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Abstract However, large or concurrenttraces are hard to read.
In a concurrent program, context switches interrupt
Various program analysis techniques are very ef- threads. By showing only a thread ID prior to each
ficient at discovering failures and properties. How- step, a program trace has no clear visual indication
ever, it is often difficult to evaluate results, such as of such a context switch. Furthermore, it is not clear
program traces. This calls for abstraction and visual- whether a context switch is hecessary to reproduce a
ization tools. We propose an approach based on UML failure, or whether it just happened to be part of the
sequence diagrams, addressing shortcomings of suchschedule executed that lead to a failure. In order words,
diagrams for concurrency. The result is a more expres- the happens-before relation between events [17] is not
sive visualization that can provide all the necessary in- visible in a program trace, even if it may be available
formation at a glance. from data gathered at run-time [8].

Program trace visualization addresses the problem

of understanding dynamic program behavior. Two ap-
1. Introduction proaches existstill visualization,whereall events are
visualized in one view, ananhimations Still visualiza-

Certain program analysis techniques work directly tion includes UML sequence diagrams [22] and plots
on the executable program. For instance-time ver- ~ Of event sequences, such as in [21] or a large num-
ification monitors executions of (possibly concurrent) ber of similar tools. Common notations such as UML
programs [2, 8, 10, 23]Software model checkirajso are not capable of capturing asynchronous events [15].
ana'yzes executions of concurrent Systemsy producingAnimationS use either a two-dimensional view of each
an error trace when a failure is found [3, 5, 12, 27]. State [5, 6], or a three-dimensional animation [20]. In
Tool capabilities have advanced, but their outputs still @nimations, the order in which events occur is intu-
consist of Over|y concise reports, or very |0ng program Itlvely V|S|b|e, however, an animation also imposes a
traces. Hence, understanding the nature of failurestotal order on concurrent events where only a partial
and properties remains difficult. Program traces are a©order may exist.
widely used way to show how a program behavesupto  There seems to be a relationship between still visu-
a given point, but may grow very largé\bstractions  alization and automated gathering of requirements [7,
can simplify program traces; indeed, a typical trace 9, 28], where a requirements specification of a program
shown to the end user contains mostly method calls is extracted from one or more program runs. As an ex-
and thus constitutes a useful abstraction. For sequen-ample, a state machine extracted from several runs can
tial programs, a program trace or even a stack trace (abe regarded as a still visualization of the program’s be-
subset of the entire program trace) contains enough in-havior as well as a specification of its behavior during
formation for a concise and useful summary. those runs. Extraction of such specifications from runs



can serve as oracles for later runs, for example for use
in regression testing, or simply as a means of program
understanding. Other forms of less visual specifica-
tions can be extracted, such as for example temporal
logic specifications [28]. Such specifications also have
natural visualizations, for example as time lines [24].
This paper is organized as follows: Section 2 de-
scribes our visualization approach. Reasons for design
choicesin our visualization are given in Section 3. Sec-
tion 4 shows a more complex example, where our vi-
sualization approach was used to elucidate a complex
error trace. Section 5 discusses implementation issues.
Section 6 concludes and outlines challenges ahead.

2. Our visualization approach

In still visualization, even complex event chains can
be visualized “at a glance”. We chose an approach
based on UML sequence diagrams [22] because UML
diagrams are fairly widely accepted in industry and
supported by tools. UML sequence diagrams capture
sequences of method calls, but cannot deal with con-
currency. We have therefore extended UML sequence
diagrams in several ways to include the missing fea-
tures required to visualize concurrent events.

