 1 1 0 0 0
3 1 3 1 1 1 0 0
4 2 1 1 1 1 1 0
5 2 2 1 1 1 1 1
6 1 1 1 1 1
7 1 1 1 1 1

B. Symmetry Breaking

Some symmetry breaking techniques [15, 19] have been
successfully applied to unconstrained combinatorial testing,
guiding SAT solvers’ effective reasoning. In the presence
of constraints, however, these techniques cannot be directly
applied. Some of the basic assumptions for these methods,
namely column symmetry and value symmetry, do not hold
due to the existence of constraints. Thus, the previous SAT-
based approach for constrained combinatorial testing by Nanba
et al. [25] does not consider symmetry breaking.

Nonetheless, we still have row symmetry: Any two test
cases in a test suite can be swapped without affecting the
meaning of the test suite. We partially break this symmetry
by fixing some values according to the set of possible tuples.3

Consider a parameter tuple π ⊆ P , on which possible tuples
τ1, . . . , τm exist. Every tuple τi must be covered by some test
case, but the index of the test case can be arbitrary. Thus, we
can safely impose that i-th test case covers τi.

Note however that value tuples can be fixed only for one
parameter tuple. To fix as many values as possible, we choose
a parameter tuple that consists of the maximum number of
value tuples. Note also that a test suite cannot be smaller than
the number of fixed value tuples. Thus, we stop optimizing
when we achieved this minimum size.

Example 8. For the SUT model of Example 1, consider fixing
the parameter tuple {CPU,OS}, which is encoded as x1 and
x2 in the original matrix. Table VI illustrates the original
matrix and corresponding propagating CFA with fixing value
tuples, where unfixed fields are left blank.

C. Pruning Search Spaces

When compared to previous approaches, our approach
quickly reaches a nearly optimal test suite. However, when
it comes to proving the optimality, Algorithm 1 is not as good
as the iterative approach. This phenomenon is explained as
follows: In principle, all the possible assignments on variables
must be considered to prove unsatisfiability of a formula.
The incremental approach requires proving unsatisfiability of
formula (4), which contains variables related to xip, . . . , x

n
p ,

which are irrelevant to the unsatisfiability of the formula.
These variables are not present in CoveringTesti−1(T, φ),
which would be checked in the iterative approach.

3An essentially equivalent idea is mentioned as preprocessing [32, p.65].

In the incremental approach, we can virtually prune the
search space for these irrelevant variables, by fixing the assign-
ment of them by asserting unit clauses (i. e., clauses containing
only one literal) depending on their current assignment. In
principle, the incremental approach can be optimized if the
back-end SAT solver provides a dedicated function to remove
variables, e. g. methods ‘release’ of MiniSAT and ‘melt’ of
Lingeling.

The overall procedure is illustrated in Algorithm 2.

Algorithm 2: Improved Test Suite Optimization

1 tool .assert(Uniquen ∧Mapn(φ) ∧ CoverFlags′n);
2 Fix m value tuples according to Section V-B;
3 for i = n, . . . ,m do
4 if tool .solve() = Unsat then
5 return Γ; // optimum found

6 Γ← recover test cases(tool .model);
7 tool .assert(Covered′i(T ));
8 for p ∈ P , v ∈ Vp do // pruning
9 if tool .model [xip=v] = TRUE then

10 tool .assert(xip=v);

11 else
12 tool .assert(¬xip=v);

13 return Γ ; // achieved the minimum size

D. Cooperation with Greedy Covering Test Tools

There are two main challenges in applying the SAT-based
test suite optimization techniques: finding a reasonably small
upper bound for the size of test suites, and enumerating all the
possible tuples. For the latter problem, a SAT-based approach
has been proposed [25].

We solve both of the problems using existing test case
generation tools, such as PICT [12] or ACTS [7]. These
tools do not aim at generating an optimal covering test suite.
Instead, they aim at quickly generating a covering test suite of
reasonable size. Thus, the size of a test suite generated by such
tools is a good starting point for optimization. Moreover, the
set of possible tuples can be obtained by enumerating value
tuples that appear in the test suite.

VI. RELATED WORK

A. Test-Suite Minimization

The minimization problem of covering arrays was proposed
by Hartman and Raskin [21], and generalized by Blue et al. [6]
for test suites with (implicit) SUT constraints. Their minimiza-
tion problems are different from our optimization problem;
given an initial test suite Γ and a coverage criterion (e. g. 2-
way), the minimization problem of [21] is to find a smallest
subset Γ′ ⊆ Γ that satisfies the given coverage criterion. Our
optimization problem does not impose any relation between Γ
and Γ′, thus can obtain smaller test suites in general. On the
other hand, our approach requires constraints be explicit.
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TABLE VII
COMPARISON WITH EXISTING SAT-BASED APPROACHES FOR 2-WAY COVERAGE.

