
Classification of Randomly Generated Test Cases

Cyrille Artho

AIST, Osaka, Japan

c.artho@aist.go.jp

Lei Ma

Chiba University, Chiba, Japan

malei.2005@gmail.com

Abstract—Random test case generation produces relatively
diverse test sequences, but the validity of the test verdict is
always uncertain. Because tests are generated without taking
the specification and documentation into account, many tests
are invalid. To understand the prevalent types of successful and
invalid tests, we present a classification of 56 issues that were
derived from 208 failed, randomly generated test cases. While
the existing workflow successfully eliminated more than half of
the tests as irrelevant, half of the remaining failed tests are
false positives. We show that the new @NonNull annotation of
Java 8 has the potential to eliminate most of the false positives,
highlighting the importance of machine-readable documentation.

I. INTRODUCTION

Random test case generation is useful because it can
create diverse test cases without human intervention. In object-
oriented software, a test case typically consists of a sequence
of method calls. Each step calls a method m of object o

with signature o.m(Tin1
v1, Tin2

v2, . . . , Tinn
vn), where each

parameter in the call is a value vi of type Tini
.

The problem of generating a random test is to set up o

such that it can accept a method call with the right parameters,
and constructing objects of type Tini

as parameters to m. In
feedback-directed random testing, input objects are derived by
constructing sequences of calls that build higher-level values
from primitive data types [11].

Successful calls to m return a value r that can be used
as a parameter in subsequent tests. If an exception occurs,
this is considered as a failure of m. Without domain-specific
knowledge, automatically generated test cases typically end up
generating some test cases with invalid parameters or method
call sequences. For example, numbers are typically specified
by their type (integer or floating point), which include a much
larger range of values than what is typically permissible in
a given context. Lacking this information, automated tools
cannot distinguish which exceptions are legitimate, and which
ones indicate an actual failure. This can result in false positives
(tools reporting test failures that are not a problem with the
system under test), as method calls with illegal parameter
values are expected (indeed, required!) to fail.

False negatives (defects that are not detected by tests) are
also a problem. Properties that are random testing covers, are
limited to uncaught exceptions and a few generic properties,
e. g., equality must be reflexive, symmetric, and transitive.
However, false negatives are expected with fully automated
approaches, as the oracle problem [3] cannot be solved by
program analysis alone. This work focuses on false positives.

We report on a case study involving ten large open source
libraries, for which we automatically generated over 208 failed

tests. They relate to 56 distinct issues in the given software,
out of which 23 test cases pertained to confirmed defects [9].
We analyze all issues and categorize them based on the failure
type, whether they were true or false positives, and how they
were fixed. Our contribution shows that NullPointerExceptions
are a frequent cause of invalid bug reports. Machine-readable
specifications allow a tool to distinguish between expected and
unexpected failures; they could become essential for reducing
the false-positive rate of automatic test generation tools.

This paper is organized as follows: Section II describes
the case study we conducted on ten open-source real-world
software libraries by using automated test generator GRT [9].
Section III discusses previous work on bug detection and
classification by using automated test generators. Section IV
concludes and discusses future work.

II. OPEN SOURCE CASE STUDY

We applied GRT, a random test case generator, to the most
recent version of real-world popular software projects, with
the goal of uncovering new, previously unknown defects [9].

A. GRT

GRT [9] is a fully automated test generator that uses
knowledge extracted from software under test (SUT) to guide
each step of test generation to achieve high code coverage and
bug detection ability [10]. GRT uses random test generator
Randoop [11] as its basic framework, which generates tests
iteratively. In each iteration, GRT randomly selects a method
and reuses previously generated objects as input to create new
test sequences. If a test sequence executes successfully, it is
considered as further test input for future tests. Each of the
test generation steps is guided by the six program analysis
components of GRT, which analyze the general properties
of constant values, method side effects, type dependencies,
missing input types, execution cost and code coverage from
the SUT. All analysis steps are fully automated and rely solely
on the SUT, without using any human input or specification.