2.1. Limitations of UML sequence diagrams

Sequence diagrams are designed to show sequences
of method calls. This task is closely related to display-

(such as termination of another thread, or notifi-
cation of a change of a shared conditional).

e Time-based suspension. A thread can suspend it-
self (“sleep”) for a certain time, allowing other
threads to run. The same effect can be induced by
the thread scheduler through a context switch. Its
occurrence is therefore somewhat arbitrary, and
cannot be used for reliable synchronization of
events. We have therefore chosen not to visual-
ize this artifact.

e The happens-before relatiofiL7]. This relation
indicates that certain events must happen strictly
before another event occurs. For instance, any
events leading to the creation and activation of
another thread must happen before actions of
the child thread take place. This is obvious as
the child thread did not exist during such previ-
ous actions. However, when a large number of
such events occurs, understanding of the happens-
before relation is often non-trivial, and should
therefore be included in a visualizatién.

e Locking. Many programming languages use
locks for mutual exclusion [13, 19, 25]. The pres-
ence of locking actions may delay a thread until a
certain lock is available. This is partially reflected
by the happens-before relation. For conciseness,
we have not added another mechanism to visual-
ize locking and lock sets.

ing a program trace. UML sequence diagrams have The happens-before relation states, informally, that
been studied extensively and defined precisely [15, based on observed events, certain reorderings of events

18]. Our work expands on existing sequence diagramsare possible.

and gives them a meaning in concurrent scenarios.

Given events would still occur with

an equivalent global program state after each event,

Our initial approach is based on previous extensions and the overall outcome of the program would not be
of UML sequence diagrams for clarifying the current changed. More formally, if events are reordered within
execution context [18]. Previous work [18] has not ad- the happens-before relation, an observer that evaluates

dressed concurrency. In particular, UML sequence di- global program states always sees the same sequence
agrams cannot illustrate the following: of global program states, even though invisible inter-
nal actions can be ordered in different ways [17]. This

e AThread as data structuagd executable task. resulting property is callesequential consistency.

e “Invisible” task switches induced by the thread

2.2. Our UML extensions
scheduler.

¢ Activations and suspensions of threads. In most  Our visualization addresses the concerns described
modern programming languages that follow a above. It is based on the Java programming language,
POSIX thread model [13, 19, 25], a thread is in- but readily applicable to other programming languages
active when created. Once aspemal method (SUC” 1Until recently, with common run-time verification algoritts,

asstart) is called, it bec‘?mes aCtive; but can  the knowledge of this relation was often incomplete. A régo-
be suspended, through actions that wait on eventsrithm computes this relation precisely without much ovexhgs].




using the same thread model [13, 19, 25]. Our visu-
alization distinguishes between the two roles of a Java

thread as an executable task and a data structure [13].

The thread data structure holds information such as
thread name and ID, and can be extended with other
data. A thread as taskconstitutes a light-weight pro-

cess that shares the global heap with other threads.

This article refers the following methods of the Java
API to denote crucial operations on threads and locks:

e methodst art causes a thread to begin execution;

e j 0i n suspends the current thread until the target
thread has terminated;

e wait suspends the current thread until another
thread issuesot i fy ornotifyA | .2

Server

create

start

Figure 2. Thread creation and start.

Server

wait

Threads as a data structure are visualized like other ob-

ject instances in UML sequence diagrams. Our first
extension is the visualization of role of a thread as an
executable task by a hexagon. A dashed arrow point-
ing to the left symbolizes the thread scheduler running
a thread (task). As in UML sequence diagrams, solid
arrows depict a method call or return, and solid squares
show a method being executed.

| Worker |

Figure 1. A thread switch from main to
Worker, and back.

Figure 3. Thread suspension using wait.

Dotted lines show event dependencies according to
the happens-before relation [17]. If there is a dotted
line from a pointp to a hexagonm, then any events fol-
lowing an activation of threaidcould have started right
after p. Figure 2 shows the happens-before relation
based on a slightly more complex example, where a
worker thread istartedby themainthread. At the be-
ginning of the program, thmainthread is scheduled,
as depicted by a hexagon. A dashed arrow points to
the beginning of the sequence of actions of that thread,
symbolizing scheduling of actions of this thread. Cre-
ation of threadWorker involves initialization of the
data structure and is no different from initializing a
normal object. The thread is started by a library call,
which interfaces with the operating system. Any ac-

Figure 1 includes these basic elements. It shows thetions of threadNorkercan occur at any time after this

illustration ofcontext switchebetween threads. At the
beginning of the scenario, thmain thread is sched-
uled. This thread creates a new instanc®@art. Dur-

ing the call to the constructor, the scheduler switches
to another thread)orker. The interruption of thenain
thread is shown by a gap in the time line of the call
from Serverto Port. ThreadWorkerexecutes for a cer-
tain amount of time without making any method call,
after which themainthread is scheduled again, and the
method call tdPort completes.