ACTS iterative MaxSAT Algorithm 1 Algorithm 2
Name Model Constraints size time size time size time size time size time
SPIN-S 21345 213 26 0.92 19* 2.60 19* 19.39 19* 2.84 19* 1.70
SPIN-V 24232411 24732 45 1.46 31 264.50 35 1186.64 31 606.46 31 87.46
GCC 2189310 23733 23 1.65 15 687.78 18 2683.66 15 855.66 15 135.33
Apache 215838445161 23314251 33 1.10 30* 451.18 30* 2559.07 30* 760.67 30* 144.95
Bugzilla 2493142 2431 19 0.55 16* 5.24 16* 15.44 16* 5.28 16* 2.79
1 28633415562 2203341 48 4.04 38 983.76 42 1892.65 38 620.18 37 809.15
2 28633435161 21933 32 2.07 30* 41.10 30* 261.36 30* 42.31 30* 24.96
3 22742 2931 19 0.73 18* 1.04 18* 2.84 18* 1.07 18* 1.00
4 251344251 21532 22 1.22 20* 6.59 20* 31.02 20* 15.81 20* 4.50
5 215537435564 2323641 54 5.33 46 3194.67 53 1520.93 46 3437.61 45 2344.78
6 2734361 22634 25 1.83 24* 9.38 24* 49.22 24* 26.23 24* 8.92
7 22931 21332 12 0.68 9 1.11 9 9.75 9 1.15 9 0.77
8 210932425363 2323441 47 4.10 37 1277.83 43 1967.39 36* 1294.33 36* 501.99
9 25731415161 23037 22 1.87 20* 5.91 20* 10.20 20* 4.93 20* 3.85
10 213036455264 24037 47 6.67 41 2069.71 45 1288.32 39 3078.28 39 2195.97
11 28434425264 22834 47 431 39 2766.41 44 2027.18 39 969.36 39 575.84
12 213634434163 22334 43 4.73 36* 666.02 38 3223.91 36* 642.72 36* 127.09
13 212434415262 22234 40 2.58 36* 269.53 36* 1409.24 36* 346.79 36* 79.60
14 281354363 21332 39 1.54 36* 79.07 36* 409.35 36* 124.75 36* 30.95
15 25034415261 22032 32 1.40 30* 10.14 30* 62.82 30* 25.84 30* 5.73
16 281334261 23034 25 2.04 24* 10.37 24* 68.44 24* 37.61 24* 10.11
17 212833425163 22534 41 3.57 36* 333.16 36* 2531.96 36* 394.04 36* 87.71
18 212732334662 2233441 52 3.18 40 2982.15 48 2599.03 39 3419.77 40 926.92
19 217239495364 23835 51 4.88 44 2950.88 50 2916.59 43 2919.63 42 1572.37
20 213834455467 24236 60 8.06 55 2591.95 (60) (10.28) 58 3353.96 54 1382.47
21 27633425163 24036 39 2.63 36* 53.96 36* 172.24 36* 70.89 36* 21.75
22 272344162 23134 37 1.77 36* 12.84 36* 75.86 36* 31.79 36* 12.70
23 2253161 21332 14 0.81 12* 1.02 12* 2.13 12* 0.98 12* 0.88
24 2110325364 22534 48 3.45 42 2386.82 46 1998.46 42 1452.85 41 1917.11
25 211836425266 2233341 52 3.92 49 1570.63 (52) (3.59) 49 3253.74 48 2748.84
26 287314354 22834 34 2.87 27 351.42 28 1454.10 26 862.92 26 1337.59
27 25532425162 21733 37 1.58 36* 9.50 36* 69.03 36* 31.69 36* 9.19
28 2167316425366 23136 57 4.61 52 2870.53 (57) (5.34) 50 3547.34 49 2269.73
29 21343753 21933 29 1.81 25* 244.19 25* 1218.91 25* 352.88 25* 63.10
30 2733343 22032 22 1.96 16* 31.41 16* 116.89 16* 34.15 16* 8.65

B. Covering Array Optimization
Nayeri et al. [26, 27] proposed a randomized optimization

of covering arrays and reported significant improvements over
non-optimal algorithms, especially on relatively large prob-
lems (requiring hundreds of rows). Their approach exploits
“don’t care” fields, the fields that can have arbitrary value
without affecting the coverage.

Their approach cannot be easily extended for optimization
of test suites in the presence of constraints, since a parameter
involved in constraints can rarely be a “don’t care”. To check
if a field is a “don’t care”, one must check if all candidate
values of the field do not violate the given constraints. Also,
their approach does not guarantee optimality.