B. Evaluation of generated tests

We chose ten popular open-source real-world projects (see
Table I) as the target for GRT. The projects were chosen
because they seemed under active development (the last update
being less than a year before our analysis), and the number of
failed test cases reported is not prohibitively high (fewer than
100 failed tests for GRT). We use GRT in the mode where it
records failed tests for further debugging [8].

The initial number of failed test cases over all ten projects
is still very high, with a total number of over 200 tests. To



limit the manual evaluation effort, we first filter out tests that
confirm a problem that is either known or not going to be fixed
in the code [8]. These issues include:

• Deprecated methods. Methods that contain or expose
a design flaw are often marked as deprecated. For
example, a deprecated method may allow incomplete
objects to be used before all invariants are established.
Such methods are usually removed from the library in
the future. In this work, we assume that failed tests
involving such code confirm previously known issues.
Ignoring these issues allowed us to focus on unknown
flaws.

• Stack overflows. Container classes, such as found in
the Apache collection library or Guava, allow recur-
sive nesting of data. For example, a list l1 can be
inserted into another list l2 followed by an insertion of
l2 into l1 . Operations such as list iteration or toString
will then never terminate on the resulting objects. It
is possible to make iteration robust against infinite
recursion, but a fix entails keeping track of previously
visited object instances during iteration. This requires
an amount of memory that is linear in the size of the
collection; the cure would be worse than the disease
in most cases.

• Internal packages. Such packages occur in project
javax.mail and usually start with com.sun. They
are specific to the given reference implementation and
not meant to be used by others. Possibly unsafe API
uses found by test cases are therefore irrelevant.

These filters remove over half of the failed test cases, leaving
90 failed tests. We further manually simplify the remaining
tests. Often it becomes apparent that a given test is a variation
of an earlier one. This can be confirmed by comparing their
stack traces and the sequences of method calls. GRT uses
Randoop’s test minimization, which does not always achieve
a theoretically optimal result. Manual test minimization can
simplify tests further, up to the point where multiple minimized
tests become identical and thus are shown to confirm the same
fault. Sometimes, two tests are slightly different but trigger
the same fault at the end; we consider such sequences to be
equivalent.1 Using this definition, we classify equivalent failed
tests into distinct issues. When doing so, we count the same
defect in two classes as two issues, as well as two different
types of problems in the same class. This results 56 issues
found by GRT. Each issue is then investigated more closely,
and based on the API documentation and our own experience,
we discount some as false positives.

Remaining open issues were reported to the issue tracker
of each project. To limit the number of reports, we created
only one issue ticket for similar defects across a given class
or multiple classes. Based on feedback from developers, we
classify the originally counted issues as false or true reports.
Unconfirmed cases are counted as unknown. Finally, 23 issues
were confirmed by developers, and most of our reported
defects have already been fixed [9].

1For example, a class may have multiple constructors with optional extra
parameters. If a fault does not depend on those extra parameters, any
constructor can be used to trigger it.

Table I. SUMMARY OF BUG CLASSIFICATION [9]

Software
Failed

tests

Filtered

tests

Identified issues Issue

numbers
issues false unkn. true

A. CLI 1 1 0 0 0 0 −

A. Codec 2 1 1 0 0 1 184

A. Collection 56 25 15 13 0 2 512–516

A. Compress 25 0 4 0 0 4 273–276

A. Math 76 45 13 6 0 7 1115–1118, 1224

A. Primitive 4 0 2 1 1 0 17

Guava 13 5 8 6 0 2 1722–1724

JavaMail 20 12 6 0 0 6 6365–6368

Mango 3 1 1 0 0 1 1

TinySQL 8 0 6 1 5 0 14–18

Total 208 90 56 27 6 23

C. Defect classification

The defect detection results from previous work (see Ta-
ble I [9]) show that GRT classifies about half of the issues as
false positives. In our analysis we first consider the causes for
the reported test failures (see Figure 1):

1) NullPointerException: The method under test throws
such an exception because one of its arguments or one
of the fields used is null. Such test failures may be
true positives (in cases where a null value should be
permitted, or where there is no documentation stating
the contrary), or false positives (in cases where null
values are prohibited in the documentation).

