
Efficient Model Checking of Networked Applications

Cyrille Artho1, Watcharin Leungwattanakit2, Masami Hagiya2, and
Yoshinori Tanabe3

1 Research Center for Information Security (RCIS), AIST, Tokyo, Japan,
c.artho@aist.go.jp

2 University of Tokyo, Tokyo, Japan,
{watcharin,hagiya}@is.s.u-tokyo.ac.jp

3 Research Center for Verification and Semantics (CVS), AIST, Tokyo, Japan,
tanabe.yoshinori@aist.go.jp

Abstract. Most applications today communicate with other processes over a net-
work. Such applications are often multi-threaded. The non-determinism in the
thread and communication schedules makes it desirable to model check such ap-
plications. When model checking such a networked application, a simple state
space exploration scheme is not applicable, as the process being model checked
would repeat communication operations when revisiting a given state after back-
tracking. We propose a solution that encapsulates such operations in a caching
layer that is capable of hiding redundant communication operations from the en-
vironment. This approach is both more portable and more scalable than other
approaches, as only a single process executes inside the model checker.

Key words: Software model checking, network communication, software testing,
caching

1 Introduction

Networked software is complex. It is often implemented as a concurrent program, using
threads [21] to handle multiple active communication channels. This introduces two
dimensions of non-determinism: Both the thread schedule of the software, and the order
in which incoming requests or messages arrive, cannot be controlled by the application.
In software testing, a given test execution only covers one particular instance of all
possible schedules. For exhaustive analysis, it is desirable to model check software, to
ensure that no schedules cause a failure.

Model checking explores, as far as computational resources allow, the entire behav-
ior of a system under test by investigating each reachable system state [9], account-
ing for non-determinism in external inputs, such as thread schedules. Recently, model
checking has been applied directly to software [2, 5, 7, 10, 12, 13, 23]. However, con-
ventional software model checking techniques are not applicable to networked pro-
grams. The problem is that state space exploration involves backtracking. After back-
tracking, the model checker will again execute certain parts of the program (and thus
certain input/output operations). However, external processes, which are not under the
control of the model checker, cannot be kept in synchronization with backtracking.

2 Cyrille Artho et al.

Backtracking would result in repeated communication operations, causing direct com-
munication between the application being model checked and external processes to fail.

Our work proposes a solution to this problem. It covers all input/output (I/O) oper-
ations on streams and is applicable when I/O operations always produce the same data
stream, regardless of the non-determinism of the schedule. While our solution is imple-
mented for Java programs, the ideas are applicable to any software model checker or
programming language supporting TCP-based networking [22]. A large number of pro-
grams uses TCP-based communication and is amenable to such verification. Previous
work introduced the idea of caching I/O communication traces for model checking [4].
This paper extends that work and contributes the following achievements:

1. We show the necessity of matching requests to responses and introduce a solution
for this problem. We also amend problems arising with more complex protocols
that were not solved in the initial solution [4].

2. We introduce a full implementation of the caching approach, which is capable of
model checking complex networked Java applications such as an HTTP server. Its
performance is orders of magnitudes faster than previous work based on centraliza-
tion of applications [1, 19].

This paper is organized as follows: An intuition for our algorithm is given in Section 2,
while Section 3 formalizes our algorithm. The implementation is of our approach is
described in Section 4, and experiments are given in Section 5. Section 6 describes
related work. Section 7 concludes this paper, and future work is outlined in Section 8.

2 Intuition of the Caching Algorithm

2.1 Software Model Checking

Model checking of a multi-threaded program analyzes all non-deterministic decisions
in a program. Non-determinism includes all possible interleavings between threads that
can be generated by the thread scheduler or through possible delays in incoming com-
munication. Alternative schedules are explored by storing the current program state in
a milestone, and backtracking to such a milestone, running the program again from that
state under a different schedule.

Figure 1 shows an example to illustrate the problem occurring with communication
operations. The program consists of two threads, which print out their thread name.
Consider all possible schedules for this simple program. When both threads are started,
either T1 or T2 may execute first, depending on the schedule. In testing, only one of
these two outcomes will actually occur; in model checking, both outcomes are explored.

Figure 2 illustrates the state space exploration of this simple program when execut-
ing it in a software model checker. Boxes depict the set of threads that can be scheduled
for execution. Transitions are shown by arrows and labeled with the output generated in
that transition. After thread initialization, the scheduler has to make a choice of which
thread to run first. As both choices should be explored, the model checker saves the
complete program state at this point in a milestone. Assume the state space exploration
then picks T1. After its message is printed, only T2 remains. After execution of T2,

Efficient Model Checking of Networked Applications 3

Thread 1 Thread 2
void run() {

print "[T1]";
}

void run() {
print "[T2]";

}

Fig. 1. Example program to illustrate backtracking in a software model checker.

both threads have finished, terminating the program. The model checker subsequently
backtracks to a previously stored program state. After backtracking, the model checker
explores the other possible schedule. The operations of T1 and T2 are executed again, in
reverse order.

This simple example shows how the same operations are repeated after backtrack-
ing. As long as repeated operations target the program heap, their effect is usually con-
sistent, as the entire program state is restored from a milestone. Therefore, repeated
operations have the same effect on the restored memory as the original ones, as long
as all components affected are captured by milestones. In this example, printing to the
screen was repeated. While the state of the console cannot be backtracked by the model
checker, this redundant output is usually ignored. However, input/output operations that
affect other processes cannot be treated in this direct way.