2This simplified definition holds if one thread is waiting on a
shared lock. For the complete definition that covers metighiting
threads, refer to the language specification [13].

point, symbolized by the dotted line. In other words,
actions of threadVorkercould be moved up to the top
of the horseshoe-shaped dotted line.

The start of a thread is shown by a corresponding
action in the thread scheduler, using an dashed arrow
pointing from a hexagon to the left. Likewise, thread
suspensiofis depicted by such a dashed arrow point-
ing to the right, from the lower part of the black box
denoting a method call, to the thread being suspended.
In Figure 3, themain thread runs and callgai t on
lock Port. The arrow originates from the end of the
method call rather than its middle because the current
thread still executes instructions up to its suspension.
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start

join

Figure 5. Thread notification.

Unlike thread suspension, thregminationis not
shown as a scheduler event.

Because no further ac-

according to standard Java semantics [13]. After sus-
pension, threatorkeris scheduled, which notifies all
threads waiting orPort. Notification leads to activa-
tion of one of the suspended threadsafnin the ex-
ample). Once notified, a thread is again ready to run,
as shown by the happens-before relation. Activation is
takes place inside native methoat i fy.

Notification can target a single thread afrthreads
waiting on a lock, usingot i f yAl | in Java. Whenever
several threads wait for the same lock, notification will
enable all of them to run. In this case, the happens-
before relation concerns multiple threads. Further-
more, it is often the case that only a single thread
will continue to execute, while all the other threads re-
check a shared condition and then go back to being
suspended by callinggi t again.

Figure 6 depicts such a scenario. At the beginning
of the situation shown, threadfgorker landWorker 2
are waiting on loclPort. Threadmaincallsnot i f yAl |
on that lock, whereupokVorker 1is scheduled first.
That thread can complete an action on global data
(e.g., consuming a shared resource, such as a con-
nection from a client). After that, the scheduler runs
Worker 2 In the example, the shared resource has
been consumed byorker 1, soWorker 2has to wait
again until another thread makes the resource in ques-

tions of that thread eX|st,_ the_re is no compelling need tion available again. Therefordjorker 2subsequently
to decorate thread termination. On the other h"’md’waits again after re-checking its condition. This allows

thread term_|r_1at|on may influence the behavior pf other the scheduler to executorker 1again.
threads waiting on that event, and thus contribute to
the happens-before relation. Figure 4 shows an exam-

ple involvingThr ead. j oi n. As in subsequent figures,
some initial thread activations have been omitted for
brevity. Threadmainstarts a worker thread and waits
upon its termination usingoi n. This suspendmain
until Workerterminates. Any events in theainthread
following thatj oi n call can only happen after Thread
Workerhas terminated, as illustrated by the dotted line.
Thread notification is similar to re-activation of
a thread after suspension.
ple involvingj oi n and thread termination, one event
leads to thread suspensigmin), while another event

In the previous exam-

3. Design decisions

Our extension of UML sequence diagrams main-
tains a close and concise mapping [14]. We address all
commonly available concurrency artifacts [13, 19, 25],
using four new symbols. First, we distinctly express
the role of a thread as a task. Second, we make task
activations and context switches visible. The hexagon
as a task symbol is visually clear. Furthermore, it
allows attachment of arrows denoting thread context
switches, and lines representing the happens-before re-

(thread termination) allows the suspended thread tolation. Locks are not directly visualized, but can be

continue. The same pattern exists fai t /notify,

the key difference being that continuation of the sus-
pended thread is achieved by a special ozt {(fy)
rather than termination of another thread.