2) equals/hashCode: We consider two properties here:

a) Equals must be reflexive, symmetric, and
transitive. The first two properties are tested
by randomly inserted checks.

b) Two objects that are equal must have the
same hashCode.

3) Incomplete initialization: These issues appeared in
iterators of the Apache collections library. Many spe-
cialized iterators perform additional functions such
as transformation or filtering. These iterators “will
not function until the. . . [initialization] methods are
invoked” [4].

4) Other: A ClassCastException and a missing depen-
dency resulted in one failed test each.

After checking against the documentation, we filtered out 20
issues as false positives and reported the remaining 36 issues
(see Table II). 23 of these issues were confirmed as actual
defects (true positives), six remain unconfirmed as to date, and
seven additional false positives were reported. NullPointerEx-
ceptions are by far the most prevalent type of defect reported,
causing over 70 % of all test failures. Problematic implemen-
tations of equals or hashCode are the second most important
category (16 %), followed by incomplete initializations (9 %)
and two tests that failed for other reasons (see Figure 1).

It is interesting to investigate what types of defects tend
to be true or false positives, and why. Figure 2 shows that
slightly less than half of all reported NullPointerExceptions
are true positives while almost all issues relating to equals or
hashCode are actual defects.

Among the false positives, three out of four cases of
spurious issues were covered by the documentation of the
given library. Five issues related to NullPointerExceptions



NullPointerException
equals/hashCode
Incomplete initialization
Other

40 (71.4%)

9 (16.1%)

5 (8.9%)

2 (3.6%)

Figure 1. Causes for test failures.

 0

 5

 10

 15

 20

 25

 30

True positives False positives Unknown

N
u
m

b
e
r 

o
f 

is
s
u
e
s

NullPointerException
equals/hashCode

Incompl. init., other

Figure 2. True and false positives for different types of issues.

were caused because the wrong generic type was used in
a method call, and only two issues due to other reasons
(wrong usage or lack of adherence to the documentation of
the underlying Java library).

The true positives were eventually fixed; it is interesting to
note that only about two thirds of all fixes were made in the
implementation code while about one third of the issues were
addressed by updating the documentation but not the program
code (see Table III).

Furthermore, we can see that documentation is involved in
confirming 30 out of 50 cases. Human-readable documentation
often describes restrictions on API usage that were not obeyed
by the generated test cases (see Table IV).2 When looking
at code (last row in Table IV), incorrectly generated generic
types are responsible for five false positives. Such usage causes
compiler warnings when compiling the failed test cases; these
warnings were ignored by GRT. Conversely, 15 logical defects
were fixed by code changes.

D. Discussion

In our case study, NullPointerExceptions constitute the
largest class of defects found by random testing. Slightly
less than half of these are true positives, which were fixed

2We also count “same as JDK” and “wrong usage” from Table II under
“documentation” here.