[T2]

[T2]

[T1]

[T1]

T1, T2

choice

T2

{} {}

T1

scheduler

ba
ck

tr
ac

k

Fig. 2. State space exploration for the example program.

2.2 Handling Redundant Actions after Backtracking

Effects of input/output (I/O) operations cannot be captured in milestones, as the envi-
ronment of the system outside the current process is affected. When model checking
an application that is part of a distributed system using multiple processes, external
processes are not backtracked during model checking. Thus, two problems arise:

1. The application will re-send data after backtracking. This will interfere with the
correct functionality of external processes.

2. After backtracking, the application will expect external input again. However, an
external process does not re-send previously transmitted data.

4 Cyrille Artho et al.

One possible solution to this problem is to lift the power of a model checker from pro-
cess level to operating system (OS) level. This way, any I/O operation is under control
of the model checker [17]. However, this approach suffers from scalability problems,
as the combination of multiple processes yields a very large state space. The same scal-
ability problem arises if one transforms several processes into a single process by a
technique called centralization [19]. With a model for TCP, networked applications can
be model checked, but the approach does not scale to large systems [1, 3].

Stub-based approaches replace external processes with a simplified representa-
tion [6, 8, 11, 16]. In such work, external processes are not executed, and the stub
returns a (previously known) result mimicking the behavior of the real implementation.

Our approach differs in that it only executes a single process inside the model
checker, and runs all the other applications externally in their real implementation. Fig-
ure 3 depicts the overall architecture of the system. Let “system under test” (SUT)
denote the application executing inside the model checker. Execution of the SUT is
therefore subject to backtracking. Redundant externally visible operations, such as in-
put/output, have to be hidden from external processes. External processes are called
peers and can implement either client or server functionality, as defined in [22]. In our
solution, a special cache layer intercepts any network traffic. This cache layer repre-
sents the state of communication between the SUT and external processes at different
points in time. After backtracking to an earlier program state, data previously received
by the SUT is replayed by the cache when requested again. Data previously sent by the
SUT is not sent again over the network; instead, it is compared to the data contained in
the cache. The underlying assumption is that communication between processes is inde-
pendent of the thread schedule. Therefore, the order in which I/O operations occur must
be consistent for all possible thread interleavings. If this were not the case, behavior of
the communication resource would be undefined. Whenever communication proceeds
beyond previously cached information, new data is both physically transmitted over the
network and also added to the cache.

As an example, a simple program involving two threads is given in Figure 4. Each
thread first writes a message to its own (unique) communication channel and then reads

Peer applications

Application (SUT)

(running normally)
Target application
(model checked)

I/O
ca

ch
e

Peer

Model checker

Fig. 3. Cache layer architecture.

Thread 1 Thread 2
void run() {

conn1.write("1");
r1 = conn1.read();

}

void run() {
conn2.write("2");
r2 = conn2.read();

}

Fig. 4. Example program communicating with peer processes.

Efficient Model Checking of Networked Applications 5

Model checker Linear communication traces by cache

r1r1

r2 w1r1

r2r1

r2r1

r2r2

w2

r1 w2 w1 r2

w2w1

r1

w2 r2

w1

Fig. 5. State space exploration inside the model checker (left) and communication traces stored
by the cache layer (right).

from it. Both communication channels interact with external processes (or with the
same external process using two independent connections). Both threads run concur-
rently, so any interleaving of their operations is possible. Their combined state space is
explored inside the model checker, as shown on the left side of Figure 5. In that figure,
write and read operations are abbreviated by wi and ri, respectively, with i denoting the
thread ID. As can be clearly seen, execution of all possible interleavings results in mul-
tiple backtracking operations, and each communication operation is repeated several
times. However, in a given execution trace, each operation only occurs once. Opera-
tions within each thread are totally ordered, resulting in a partial order on I/O operations
across all threads. Our cache layer takes advantage of this. The cache keeps track of I/O
operations during the entire state space exploration and maintains a linearization of each
communication trace. Each communication trace reflects the (total) order of messages
within each communication channel. Identical physical communication operations of
each execution trace are executed only once. The results of these operations is cached
in a linear communication trace, as shown on the right side of Figure 5.

In our approach, all processes involved are executed; however, only a single pro-
cess runs inside the model checker. Our approach therefore combines the (relative)
scalability of running a single (usually multi-threaded [21]) process inside the model
checker with the benefit of finding implementation errors when analyzing real appli-
cations. Indeed, peer processes may even run on external hosts and require features
such as database access that a given model checker cannot support. As our approach
only exhaustively searches the state space of one process at a time, it has to be applied
once to each application: Each process is run once in the model checker, with its peers
as external processes. Thanks to our cache layer, external processes do not have to be
backtracked. In essence, our cache produces the same results as a perfect stub. The
scalability improvement comes from the fact that the state space of one process is expo-
nentially smaller than the state space of multiple processes. Our work differs from stub
generation [6] in that we generate the corresponding data on the fly, without requiring
a previous execution, and that we can handle peer processes running on other hosts or
platforms. For a more detailed comparison, see Section 6.

6 Cyrille Artho et al.

2.3 Extension to More Complex Protocols

So far, the design described is sufficient for simple protocols consisting of one (atomic)
request and response [4]. However, keeping track of data stream positions is not suf-
ficient for protocols where several requests and responses are interleaved, and for re-
quests that consist of multiple parts. For example, in HTTP, a GET request consists
of two lines, one line containing a URL, and another empty line to mark a complete
request.