Figure 5 shows an example feai t /noti fy. Asin

shown by secondary notations, such as annotations.
Third, thread suspension is different from a nor-
mal context switch (where a thread can continue to run
again later). We chose to represent this with a sym-
bol that is the reverse of thread activation by a context

Figure 4, suspension of the waiting thread is shown by switch. We believe that this is consistent.

a dashed arrow pointing to the right. Here threzain
waits onPort, which is used as a lock and semaphore

Finally, the happens-before relation [17] explains
possible event orderings. It is visualized by dotted
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notifyAll

Figure 6. Thread notification: Main thread notifies both work er threads.

lines. Events are not totally ordered [17]. Thus, more involving a main server thread to accept connections
constraining visualizations, such as shaded regions,and one worker thread per connection. Worker threads
fail for more complex scenarios. use shared data structures to send a message to all other
We chose toillustrate calls tmi t andnoti fy like clients (see Figure 7). This architecture is comparable
any other method calls, by a solid black box. This does to modern web servers [11].
not only provide consistency, but also allows for abet-  |n the chat server, the main server thread listens to
ter illustration of the side effects of these methods. incoming connections and creates a worker thread for
The precise timing of thread activations cannot be each connection that is handled. These worker threads
determined, as it occurs inside special method calls, use shared data structures to send a message to all
such astart andnotify. Hence, the line visualizing  other clients. The main thread inside each client pro-
the happens-before relation is placed in the middle of cess is the only thread and therefore not shown sepa-
such method calls. Thread suspensionjian is dif- rately. Because the server contains several threads, the
ferent, as its argument (the thread in question) actually main thread is listed as such. Each message from a
has to terminate before said call returns. Therefore, theclient is handled by the corresponding worker thread
line of the happens-before relation must be attached toon the server side. This worker thread then sends that
the bottom of the box, representing completed method message to each other client by accessing the shared
execution, which implies thread termination. array that contains references to all the other work-
Method calls towai t do not affect the happens- ers. Throughthis array, the sockets connecting the chat
before relation. This is becausei t has no direct ef-  serverto each client can be retrieved. Therefore any in-
fect on other threads, so any events of other threads areeraction between clients always occurs via the server
not correlated to when the current thread is suspendedapplication, where it is handled by a particular worker
We chose not to visualize locking and lock sets di- thread.
rectly. Inclusion of lock sets may be done by annota-
tions, but will decrease conciseness of the graph. Like- Process
wise, atomicity of actions, which depends on locking,
is not shown. While correct lock usage corresponds to

Server

a “hard mental operation” [14], our visualization cap- Thread
tures the key problems in concurrency on a slightly Process
higher level of abstraction, improving scalability. - S
Thread
AN |

4. Trace visualization

accesses

Process

A 4
l” N
. . . . f P
The example application was subject to previous re- Worker | | Thread

search [1, 4]. It implements a chat server, where mul-
tiple clients can connect and interact with each other. . .
The architecture of the chat server is fairly complex, Figure 7. Chat server architecture.




Worker 1 Worker 2
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1: create, start

2: create, start

ot
3.1: sendAll(String) out != null

3.1.1: send(String)

3.1.2: send(String) U out == null I

Figure 8. Complex interaction illustrated by our extended s equence diagram.

The difficulty of understanding program semantics have avoided a failure. The actual schedule shown in
became obvious when analyzing a complex error tracethis trace is different, leading to a failure. The error
containing six threads and hundreds of transitions be-trace in its entirety is rather long and difficult to read.
tween threads [1]. We subsequently sought visualiza- For readers with some experience in the Java socket
tion techniques. Figure 8 shows the essence of suchAPI, Appendix A includes the full error trace, and an
an error trace. Trace abstraction was performed man-explanation of each step.
ually [26], but we believe that this can be automated
in_a scalable way. C_:rucial eve_nts include thread cre- 5. Visualizer architecture
ations and changes in the predicate that makes the pro-
gram fail (fieldout beingnul | when accessed). The ) ) ) )
program trace consists of the three classes (Server, As described earlier, events can be contained in an
Worker 1, Worker 2). The Server class first initializes ©Or trace of a model checker, or be generated at run-
the two worker threads (using them as data structures) ime- Figure 9 shows how events are extracted in both
and enables them to run (as threads). In the exam-cases. In model checking (MC), the resulting error
ple, the second client then proceeds to send a messagéface is y|suaI|zed. In run-time ve_r|f|cat|on (RV), even_t
The second worker thread is subsequently scheduled&neration has to be embedded into the program being
to handle this event. This entails sending a message®"@lyzed. This can be done with automated code in-
to all clients. To achieve this, the worker thread ac- Strumentation, for example, using aspect-oriented pro-
cesses data structures of all worker threads, including9ramming [16].
itself. When accessing fieldut of the other Worker MC RV

object, it accesses an uninitialized field, producing a
Nul | Poi nt er Excepti on. Program