On the other hand, their approach is more scalable than ours.
We leave it for future work to apply heuristic optimization
under the presence of constraints.

C. Simulated Annealing
Simulated annealing has been adapted for constructing

covering arrays [10], and extended for constraints [16, 17].
While these approaches use a very different technique to ours,
we have a similarity: When they find a covering test suite,
they do not immediately output the test suite but try to get a

smaller one. Thus, CASA,4 a combinatorial testing tool based
on simulated annealing, is compared in the experiments.

D. Optimization by Iterative SAT Solving

The original approach of Hnich et al. [22] requires calling
SAT solvers iteratively. The basic idea of the approach is to
find an optimal test suite by applying Proposition 4 until the
encoded formula becomes unsatisfiable, decreasing the size
of the test suite. Whenever the size is decreased, a back-end
SAT solver is initialized for checking satisfiability of the new
formula. Banbara et al. [2] basically succeeded this approach,
and Nanba et al. [25] applied binary search.

VII. EXPERIMENTS

We have implemented our incremental SAT-based approach
in a tool called Calot. For comparison, we also imple-
mented other SAT-based approaches: iterative SAT-based and
MaxSAT-based. As a back-end SAT solver, we choose Lin-
geling5 for both iterative and incremental approaches. For a
MaxSAT solver, we use SAT4J.6

4Available at http://cse.unl.edu/∼citportal/.
5 Version ayv, available at http://fmv.jku.at/lingeling/, see also [3].
6 Version 2.3.5.v20130525, available at http://www.sat4j.org/.
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Experiments were conducted on the 35 benchmark problems
designed by Cohen et al. [11], performed on a PC with a
Quad-Core Intel Xeon E5 3.7GHz and 64GB Memory running
on Mac OS 10.9.4. For each run of test case generation, the
timeout is set to 3600 seconds.

A. Comparison with Existing SAT-Based Approaches

First, we compare our optimization method using incre-
mental SAT solving and the existing methods using iterative
SAT solving and MaxSAT solving. To clarify the effect of
incremental SAT solving, we apply the symmetry breaking of
Section V-B equally for all these methods.

The results are shown in Table VII. In the table, the size
of an SUT model is expressed as gk11 g

k2
2 ...g

kn
n , which means

that for each i there are ki parameters that have gi values.
The complexity of an SUT-constraint is expressed in the same
format, but this time it means that there are ki constraints that
involve gi parameters.

The ‘iterative’ column indicates the approach of Sec-
tion VI-D, ‘MaxSAT’ indicates the MaxSAT based approach of
Section IV-A, ‘Algorithm 1’ indicates the basic incremental ap-
proach (with symmetry breaking), and ‘Algorithm 2’ indicates
the improved version with all the improvements of Section V.
The sizes of test suites obtained by each method are listed
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Fig. 5. Speed of optimization: Bugzilla

in the ‘size’ column, where the ‘*’ marks indicate that the
optimality could be proven. The ‘time’ column indicates the
time to achieving the size or proving optimality.

As described in Section V-D, we employ a greedy testing
tool to obtain the initial size of test suites and the list of all
possible tuples. In our experiments, we use ACTS for this
purpose. Thus the table also shows the results for ACTS. The
‘time’ columns for all methods include the time consumed by
ACTS. Parentheses indicate that the test suite could not be
improved from the result of ACTS, although it was the case
only for the MaxSAT-based approach on three benchmarks.

Highlighted sizes indicate that the size could be achieved
only by one method. If several methods obtained the best size,
best time to achieving the size is highlighted.
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For all the benchmarks, our incremental approach (Algo-
rithms 1 and 2) achieved the smallest size among others.
In case the existing methods also achieved the same size,
Algorithm 2 gets to the solution much faster than the others
in many cases. For a few benchmarks, namely No. 3, 6, 16,
and 22, the improvement is unclear; in these exceptions ACTS
returned test suites which are close to the optimum. In such
cases, the incremental approach gains little since the number
of SAT solving is limited.

We observe that Algorithm 1 improves over the MaxSAT
approach, but it does not have a decisive advantage over
the iterative approach. Thanks to the improvements proposed
in Section V (except for symmetry breaking), Algorithm 2
became the clear winner.

B. Speed of Optimization

In this section, we clarify the improvements in the speed of
optimization that is obtained by the incremental SAT solving.
For this purpose, we look in detail at the first five benchmarks
(SPIN-S, SPIN-V, GCC, Apache, and Bugzilla), which have
been derived from real-world examples by Cohen et al. [11].

Figures 1 to 5 illustrate the relation between the runtime and
the size of test suites obtained so far for the iterative approach
and the incremental approach (Algorithm 2).