As an example that will also serve to test the performance of the approach, we take
a simple protocol where the server returns the nth character of the alphabet requested.
A request consists of a number between 1 and 26, and a newline character (\n). As-
sume that a client running this protocol is model checked, and the server runs as a peer
application (see Figure 6). The client consists of a request thread, sending the request in
two steps to the server, and a response thread, which reads the (atomic) response when
available.

Assume that in the first schedule, the model checker executes both request steps
before the response is read. Both parts of the communication are then cached by the
cache layer as described above. Now, the model checker tries a different schedule and
backtracks to the state after the first half of the request, and executes the response thread.
Clearly, the response should not (yet) be returned by the cache layer! Correctness of the
cache layer can therefore only be ensured by polling the server after each request, in
order to verify if a matching response exists for a complete request.

Previous work has implemented the basic I/O cache idea [4], but the design and
implementation had several flaws.1 This paper presents the first complete, fully working
implementation, which has successfully been applied to complex software such as a
concurrent HTTP server.

3 Formalization of the Caching Algorithm

A request is a message sent (written) to the peer, and a response is a message received
(read) from the it. Our approach depends on two key assumptions:

1 In the original design, communication channels were not always correctly assigned to threads.
Furthermore, non-atomic messages could not be handled at all. Finally, the requirement to
cache close operations as originally proposed [4] is redundant and can be dropped.

1

PeerJava model checker

A\n

\n

Response thread

Client

Server
Request thread

I/O cache

Fig. 6. A multi-threaded client requiring the cache to match requests to responses.

Efficient Model Checking of Networked Applications 7

1. Deterministic peer responses: For each request sequence, there exists a correspond-
ing unique response sequence.

2. Consistent application behavior: For each thread and each socket, the same requests
are issued regardless of the thread schedule.

These assumptions allow for model checking a system when only one execution of
peer processes is observed. Based on these two assumptions, we define our execution
semantics of the state space exploration of input/output operations, which also verifies
the second assumption.2 The following definitions assume an assignment operator :=
as in computer programs, allowing for updates of variables and functions.

3.1 Stream Abstraction

A data stream s is a finite sequence of messages m: s =
〈
m0, . . . ,m|s|−1

〉
. A stream

pointer sps = i refers to a particular index i in the message sequence of a given data
stream s. A communication trace t = 〈req,resp, limit〉 consists of two data streams, a
request stream req and a response stream resp, and a function limit(spreq) : spresp. This
function takes a request pointer and returns its corresponding response pointer.

Programs operate on a set T of communication traces t (which correspond to
streams or sockets in a given programming language). One communication trace is
associated to each socket. We augment the normal program state consisting of a global
heap and several threads that each carry their own program counter and stack, by a
pair of stream pointers

〈
spreq,spresp

〉
for each communication trace t. This extended

program state is managed by the model checker and subject to backtracking. Defini-
tions below assume that stream pointers are changed by backtracking, while data in T
remains unchanged.

In our approach, all communication traces have to be consistent with the first seen
communication trace: In any possible program execution, there has to be one unique
trace t̂ such that for all thread schedules, t = t̂ when the program terminates normally.3

Consistency is checked by verifying message data of repeated requests against previ-
ously cached request data.

3.2 Execution Semantics

Model checking of a program using I/O is performed as follows: When progressing be-
yond previously cached messages, all operations are directly executed, using the func-
tionality provided by the standard library. The result of that library function, using the
correct set of parameters, will be denoted by lib_xy(. . .), where xy represents the orig-
inal library function. Any error codes returned by library function will also be returned
by our model. Our library model treats errors as if they occurred deterministically, e. g.
as a result of invalid parameters. As our approach requires a deterministic response,

2 As responses are cached, the first assumption cannot be verified at run-time. However, in-
consistent peer behavior is detected if the peer itself is model checked in a separate analysis
run.

3 We omit treatment of input/output errors here. In such cases, program behavior diverges.

8 Cyrille Artho et al.

nondeterministic errors arising from communication failures of the underlying network
cannot be covered. For brevity, we omit error handling here.4

Without loss of generality, we assume that each message has size 1. Multiple mes-
sages from a client may be required in order to elicit a server response. Conversely, at
a given state, a response may consist of multiple messages of size 1. Operations always
work on a given trace t, which is omitted in the following definitions for brevity.

Helper function pollResponse (see Algorithm 1) serves to check whether a given
request produces a response from the peer. Responses are checked for and cached proac-
tively, in order to correctly treat programs where responses are processed by an inde-
pendent thread. Whenever a program reads from the same connection later on, cached
response data will be used to determine the size of the response, i. e., the limit of the
incoming message. Function pollResponse checks if data is available on the physical
connection, and stores that data. It also updates function limit, which denotes the extent
of the response received. This function is always defined up to the position where a
request has been cached, i. e., up to |req|−1.

Function write behaves in two possible ways, as shown in Algorithm 2: if previ-
ously recorded communication data extends beyond the current position, then current
data is compared to previously written data. If no cached data exists at the current po-
sition, data is physically sent to the peer, and the peer is polled for a response. Reading
data returns previously cached data, if a corresponding response had been cached by
pollResponse after the last message was sent. If no data is available, function read

blocks (see Algorithm 3).
When opening a connection (through connect or accept on the client and server

side, respectively), the library function normally returns a socket object sock represent-
ing as a handle to that connection. As the behaviors of connect and accept are very
similar, we will subsume both functions with open in this discussion. Our model li-
brary returns the same socket, but also maintains a communication trace object t for
each socket. Subsequent communication via sock is cached in t . When backtracking
to a point before the creation of sock (and t), sock is discarded, but t is merely marked
as unused, such that re-execution of function open will retrieve the previously seen
communication trace. Algorithm 4 summarizes this functionality. (Our implementation
requires a consistent order in which sockets are created by different threads; relaxation
of this criterion is subject to future work.) Closing a socket marks a communication
trace t as unused, which allows it to be used again after backtracking, as shown in
Algorithm 5.