The failure occurs because the constructor of the

worker threads initializes only some fields. Initializa- Model {e%
tion of referenc®utis performed in the un method of modified

a worker thread, rather than in its constructor. There- tEr;ré’e’
fore, a particular sequence of initialization and execu-

tion leads to a null pointer dereference in one of the
two threads involved. Annotations abauut (in ital- Events

ics) show changes and dereferences inside a method

call. The happens-before relation links initialization @ Visualizer

of thread Worker 1 to its execution, showing that

this thread could have been scheduled after the other . _ _ o
worker thread was initialized. Such a schedule would ~ Figure 9. Event extraction / visualization.



The modified program will, in addition to its nor-
mal functionality, emit events to our visualizer. In RV,
the visualizer can operate on-line, using live events, or
off-line, after termination of the program. Error traces
from model checkers are only examined off-line, after
termination of the model checker.

The visualization module can be built as a library.
Calls can be made at points defined by a programmer,
or at automatically instrumented places. Alternatively,
a parser can be built for a particular input format, ei-
ther reading error traces from a model checker, or read-
ing logged execution traces. The result of the parse
can then be visualized with the same package, inde-
pendently of the application domain.

6. Conclusions and future work

Understanding a concurrent program trace is diffi-
cult. Still visualization builds on trace abstraction and
shows the essence of a trace. Our approach builds on
UML sequence diagrams and can illustrate a failure on
a complex error trace clearly, and can also be used as a
tool to reverse engineer program behavior. Error traces
may originate from a model checker or a run-time ver-
ification tool and can be visualized in the same way.

Future challenges include automated tool support,
so our visualization can be applied to larger examples.
This will also allow us to explore the scalability of our
visualization when used with different abstraction or
exploration techniques. We will also consider visual-
ization of timeouts and locks through means other than
annotations.

A. Full error trace

Figures 10, 11, and 12 contain the full error trace
of the example application. From the raw output of
Java PathFinder 3.0a (JPF) [27], the following modifi-
cations have been performed:

e Steps showing execution of code inside Java li-
brary classes or of internal helper clasntral-
izedProcesdhave been omitted. The latter class
is necessary to transform all the processes of a
client/server application into threads, such that
they can be run in a single-process virtual ma-
chine. This is an artifact of the specific (complex)
application chosen, and discusses extensively in
previous publications [1, 4]. Process centraliza-
tion makes it possible to select several interact-
ing processes in a single-process model checker.

All processes are converted to threads, and net-
work communication using TCP/IP method calls
is substituted by a “virtual” network, which con-
nects the centralized processes. For all intents and
purposes, the application behaves as if it were a
multi-process application, but it runs inside a sin-
gle wrapper process.

The formatting has been improved and enhanced
with type setting language keywords in bold face.

Duplicate reports of execution steps referring to
the same line of code have been deleted. Such du-
plication arises, for instance, when one line con-
tains several instructions (such as a string con-
catenation), or when a lock is acquired, which
blocks execution of that thread until the lock is
available.

The thread IDs in the thread stacks (at the bottom
of the trace) have been adjusted in order to cor-
respond to the thread IDs inside the error trace.
This corresponds to a feature that is available in a
newer version of JPF.

Without further explanation, the error trace is very hard
to understand, due to its length and complexity. Six
threads are involved, five of which execute at least
some instructions in this error trace. Three of these
threads are still active at the time when the exception
occurs. In order to make the error trace more under-
standable, each step is explained briefly:

e First, the exception of the current thread is shown.

This is thread 4 (the last thread shown in the error
trace, in transition 116).

Transition O (thread 0): The wrapper thread starts
all the processes of the client/process application.

Transitions 1 — 5 (thread 1): Initialization of the
main process of the chat server.