The left-end of each curve indicates the initial size of test
suites returned by ACTS and its computation time. Observe
that the first segments of the two curves almost overlap in
every graph. This is because the initial problems passed to
a SAT solver are the same for iterative and incremental ap-
proaches. From the second segment, the incremental approach
performs a steep decrease of the size until it slows down by
reaching the optimum. On the other hand, we do not observe
a notable speed-up in the iterative approach. The horizontal
right-most segments in the figures for the benchmarks SPIN-
S, SPIN-V, and GCC indicate the time consumed to prove
optimality (although it could not be ensured in an hour for
SPIN-V and GCC). For the benchmarks Apache and Bugzilla,
our tool proved optimality immediately due to the discussion
of Section V-B.

C. Comparison with CASA

Table VIII compares our tool with the simulated-annealing-
based tool CASA. Both tools were run with timeout of an
hour, although CASA did not hit the timeout.

We measure the time Calot achieved the size of CASA in
the column ‘time (#CASA)’. Values in parenthesis indicates
the time for ACTS; for these benchmarks, ACTS generated
fewer test cases than CASA did. The column ‘time (best)’
indicates the time Calot achieved the best size or ensured the
optimality.

Let us first compare CASA and Calot in terms of the size
of test suites. For 21 out of the 35 benchmarks, our tool
eventually yielded a smaller test suite than CASA. For other 13
benchmarks, these tools yielded test suites of the same size.
There is only one exception (benchmark No. 20) for which
Calot did not reach the size CASA did within the time limit.

TABLE VIII
COMPARISON WITH CASA FOR 2-WAY COVERAGE.

CASA Calot (Algorithm 2)
Name size time best size time (#CASA) time (best)
SPIN-S 19 2.70 19* 1.70 1.70
SPIN-V 38 19.18 31 10.30 87.46
GCC 21 1317.08 15 121.83 135.33
Apache 30 115.34 30* 144.95 144.95
Bugzilla 16 2.47 16* 2.79 2.79
1 49 47.09 37 (2.98) 809.15
2 30 15.06 30* 24.96 24.96
3 18 0.63 18* 1.00 1.00
4 21 5.17 20* 4.39 4.50
5 54 69.19 45 (5.79) 2344.78
6 24 8.99 24* 8.92 8.92
7 9 0.55 9 0.77 0.77
8 43 53.73 36* 93.97 501.99
9 21 5.49 20* 3.76 3.85
10 46 144.20 39 153.19 2195.97
11 42 868.16 39 67.58 575.84
12 42 110.32 36* 112.99 127.09
13 36 107.91 36* 79.60 79.60
14 41 13.55 36* (1.42) 30.95
15 30 12.32 30* 5.73 5.73
16 24 12.24 24* 10.11 10.11
17 39 26.73 36* 81.36 87.71
18 47 36.02 40 178.74 926.92
19 55 93.75 42 (4.19) 1572.37
20 53 1689.58 54 - 1382.47
21 36 141.88 36* 21.75 21.75
22 36 8.33 36* 12.70 12.70
23 17 1.22 12* (0.72) 0.88
24 46 68.11 41 81.42 1917.11
25 49 959.15 48 1808.68 2748.84
26 32 16.19 26 20.55 1337.59
27 36 6.02 36* 9.19 9.19
28 55 175.71 49 495.10 2269.73
29 30 70.42 25* (1.59) 63.10
30 21 3.85 16* 7.77 8.65

In terms of the speed of optimization, we cannot observe
a clear tendency here. For some benchmarks (e. g. GCC, No.
11 and 21) Calot achieved the size of CASA more quickly,
but for some others (e. g. No. 20 and 25) CASA outperformed
Calot. We leave it for future work to analyze the reason.

VIII. CONCLUSION

In this paper, we proposed the use of incremental SAT
solving for optimizing combinatorial testing. We presented a
SAT encoding of combinatorial testing, and related it with the
existing encoding by Hnich et al. [23]. Then we introduced
an algorithm for optimizing test suites using incremental SAT
solving, and proposed a series of improvements of search-
space pruning and cooperation with efficient greedy combi-
natorial testing tools. We compared our method and other
approaches through experiments. The experimental results
confirmed the significant improvement of computation time by
our work against other (Max)SAT-based approaches. Further,
our method outperformed other approaches in terms of the
number of test cases, and its speed was competitive to the
simulated-annealing-based tool CASA.

For future work, we consider further improving perfor-
mance. When t = 3, our preliminary experiments suggested
that one hour timeout might not be sufficient for large

9



scale benchmarks. For instance, benchmark Apache induces
8 millions of possible 3-way tuples. How to handle such an
explosion of possible tuples will be our next challenge.
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