3.3 Example Execution Scenario

Figure 7 shows an example state space exploration of the alphabet client described in
Section 2. The first column depicts state space exploration, with the current state shown
in black. The state of trace t and function limit in the current state are shown in the next
two columns. In the protocol used by this example, newline characters that complete a
request or response have been omitted for simplicity. The example client uses only one

4 Approaches that backtrack all processes involved, such as centralization, can inject communi-
cation failures into the simulation, but suffer from poor scalability [3].

Efficient Model Checking of Networked Applications 9

Algorithm 1 Function pollResponse. n is the size of the request.
i := limit(spreq) (limit at current position)
while (data is available) do

respi := lib_read(. . .)
increment i

limit(spreq +n) := i (limit at new position)

Algorithm 2 Function write; d is the payload to be written.
i := spreq
if i < |req| then (check against cached data)

abort if reqi 6= d
else (physically write new data and cache it)

call lib_write(. . .)
reqi := d
call pollResponse(n = 1)

increment spreq

Algorithm 3 Function read.
i := spresp
if i = limit(spreq) then (no data available)

suspend current thread until data available
call pollResponse(n = 0)

increment spresp
return respi (cached data)

Algorithm 4 Function open.
create new socket object sock
if unused communication trace told available then

t := told
else

open new physical connection for sock
t := new communication trace

mark t as used
bind t to sock (subsequent operations on s will access communication trace t)
call pollResponse(n = 0) (certain protocols return data without requiring a request)

Algorithm 5 Function close, operating on socket sock and its trace t.
i = spreq
if i < |req| then (premature close)

abort
if i = |req| then

if physical connection for sock is open, close it
mark t as unused

10 Cyrille Artho et al.

State space exploration Trace t limit Remarks

1

0
send "1"

0 1 2
↓

1
A
↑

0 → 0
1 → 1

After an initial request “1”, function
pollReponse records server response “A”. If
the reader thread were scheduled now, it could
read that response.

send "2"

2

0

1

send "1"
0 1 2

↓
1 2
A B
↑

0 → 0
1 → 1
2 → 2

A second request results in another response
and another update of limit. If the reader thread
were to access responses now, it would advance
spresp twice, until the limit at the current request
position (2) is reached.

receive "A"

2

0

1

send "1"

send "2"

3

0 1 2
↓

1 2
A B
↑

0 → 0
1 → 1
2 → 2

After backtracking to the state after the first
request, spreq is backtracked to 1. The reader
thread is scheduled, and accesses response data.
The persistent mapping in limit ensures that
only the first response is returned by the cache.

Fig. 7. An example demonstrating the interaction between spreq, spresp, and limit.

connection, so there exists only a single trace t. Trace t is illustrated as a two-row table
with a request record (top), response record (bottom), and stream pointers pointing to
a particular position in each data stream. Note that in this example, no data is returned
after a connection is made; this results in an initial entry 0 → 0 for limit.

3.4 Limitations of Our Approach

Any program whose written messages fulfill the consistency criteria defined above can
be model checked successfully using our approach. However, there are classes of pro-
grams that are normally considered to be valid, for which our criteria are too strict. This
includes software that logs events to a file or network connection. For this discussion it
is assumed that logging occurs by using methods open, write, and close. Assume fur-
ther that actions of each thread can be interleaved with actions of other threads, which
include logging.

If log entries of individual threads depend only on thread-local data, they are in-
dependent of each other. In such a case, different correct interleavings of log entries
can occur without violating program correctness. If log data is sent over a single shared
communication channel, occurrence of different message interleavings violates the cri-
terion saying that written data at a specific position must be equal for all thread inter-
leavings. Such programs can therefore not be model checked with our approach, unless
some messages are exempted from the consistency check.

On a more general level, applications where communication depends on the global
application state are not applicable to our approach. For instance, a chat server where
the server sends a message back to all clients currently connected will violate our con-
sistency criterion. In such a server, one connection is maintained per client. As the

Efficient Model Checking of Networked Applications 11

native Java
library

Backtracking exec. Direct exec.

SUT

JPF model checker

Listener

sp

MJI code

T

P
ee

r

C
ac

h
e

H
os

t J
av

a
V

M

Fig. 8. The implementation architecture.

order in which incoming messages are processed differs between schedules, several in-
terleavings of incoming messages are possible. As a consequence of this, the sequence
of outgoing message varies as well across different schedules. The resulting inconsis-
tency prevents our approach from being applicable. Applications where communication
varies across schedules can still be model checked with our approach by abstraction
over messages data, utilizing the same sequence of messages for each thread. In the
chat server case, all messages are replaced by a string constant to allow our approach to
proceed.

A large number of programs fulfills our requirement of deterministic communica-
tion traces. This includes any service-oriented architecture where several clients are
served concurrently, but independently. Programs that violate the given invariant can
still be model checked by using application centralization [1, 3]. Centralization can
also cope with slow responses, which occur when the network is slow or a response
requires extensive computation on the peer.

In the caching approach, polling assumes that a response is ready shortly after a
request has been sent. In our implementation, a short delay is induced in the SUT to
wait for the response. Still, it cannot be guaranteed that a response is always received
when logically possible. This shortcoming could only be overcome by inspection of the
server, to determine whether a request has been fully processed. This could be imple-
mented by code instrumentation in all peer systems, and is subject to future work.