Transitions 19 — 20 (thread 2): Initialization of the
first chat client.

Transition 22 (thread 2): The first chat client con-
nects to the server.

Transitions 37 — 39 (thread 1): The chat server ac-
cepts the incoming connection and initializes the
first worker thread. Note how referengatis ini-
tialized tonul | in line 19 ofChat Ser ver. j ava.
After registration of the new worker thread in the



array of active worker threads, the chat server References

main thread waits again for an incoming con-
nection by callingservsock. accept (Transi-
tion 39).

Transitions 56 — 60 (thread 2): The first chat client

sends a message to the server and tries to read

the first incoming message from the server. This
could be its own message or a message from a
different chat client.

Transitions 63 — 65 (thread 3): Initialization of the
second chat client, which connects to the server.

Transitions 77 — 80 (thread 1): The chat server
accepts the incoming connection, initializes the
second worker thread, and registers that worker
thread in the array of active worker threads. Af-
ter that, the limit of connections has been ex-
hausted, so the main server thread shuts down
(transition 80).

Transitions 81 — 88 (thread 3): The second chat
client sends a message to the server and tries to
read the server response.

Transitions 91— 112 (thread 4): The first worker
thread initializes its output streafout), reads the
first message fromits client, and proceeds to send
that message to all active clients usgendAl | .

Transition 115 (thread 2): The first chat client

reads the server response, closes its connection,

and terminates.

Transition 116 (thread 4): The first worker thread
accesses referenceut of the second worker
thread. This reference il |. Hence, its ac-
cess leads to thiul | Poi nt er Excepti on shown

at the beginning of this error trace.

Subsequently, the stack traces of the other active
threads are shown. These are thread 3, which
is the second client waiting for the response,
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java. |l ang. Nul | Poi nt er Excepti on:
"println(Ljava/lang/ String;)’

cal l'ing

on nul |l object

at Worker.send(Chat Server. java: 44)
at Chat Server.sendAl | (Chat Server. java: 91)
at Worker.run(Chat Server. java: 32)

Tr. #0 Thread #0
Chat Sim java: 12
Chat Sim j ava: 13
Chat Sim java: 17
Chat Sim java: 31
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Chat Sim java: 31
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Figure 10. Part 1 of error trace: Start of server thread, first

path to error (length: 117)
Thread t[] = new Thread[nCients + 1];
t[0] = new CentralizedProcess(0) {
t[0].start();

for (int i =1; i <= nCients; i++) {
t[i] = new CentralizedProcess(i) {
t[i].start();

for (int i =1; i <= nCients; i++) {
t[i] = new CentralizedProcess(i) {
t[i].start();
for (int i =1; i

}

<= nCients; i++) {

new Chat Server (nC i entsServed);

public Chat Server(int naxServ) {

int port = 4444,

wor kers = new Worker[2];

Server Socket servsock = new Server Socket (port);

while (maxServ-- 1= 0) {
sock = servsock. accept();

Chatdient.main(null);
static int currlD = 0;
Chatdient.main(null);
new Chatdient().exec();
public Chatdient() {

synchroni zed(get A ass()) {
}

}
new Chatdient().exec();
Socket socket = new Socket ();

I net Socket Addr ess addr = new | net Socket Address(. ..

socket . connect (addr) ;
sock = servsock. accept();

synchroni zed(this) {

for (i =0; i < workers.length; i++) {
if (workers[i] == null) {

workers[i] = new Worker (i, sock, this);
class Worker inplenments Runnable {
workers[i] = new Worker (i, sock, this);
public Worker(int n, Socket s, ChatServer cs) {
this.n = n;

chat Server = cs;

sock = s;

out = null;

in =null;

}

wor kers[i] = new Worker (i, sock,
new Thread(workers[i]).start();

this):

br eak;
} if (i == workers.length) {
}

10

client, first worker thread.
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Figure 11. Part 2 of error trace: Second client connects, sec

while (maxServ-- 1= 0) {
sock = servsock. accept();

Systemout.printin("dient
I nput St reanReader istr =
Buf f eredReader in = new BufferedReader (istr);