Table II. DETAILED CLASSIFICATION OF REPORTED AND UNREPORTED

ISSUES

Software Issue Verdict Fix/reason Issue #

A. Codec NullPointerException true code 184

A. Collection hashCode vs. equals true documentation 512

NullPointerException false documentation 513

NullPointerException false same as JDK 514

ClassCastException false wrong usage 515

NullPointerException true documentation 516

NullPointerException false documentation —

Incomplete initialization false documentation —

Incomplete initialization false documentation —

Incomplete initialization false documentation —

Incomplete initialization false documentation —

Incomplete initialization false documentation —

NullPointerException false documentation —

NullPointerException false documentation —

NullPointerException false documentation —

NullPointerException false documentation —

A. Compress NullPointerException true code 273

NullPointerException true code 274

Dependency true documentation 275

NullPointerException true code 276

A. Math NullPointerException true code 1115

NullPointerException true documentation 1116

NullPointerException true documentation 1116

NullPointerException false documentation 1116

NullPointerException true code 1117

NullPointerException false documentation 1117

hashCode vs. equals true code 1118

hashCode vs. equals true code 1118

NullPointerException true documentation 1224

NullPointerException false documentation —

NullPointerException false documentation —

NullPointerException false documentation —

NullPointerException false documentation —

A. Primitive hashCode vs. equals no response 17

equals is not reflexive false documentation —

Guava hashCode not consistent false documentation 1722

NullPointerException true documentation 1723

NullPointerException true documentation 1723

NullPointerException false wrong generic type 1724

NullPointerException false wrong generic type —

NullPointerException false wrong generic type —

NullPointerException false wrong generic type —

NullPointerException false wrong generic type —

JavaMail equals not reflexive true code 6365

NullPointerException true code 6365

NullPointerException true code 6366

hashCode vs. equals true code 6367

hashCode vs. equals true code 6367

NullPointerException true code 6368

Mango NullPointerException true code 1

TinySQL NullPointerException no response 14

NullPointerException no response 15

NullPointerException no response 16

NullPointerException no response 17

NullPointerException no response 18

NullPointerException false documentation —

Table III. TYPES OF FIXES APPLIED PER DEFECT TYPE.

Bug type Fixed in code Fixed in documentation

NullPointerException 10 5

equals/hashCode 5 2

Other 0 1

Table IV. TRUE OR FALSE POSITIVES SPLIT BY DOCUMENTATION OR

CODE.

Artifact Related to true positive Related to false positive

Documentation 8 22

Code 15 5



either in the code or in the documentation. Issues related to
equals/hashCode are rarer but tend to be true positives. Other
issues relate to correct API usage that is documented in a
human-readable format but not readily accessible to program
analysis tools.

III. RELATED WORK

Although there exists a large body of work on developing
automated test generation techniques and tools [2], work
analyzing real faults in software is limited.

Xiao et al. [15] inspect the issues that limit automated tools
in obtaining high structural coverage on practical software, and
found the main problems to be 1) dependencies on external
methods, 2) finding a suitable method sequence to derive
desired input object states. However, their study is not based
on real faults. Ramler et al. investigated the bug-finding ability
of humans vs. automated tools on a database of examples
with seeded faults and found that the two approaches tend
to complement each other [12], [13].

To facilitate research on real faults, Just et al. developed
Defects4J [7], a collection that contains 357 known real faults
that can be used as a platform for a controlled bug detection
study. In their follow-up work, they analyze three automated
test generators using Defects4j: Randoop [11], Evosuite [6],
and Agitar [1], to study whether these automated tools are
helpful to uncover real faults and the challenges of existing
tools that limit that bug detection ability [14].

Unlike previous work, this paper focuses on unknown
defects. We generate failed tests by GRT [9], and perform
in-depth analysis and classification on these tests to show how
they enable unknown real faults detection. Similar to work
that led to the creation of Defects4J [7], a bug database of
previously found faults in Java programs, our work required
much manual effort. Using the results of our work to enhance
collections like Defects4J is promising future work.

IV. CONCLUSION AND FUTURE WORK

Random testing can generate diverse test cases. However,
due to the limited test oracle, it is restricted to finding
crashes (such as NullPointerExceptions) and relatively few
generic problems. Due to the inability to distinguish between
expected and unexpected exceptions, false positives remain a
problem with random testing. In our case study, many cases of
NullPointerExceptions were covered by documentation, which
is not designed to be machine-readable. Annotations such as
@NonNull are possible in the grammar of Java 8 but currently
not standardized in the main library [5]. Our results show that
machine-readable annotations could reduce the false-positive
rate significantly; in particular, 20 out of 27 false positives
relate to NullPointerExceptions that could be documented
via annotations. We think that the additional effort of using
annotations instead of unstructured documentation is small.