4 Implementation

The I/O cache implements the Java library API for network I/O [15]. It fully controls
messages exchanged between the system under test (SUT) in the model checker and
external processes. Implementation details depend on the model checker and the way
it allows access to internal events. We chose Java PathFinder (JPF) [23], a system to
verify executable Java bytecode programs, as our model checker. It was chosen because
it is openly available and features a stable API for extending model checker actions.

JPF is an execution framework for software verification purposes. Its latest version
supports user extensions via two extension mechanisms, listeners and the Model Java
Interface. During the execution of JPF, its internal state changes after each executed
instruction. A listener subscribes to certain internal events, such as instruction execution
or backtracking. It is notified by the JPF when such an event happens. The listener uses
this information to verify application properties or customize search patterns. In our
work, the listener notifies the cache layer when a state transition takes place.

12 Cyrille Artho et al.

The Model Java Interface (MJI) separates the Java virtual machine (VM) of JPF
from the underlying Java VM of the host computer system, called host VM. The differ-
ence between JPF and host VM involves the backtracking function of the JPF. When an
instruction is executed by the host VM, no backtracking occurs. An instruction executed
by JPF is model checked with specified properties and subject to backtracking.

The architecture is summarized by Figure 8. The dashed vertical line shows which
part of the cache code (shown by a solid box) execute within JPF, and which part execute
directly on the host Java VM. In Java, the network library is implemented in package
java.net. Key classes include Socket, InetAddress and InetSocketAddress. These classes
contain native methods that physically communicate over the network. For these meth-
ods, backtracking is not possible. However, JPF allows users to replace standard li-
brary classes with user-defined classes. This extension is implemented through the MJI
mechanism by creating two classes, called model class and native peer class, for each
replaced standard class.

When the SUT is model checked by JPF, user-defined classes are executed instead
of the standard library code. The native peer class, however, is still executed on the
host JVM. Note that the model class can propagate methods where backtracking is not
needed to the corresponding native peer class. User-defined classes can also utilize the
MJI mechanism in order to avoid backtracking. By replacing the original Socket class
with our customized version, communication between the SUT and its environment is
redirected to the cache layer. The cache layer returns input and output communication
channels to the client and behaves like the real peer.

5 Experiments

For evaluation of our approach, we conducted a number of experiments. To facilitate
automation, these experiments were performed on a single computer. In principle, peer
applications could also be run on a different host when using our I/O caching approach.
While this may be necessary to model check software working together with third-party
clients or services, having all processes under our control greatly facilitated the setup.

For model checking, startup of the SUT and the remote application have to be syn-
chronized. Otherwise, the client may attempt to contact the server before it is ready.
Premature client startup can be avoided in two ways:

1. Extra control code could be added to the client, ensuring that the server is ready.
For instance, the client could retry a communication attempt in the event of failure.

2. Starting the client is delayed after starting the server. This allows the server to
initialize itself and be ready for communication.

The second approach may start the client prematurely, if the delay is too small. In prac-
tice, it has the advantage that the SUT does not have to be modified, and proved to work
quite well. If the client is started too early, this can be seen immediately from the client
log. Restarting the client later therefore fixes this issue. Automation of this could be
achieved by using operating system utilities such as trace, strace, or truss [14], to
supervise system calls.

Efficient Model Checking of Networked Applications 13

The Java PathFinder model checker [23], version 4 revision 353, was used for our
experiment. This version features great performance improvements over version 3. Un-
fortunately, revision 354 introduced a new bug that prevented us from running the cen-
tralized test applications on newer revisions.5

5.1 Example Applications

Table 1 gives an overview of the examples used as benchmarks. The daytime client
connects to a server, which sends a fixed string back to the client.6 While the server is
single-threaded, the client launches concurrent requests. In this case, the client is more
complex than the sequential server, and was the focus of model checking.

Jget [18] is a multi-threaded download client, which issues a number of concurrent
partial download requests in addition to the main request. Depending on which task
finishes first, Jget either uses the entire file downloaded by the main thread, or it assem-
bles the file from the pieces returned by the partial downloads. Essentially, the worker
threads are in a (controlled) race condition against the main thread. This creates the
challenge of ensuring that the complete file is received when the program shuts down.
In order to allow for the necessary concurrency and partial downloads, we augmented
an existing example web server [20] with ability to serve parts of a file. The result-
ing system proved too complex for model checking with JPF, so it was abstracted to a
slightly simpler system. The abstract system has all strings of HTTP reduced to very
short literals, eliminating the necessity of string parsing.

The alphabet client generates two threads per connection: a producer and a con-
sumer thread. They communicate with the alphabet server. The server expects a string
containing a number, terminated by a newline character, and returns the corresponding
character of the alphabet. In this case, both the client and the server are multi-threaded,
and were model checked.

The chat server, described in more detail in [1], sends the input of one client back to
all clients, including the one that sent the input. The original chat client transmits its ID
at the beginning of each message. This ID causes a mismatch in the cached server input
when the order of server worker threads is reversed after backtracking. Therefore, the
client ID was stripped from the transmitted messages when using our cache approach.
(Code that builds a compound string using that ID was left in the system to maintain
the same complexity for comparison purposes.)