Qutput StreamWiter out =

out.wite(id + ": Hello, world!'\n");
out.flush();
for (int i =0; i <1; i++) {

Systemout.printin(id + ":
ChatCient.main(null);
new ChatCient().exec();
public ChatCient() {

synchroni zed(get d ass()) {
id = currl D++;

}
}

new ChatCient().exec();
Socket socket = new Socket();

I net Socket Addr ess addr = new | net Socket Address(. ..

socket . connect (addr);
sock = servsock. accept();

synchroni zed(this) {

for (i =0; i < workers.length; i++) {

if (workers[i] == null) {

for (i =0; i < workers.length; i++) {

if (workers[i] == null) {

workers[i] = new Worker (i, sock, this);

public Worker(int n, Socket s, ChatServer cs) {

this.n = n;
chat Server = cs;

sock = s;

out = null;

in=null;

}

workers[i] = new Worker (i, sock, this);
new Thread(workers[i]).start();
br eak;

} if (i == workers.length) {

}

}

while (maxServ-- !'=0) {

}

Systemout. println("Server shutting down. ");
}
new Chat Server (nd i ent sServed);

s

Systemout.printin("dient

11

" +id + " connected.");

Received " + in.readLine());

" +id + " connected.");

ond worker thread created.



Tr. #84 Thread #3

Chatdient.java: 31 I nput St reanReader istr =

Chatdient.java: 33 Buf f eredReader in = new BufferedReader (istr);
Tr. #85 Thread #3

Chatdient.java: 34 Qutput StreanmWiter out =

ChatClient.java:36 out.wite(id + ": Hello, world!'\n");
Tr. #87 Thread #3

ChatCient.java:37 out.flush();

ChatClient.java:38 for (int i =0; i <1; i++) {
Tr. #88 Thread #3

ChatClient.java: 39 Systemout.printin(id + ": Received " + in.readLine());
Tr. #91 Thread #4

Chat Server. java: 24 Systemout.printin(... + Thread. currentThread());
Tr. #93 Thread #4

Chat Server.java:26 out = new PrintWiter(sock.getQutputStrean(), true);
Tr. #97 Thread #4

Chat Server.java: 27 assert(out != null);
Tr. #98 Thread #4
Chat Server. java: 28 in = new BufferedReader (new

Tr. #102 Thread #4

Chat Server. j ava: 30 String s = null;

Chat Server.java:31 while ((s = in.readLine()) != null) {
Tr. #105 Thread #4

Chat Server.java: 32 chatServer.sendAl I ("[" + n + "]" + s);
Tr. #111 Thread #4

Chat Server. java: 89 for (i =0; i < workers.length; i++) {
Tr. #112 Thread #4
Chat Server. java: 90 if (workers[i] !'= null)

Chat Server.java: 91 wor kers[i].send(s);
Chat Server. java: 44 out.printin(s);
Chat Server. java: 45 }
Chat Server. j ava: 89 for (i =0; i < workers.length; i++) {
Chat Server. java: 90 if (workers[i] !'= null)
Chat Server.java: 91 wor kers[i].send(s);
Chat Server. java: 44 out.printin(s);
Tr. #115 Thread #2
Chatdient.java: 39 Systemout.printin(id + ": Received " + in.readLine());
ChatClient.java:38 for (int i =0; i <1; i++) {
Chatdient.java: 41 out.close();
ChatClient.java: 44 }
ChatClient.java:45 }
ChatCient.java: 17 }
Chat Sim j ava: 35 }
Tr. #116 Thread #4
Chat Server.java:44 out.println(s);
------------------------------------ end error path

------------------------------------ thread stacks

Thread #3:
at java.io.BufferedReader. readLi ne(java/i o/ BufferedReader.java: 292)
at java.io.BufferedReader. readLi ne(java/i o/ BufferedReader.java: 362)
at ChatCient.exec(ChatCient.java: 39)
at ChatClient.main(ChatCient.java: 16)
at Chat Si n$2. run(Chat Si m j ava: 34)

Thread #5:
at Wor ker. run(Chat Server.java: 24)
———————————————————————————————————— end thread stacks

1 Error Found: uncaught exception

Figure 12. Part 3: The second client sends a message, leading to an exception in the server.
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