We think that agreed-on type annotations should be stan-
dardized such that they can be included in upcoming Java
releases, covering issues like null pointers and parameter
ranges. This would benefit a wide range of program analysis
tools, from static checkers to test case generators. Furthermore,
it may be interesting to consider a light-weight documentation

analysis to reduce the number of false positives in code that
does not use annotations.

ACKNOWLEDGEMENTS

This work was supported by the SEUT project from
the University of Tokyo and kaken-hi grants 23240003 and
26280019 from the Japanese Society for the Promotion of Sci-
ence (JSPS). We also thank Michael Ernst for his comments.

REFERENCES

[1] AgitarOne. http://www.agitar.com/.

[2] S. Anand, E. Burke, T. Chen, J. Clark, M. Cohen, W. Grieskamp,
M. Harman, M. Harrold, and P. Mcminn. An orchestrated survey of
methodologies for automated software test case generation. J. Syst.

Softw., 86(8):1978–2001, August 2013.

[3] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software

Engineering, 41(5):507–525, 2015.

[4] M. Benson, J. Carman, S. Colebourne, R. Donkin, M. Delagrange,
G. Gregory, M. Hawthorne, D. Laha, G. Magnusson, L. Maisonobe,
C. McClanahan, T. Neidhart, A. Nistor, P. Steitz, A. Thomas, R. Wald-
hoff, and H. Yandell. Apache Commons Collections API, 2015.
https://commons.apache.org/proper/commons-collections/apidocs/.

[5] E. Costlow. Java 8’s new type annotations, 2015. https://blogs.oracle.
com/java-platform-group/entry/java_8_s_new_type.

[6] G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of

Software Engineering, ESEC/FSE’11, pages 416–419, Szeged, Hungary,
2011.

[7] R. Just, D. Jalali, and M. Ernst. Defects4J: a database of existing faults
to enable controlled testing studies for Java programs. In Proceedings

of the 2014 International Symposium on Software Testing and Analysis,
ISSTA’14, pages 437–440, San Jose, CA, USA, 2014.

[8] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler.
GRT: An automated test generator using orchestrated program analysis.
In IEEE/ACM Int. Conference on Automated Software Engineering,
ASE’15, pages 842–847, Lincoln, Nebraska, USA, 2015.

[9] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R Ramler. GRT:
Program-analysis-guided random testing. In IEEE/ACM Int. Conference

on Automated Software Engineering, ASE’15, pages 212–223, Lincoln,
Nebraska, USA, 2015.

[10] L. Ma, C. Artho, C. Zhang, H. Sato, M. Hagiya, Y. Tanabe, and
M. Yamamoto. GRT at the SBST 2015 tool competition. In Proceedings

of the Eighth International Workshop on Search-Based Software Testing,
SBST’15, pages 48–51, Florence, Italy, 2015. IEEE Press.

[11] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed random
test generation. In Proceedings of the 29th International Conference on

Software Engineering, ICSE’07, pages 75–84, Washington, DC, USA,
2007.

[12] R. Ramler, D. Winkler, and M. Schmidt. Random test case generation
and manual unit testing: Substitute or complement in retrofitting tests
for legacy code? In 36th Conf. on Software Engineering and Advanced

Applications, pages 286–293. IEEE Computer Society, 2012.

[13] R. Ramler, K. Wolfmaier, and T. Kopetzky. A replicated study on
random test case generation and manual unit testing: How many bugs do
professional developers find? In Proc. 37th Annual Int. Comp. Software

& Applications Conf., COMPSAC’13, pages 484–491, Washington, DC,
USA, 2013. IEEE Computer Society.

[14] S. Shamshiri, R. Just, J. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do
automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges. In Proceedings of the International

Conference on Automated Software Engineering (ASE), pages 201–211,
Lincoln, NE, USA, November 11–13, 2015.

[15] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise identification
of problems for structural test generation. In Proceedings of the 33rd

International Conference on Software Engineering, ICSE ’11, pages
611–620, New York, NY, USA, 2011. ACM.