5.2 Results

All experiments were run on an Intel Core 2 Duo Mac 2.33 GHz with 2 GB of RAM,
running Mac OS 10.4.11. JPF was given 1 GB of memory, a limit that was never ex-
hausted, and a time limit of two hours. The standard properties used by JPF were veri-
fied: We checked against deadlocks, uncaught exceptions, and assertion violations. The

5 While we have reported that bug more than a year ago, we were unable to produce a small test
case that reproduces it. The large size and run-time of the test producing a failure has made it
impossible to determine the exact location of the problem.

6 For the purpose of model checking, the “date” used was hard-coded in the replacement class
for java.util.Date.

14 Cyrille Artho et al.

Table 1. Example applications used.

Application Description
Daytime client Returns the current time (RFC 867).
Jget client, version 0.4.1 Multi-threaded, multi-connection HTTP client.
Web server (for Jget) Multi-threaded, multi-connection HTTP server.
Alphabet client/server Returns the nth character of the alphabet.
Chat server Sends messages of one client to all clients.

original version of Jget (0.4.1) included a few initial bugs in the calculation of ranges,
and an inefficient design that relied on busy-waiting. These initial flaws were fixed prior
to further analysis. When model checking the final abstracted version of Jget, we found
that Jget erroneously reported an incomplete download, even though the entire file was
received. Furthermore, the abstract version of the web server may exhibit a (handled)
null pointer exception due to sloppy error handling in our own extension for download
ranges. Investigation of the problems in Jget (whether due to a bug in the original ap-
plication or in the abstraction) remains subject to future work; therefore, we did not
investigate other settings for Jget.

No program contained a critical error that would have terminated the state space
search by JPF and resulted in an error message. JPF therefore investigated the full state
space, allowing a comparison of the size of both models. Where possible, we compared
the results of our approach to model checking all the clients and the server processes
using centralization [1]. Note that in our new caching approach, the client and server are
analyzed separately, while in centralization, they are analyzed together. Our approach
therefore requires at least two model checker runs, but allows for analyzing much larger
programs, as the state space explosion of combined processes is avoided. However, our
approach sacrifices analysis of all possible combinations of client/server behaviors for
efficiency. This is most obvious for the Jget/web server pair, where only one possible
schedule on the client side is exhibited when model checking the server.

Table 2 shows the results of all our experiments. The daytime server and the chat
client do not exhibit any concurrency; therefore, an analysis by JPF was not necessary,
as it would not reveal any results that cannot be obtained by ordinary testing. The table
is divided into three parts: A description of the test case, and the results of the central-
ization and caching approaches. The test setup includes the name of the application, the
number of connections or threads used, and a scale parameter for the last two cases. For
the alphabet server, the number of messages per connection was varied. For the chat
server, limiting the number of concurrently accepted clients was another way to curb
the state space.

The second and third part of the table show the results for the two different ap-
proaches. The I/O caching approach is analyzing the client and server separately, with
the peer process(es) running outside the model checker. As the peer processes consume
next to no resources compared to the model checker, only the time spent in the model
checker is shown. For completed runs, the number of program states analyzed by the
model checker is shown as well. “New” states refer to distinct program states; “revis-
ited” states refer to redundant states that resulted in backtracking.

Efficient Model Checking of Networked Applications 15

Table 2. Results of our experiments. The table lists the applications with the number of connec-
tions or threads used first. The “scale” parameter refers to the number of messages per connection
in the alphabet server, and the number of concurrent connections accepted in the chat server case.
Results using the centralization approach are compared to analyzing the client and the server side
separately, using our I/O caching approach.

Appl. # conn./ Scale Centralization I/O caching approach
threads param. Client Server

Time States Time States Time States
[mm:ss] new revisited [mm:ss] new revisited [mm:ss] new revisited

da
yt

im
e

2 n/a 0:57 33123 71608 0:01 204 229 Server implementation
3 55:39 715941 4726181 0:03 2140 3983 is not concurrent.
4 > 2 h 0:38 25744 67638
5 10:16 356122 1216424
6 > 2 h

Jget 2 n/a > 2 h 0:50 31015 50640 0:14 7636 14250

al
ph

ab
et

2 1 112:24 JPF error 0:04 3631 8711 0:02 102 96
2 > 2 h 0:11 11386 27978 0:02 226 214
3 0:25 27211 67871 0:03 394 372
4 0:50 54246 136362 0:03 610 574
5 1:28 96253 243045 0:03 874 820

3 1 > 2 h 4:42 226646 904025 0:03 1072 2069
2 30:14 1383304 5764677 0:06 4011 7587
3 113:38 5017624 21325338 0:10 9347 17347
4 > 2 h 0:18 17947 32951
5 0:28 30579 55755

4 1 > 2 h > 2 h 0:16 12014 65646
2 1:16 70308 200088
3 3:39 208228 579576
4 8:26 483812 1331400
5 16:31 967092 2643048

5 1 > 2 h > 2 h 3:14 134700 537111
2 26:06 1185717 4516299
3 97:46 4407369 16449707
4 > 2 h

6 1 > 2 h > 2 h 42:25 1487902 7432964
2 > 2 h

7 1 > 2 h > 2 h > 2 h

ch
at

2 1 2:12 50284 143439 Client implementation 0:03 112 81
2 77:08 714830 2668937 is not concurrent. 0:08 4100 4935

3 1 89:28 1819345 6786956 0:03 112 81
2 > 2 h 0:08 4100 4935
3 3:52 115036 221174

4 1 > 2 h 0:03 112 81
2 0:08 4100 4935
3 3:56 115036 221174
4 > 2 h

Finally, we have also verified that the I/O caching approach finds synchronization
problems present in faulty versions of the chat server that were investigated in earlier
work [1]. These errors can be found if two or more clients are present. With both I/O
caching and centralization, JPF immediately finds a schedule exhibiting a data race.
However, the I/O cache allows for more in-depth analysis of the revised chat server,
where the absence of faults can be confirmed for up to three clients with our new ap-
proach.

16 Cyrille Artho et al.

5.3 Summary

Our experiments in Table 2 show that model checking with our I/O caching approach
is orders of magnitudes faster than model checking using centralization. Our new ap-
proach is capable of analyzing interesting and complex system such as concurrent
client/server implementations with up to at least three concurrent connections. The fact
that concurrency problems can be ruled out at that scale gives good confidence that they
are also absent for a larger number of connections, even though no formal proof for this
exists. We therefore think that our approach constitutes a very important breakthrough
in scalability for model checking networked software.

The reason for this improved scalability is that our approach executes only a sin-
gle process inside the model checker, analyzing all interleavings of its threads. This
avoids analysis of the product of all state spaces of all processes. When analyzing a
complete system consisting of multiple processes, each process should be analyzed in
turn in the model checker using our cache, with other processes running as peers. The
resulting complexity of all analysis runs will correspond to the sum of the state spaces
of each process. This is vastly smaller than the product thereof. Our caching approach
inherently cannot analyze all possible schedules of peer processes, making it less sound
than aggregation-based approaches such as centralization [1]. However, this sacrifice
allows scalability to systems that were previously out of reach, making it more useful
in practice.

6 Related Work

Software model checkers [2, 5, 7, 10, 12, 13, 23] store the full program state (or dif-
ferences to a previously stored state) for backtracking. They are typically implemented
as explicit-state model checkers. Milestone creation and backtracking operations oc-
cur many times during state space exploration. This causes operations to be executed
several times when a set of schedules is explored. Such exploration does not treat com-
munication behavior accurately, as described in the introduction.

One solution is to model I/O operations as as stubs. In this approach, communication
operations are modeled by shared memory, semaphores, and channels. Peer processes
are included in the resulting system [8, 16] or modeled by a (possibly abstracted) envi-
ronment process or stub [5, 7, 11]. Abstraction in the environment ensures scalability
but can lead to false positives requiring refinement of the model. In most tools, stubs for
communication operations and environment processes are provided manually, at a level
of abstraction suitable to the problem at hand [8, 11, 16]. The process of generating the
optimal abstraction can be automated but is of course still constrained by computational
resources [5, 7]. Our approach is fully automated, requiring no abstraction. However,
applicability relies on the equality of communication traces between schedules, a prop-
erty that is checked at run-time.

A general solution to model checking multiple communicating processes is to lift
the power of a model checker to operating system (OS) level. This way, the effect of I/O
operations are visible inside the model checker. An existing system that indeed stores
and restores full OS states is based on user-mode Linux [17]. That model checker uses

Efficient Model Checking of Networked Applications 17

the GNU debugger to store states and intercept system calls. The effects of system calls
are modeled by hand, but applications can be model checked together without modi-
fying the application code. In that approach, the combined state space of all processes
is explored. Our approach analyzes a single process at a time inside a model checker,
while running other processes normally. Our approach is therefore more scalable but
requires programs to fulfill certain restrictions. On the technical side, OS-level model
checkers intercept communication at device level, where the network device itself is
wrapped. We intercept communication at library call level.

External processes could be backtracked in tandem with the system under test, for
instance, by restarting them [8, 13]. In existing implementations, one central scheduler
controls and backtracks several processes, effectively implementing a multi-process
model checker [13, 16]. Like all approaches controlling multiple processes inside the
model checker, it incurs a massive state space explosion.

In an alternative approach, multiple processes are analyzed in a single-process
model checker after applying program transformation. Centralization transforms mul-
tiple processes into threads, creating a single-process application [19]. This allows sev-
eral processes to run in the same model checker, but does not solve the problem of
modeling inter-process communication (input/output). Recent work modeled network
communication in the centralized model where all processes are executed inside the
model checker [1, 3]. Communication and backtracking of centralized processes all oc-
cur in a single model checker. Other work has implemented this approach in a similar
way, but sacrificed full automation in favor of manual instrumentation of communi-
cation operations [6]. That tool has another mode in which it can run, allowing for
replacing peer processes with stubs. In this approach, a program that just repeats pre-
viously observed communication contents is used as peer. Recent work has gone into
automating this process by a tool that captures communication in a corresponding stub
program [6]. When using stubs from a previous recorded communication, the assump-
tions mentioned in Section 3 also have to hold. In contrast to stub usage, our approach
eliminates the need for an intermediary stub program. Our approach records commu-
nication and replays it on the fly, in one module. Furthermore, it even allows model
checking of applications where external processes are not running on a platform that
the model checkers supports.

Our approach curbs state space explosion by only running a single process inside the
model checker. It builds on previous work [4] that introduced the idea of I/O caching.
Previous work has several shortcomings and flaws that prevented the idea from work-
ing on realistic examples. First, it did not always correctly associate sockets to traces,
and traces to threads. Second, it lacked the crucial idea of proactive response caching.
Because of this, the implementation showed problems on more complex examples. Our
work is the first one to complete to formalization and implementation of the I/O caching
idea [4] proposed earlier.

7 Conclusions

When model checking communicating programs, processes outside the model checker
are affected by communication but not subject to backtracking. Executing different

18 Cyrille Artho et al.

branches of a non-deterministic decision is not applicable to external communication.
With traditional approaches for model checking software, input/output operations had
to be subsumed by stubs, or multiple processes had to be executed inside the model
checker. The former is difficult to automate, while the latter suffers from scalability
problems.

We defined special caching semantics for stream-based I/O, which includes net-
work communication. This generates the corresponding behavior of a stub on the fly,
during model checking. If program behavior is independent of the execution sched-
ule, such a program can be model checked using our cache layer semantics. Unlike
most previous work, we can handle implementations using standard network libraries
without any manual intervention, while eliminating some scalability issues of some re-
lated approaches. We also have a fully working and very scalable implementation of
our algorithm for the Java PathFinder model checker, and we could successfully model
check several complex applications where multiple clients interact with in parallel with
a server.

8 Future Work

Future work includes possible relaxations of the completeness criteria defined, regard-
ing the order of I/O operations and socket creations. Specifically, certain interleaved
write actions on the same communication channel should be allowed, such as log en-
tries.

Current work focuses on model checking applications communicating by TCP. This
protocol is reliable in the sense that message order is preserved, and messages are not
lost. However, we think that the main concept can be modified and be applied to I/O
failures, where communication is interrupted. This would also make it possible to model
check applications communicating by lightweight but unreliable protocols such as the
User Datagram Protocol (UDP). We will also work on the issue of slow responses, by
implementing a tool that instruments the peer application in order to signal readiness for
new requests to the model checker. Finally, it remains to be seen how far our approach,
which has so far been tried on service-oriented client-server systems, is applicable to
peer-to-peer systems or multicast protocols.

References

1. C. Artho and P. Garoche. Accurate centralization for applying model checking on networked
applications. In Proc. 21st Intl. Conf. on Automated Software Engineering (ASE 2006), pages
177–188, Tokyo, Japan, 2006. IEEE Computer Society.

2. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke: Effi-
cient Dynamic Analysis for Java. In Proc. 16th Intl. Conf. on Computer Aided Verification
(CAV 2004), volume 3114 of LNCS, pages 462–465, Boston, USA, 2004. Springer.

3. C. Artho, C. Sommer, and S. Honiden. Model checking networked programs in the presence
of transmission failures. In Proc. 1st Joint IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering (TASE 2007), pages 219–228, Shanghai, China, 2007. IEEE Computer
Society.

Efficient Model Checking of Networked Applications 19

4. C. Artho, B. Zweimüller, A. Biere, E. Shibayama, and S. Honiden. Efficient model checking
of applications with input/output. Post-proceedings of 11th Int’l Conf. on Computer Aided
Systems Theory (Eurocast 2007), 4739:515–522, 2007.

5. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for Model Check-
ing C Programs. In Proc. 7th Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2001), volume 2031 of LNCS, pages 268–285, Genova, Italy,
2001. Springer.

6. E. Barlas and T. Bultan. Netstub: a framework for verification of distributed Java appli-
cations. In Proc. 22nd Intl. Conf. on Automated Software Engineering (ASE 2007), pages
24–33, Atlanta, USA, 2007. ACM.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software com-
ponents in C. IEEE Transactions on Software Engineering, 30(6):388–402, 2004.

8. S. Chandra, P. Godefroid, and C. Palm. Software model checking in practice: an industrial
case study. In Proc. 24th Intl. Conf. on Software Engineering (ICSE 2002), pages 431–441,
New York, USA, 2002. ACM.

9. E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
10. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Bandera:

Extracting finite-state models from Java source code. In Proc. 22nd Intl. Conf. on Software
Engineering (ICSE 2000), pages 439–448, Limerick, Ireland, 2000. ACM Press.

11. J. Dingel. Computer-assisted assume/guarantee reasoning with VeriSoft. In Proc. 25th
Intl. Conf. on Software Engineering (ICSE 2003), pages 138–148, Washington, USA, 2003.
IEEE Computer Society.

12. M. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building your own software model checker
using the Bogor extensible model checking framework. In 17th Int’l Conf. on Computer
Aided Verification (CAV 2005), volume 3576 of LNCS, pages 148–152, Edinburgh, UK,
2005. Springer.

13. P. Godefroid. Model checking for programming languages using VeriSoft. In Proc. 24th
ACM Symposium on Principles of Programming Languages (POPL 1997), pages 174–186,
Paris, France, 1997. ACM Press.

14. I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure environment for untrusted
helper applications. In Proc. 6th Usenix Security Symposium (SSYM 1996), pages 1–13, San
Jose, USA, 1996. USENIX Association.

15. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition.
Addison-Wesley, 2005.

16. M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: a pragmatic approach to
model checking real code. SIGOPS Oper. Syst. Rev., 36(SI):75–88, 2002.

17. Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya, and K. Kato. Model checking of multi-
process applications using SBUML and GDB. In Proc. Workshop on Dependable Software:
Tools and Methods, pages 215–220, Yokohama, Japan, 2005.

18. S. Paredes. Jget, 2006. http://www.cec.uchile.cl/�sparedes/jget/.
19. S. Stoller and Y. Liu. Transformations for model checking distributed Java programs.

In Proc. 8th Intl. SPIN Workshop (SPIN 2001), volume 2057 of LNCS, pages 192–199.
Springer, 2001.

20. Sun Microsystems, Santa Clara, USA. A simple, multi-threaded HTTP server, 2008.
http://java.sun.com/developer/technicalArticles/Networking/Webserver/.

21. A. Tanenbaum. Modern operating systems. Prentice-Hall, 1992.
22. A. Tanenbaum. Computer Networks. Prentice-Hall, 2002.
23. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Automated

Software Engineering Journal, 10(2):203–232, 2003.

