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Abstract. Many verification tools used in practice rely on sophisticated
SAT and SMT solvers. These reasoning engines are assumed and ex-
pected to be correct, but, in general, too complex to be fully verified.
Therefore, effective testing techniques have to be employed. In this paper,
we show how to employ model-based testing (MBT) to test sequences of
application programming interface (API) calls and different system con-
figurations. We applied this approach to our SAT solver Lingeling and
compared it to existing testing approaches, revealing the effectiveness of
MBT for the development of reliable SAT solvers.

1 Introduction

Rigorous formal techniques provide the tools for verifying crucial stability and
correctness properties of hardware and software systems in order to increase
their reliability as well as the trust of their users. Examples of successful veri-
fication techniques include model checking and automated theorem proving (cf.
[1] for a survey). For applying these techniques, dedicated software is required
which provides (semi-)automatic support during the verification process. Solv-
ing verification problems is not a trivial task and therefore, many sophisticated
approaches have been developed. Many of these approaches break down the orig-
inal problem to the problem of deciding the satisfiability of propositional logic
(SAT) and extensions (SMT) [2]. For SAT, the prototypical NP-complete prob-
lem, not only a myriad of results are available giving a profound understanding
of its theoretical properties, but also very efficient tools called SAT solvers [3]
have been made available over the last ten years.

When a SAT solver serves as back-end in a verification tool, its correctness
and stability is of particular importance, as the trust put in the system to be
verified strongly depends on the trust in the verification system, and hence in the
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SAT solver. Efforts have been made to verify SAT solvers, but since the imple-
mentation of modern SAT solvers relies on sophisticated low-level optimizations,
complete verification is hardly possible. To ensure robustness of a SAT solver,
one has to rely on traditional testing techniques. In particular, grammar-based
black-box testing and delta debugging have shown to be of great value [4].

In this paper, we present a model-based testing framework for verification
back-ends like SAT solvers. This framework allows testing different system con-
figurations and sequences of calls to the application programming interface (API)
of the verification back-end. Whereas in previous approaches only the input data
has been randomly generated, we suggest to randomly produce valid sequences
of API calls. Possible sequences are described by the means of a state machine.

Additionally, we randomly vary the different configurations of the verification
back-end. Often, a verification tool implements a huge number of options which
enable/disable/configure different pruning techniques and heuristics. The opti-
mal settings for the options is strongly dependent on the problem to be solved, so
there is no general optimal setting. We use a model to describe the different con-
figurations of a verification back-end. Guided by this model, we instantiate the
verification back-end randomly. If a defect in the verification back-end triggers
a failure, we show how to reduce a failure producing trace by delta debugging.

The main contribution of this paper is therefore to introduce model-based
API testing and model-based option testing, their combination with delta de-
bugging, and an empirical evaluation showing the effectiveness of our framework.

We realize the proposed testing framework for the SAT solver Lingeling [5],
which is an advanced industrial-strength SAT solver, with top rankings in recent
SAT competitions.4 It is used in many verification applications both in industry
and academia. To evaluate the presented approach, we set up three experiments
where we randomly seed some faults in Lingeling and compare the new approach
to other well-established testing techniques.

This paper is structured as follows. First, we introduce basic notions of SAT
solving and testing techniques in Section 2. Then we introduce a general ar-
chitecture for model-based testing verification back-ends in Section 3, which is
instantiated for the SAT solver Lingeling as described in Section 4. Experiments
that underpin the effectiveness of our framework are shown in Section 5. Sec-
tion 6 discusses related work, and Section 7 concludes with a discussion of related
approaches and an outlook to future work.

2 Fuzzing and Delta Debugging for SAT Revisited

Since a detailed discussion of SAT solving is not within the scope of this work,
we shortly revisit only the concepts and terminology important for the rest of
the paper. A comprehensive introduction to the state-of-the-art in SAT solving
is given in [2]. Additionally, we recapitulate the general idea of grammar-based
black-box testing (vulgo fuzz testing or simply fuzzing) and delta debugging.

4 http://baldur.iti.kit.edu/SAT-Challenge-2012/
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2.1 Background

In general, SAT solvers implement conceptually simple algorithms to decide the
(un)satisfiability of a propositional formula. A propositional formula is a con-
junction of clauses. A clause is a disjunction of literals, with a literal being a
variable or a negated variable. The task of a SAT solver is to find an assignment
to each variable such that the overall formula evaluates to true in case of satisfi-
ability or to show that there is no such assignment in case of unsatisfiability. A
variable may be assigned the value true or false. A negated variable ¬x is true
(resp. false) if it is assigned false (resp. true). A clause is true if at least one of
its literals is true. A formula is true if all of its clauses are true. Propositional
formulas of the described structure are said to be in conjunctive normal form
(CNF), which is the default representation for state-of-the-art SAT solvers.
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Fig. 1. Fuzzing + Delta Debugging.

For solving a propositional
formula, most state-of-the-
art SAT solvers implement a
variant of the algorithm by
Davis, Logeman, and Love-
land (DLL) [6] which tra-
verses the search space in a
depth-first manner until ei-
ther all clauses are satisfied or
until at least one clause is fal-
sified. In the latter case the
SAT solver backtracks if not all assignments have been considered. For the ap-
plication of SAT solvers on reasoning problems of practical relevance, a naive
implementation of this algorithm is insufficient. Very sophisticated pruning tech-
niques like learning and effective heuristics and data structures have to be real-
ized within a SAT solver, such that the source code of a SAT solver has thou-
sands lines of code usually written in the programming language C; e. g., the
SAT solver Lingeling [5] consists of more than 20,000 lines of code. For making a
SAT solver efficient on a certain set of formulas, mostly the right configuration,
i. e., a specific combination of the options and parameter settings of the solver,
has to be found. Due to very sophisticated pruning techniques and well-thought-
out implementation tricks, a SAT solver can be tuned in such a manner that it
solves most problems occurring in applications in a reasonable amount of time,
although the worst case runtime of course remains exponential.

Brummayer et al. [4] showed that fuzz testing and delta debugging is effective
in testing and debugging large SAT solver implementations, with a high degree
of automation. The basic workflow is shown in Fig. 1. It consists of the test case
generator for generating random formulas according to a grammar provided by a
data model and the delta debugger for reducing the size of the formula such that
the failure still occurs. In the following, we shortly review the two components
as we will extend this approach in the rest of this paper. Please note that this
approach is not restricted to propositional logic, but may be also used for other
languages with more complex concepts (cf. [7,8,9]).



2.2 Test Case Generation

In grammar-based black-box testing no knowledge about the internal structure
of the system under test (SUT) is available. The SUT is fed with randomly gener-
ated input data for automatically testing stability and correctness of the system.
In order to ensure that the input data can be parsed, i. e., not only scenarios
with malformed input data are tested, a model is provided which describes the
set of syntactically valid inputs. This model may be specified by the means of
a textual grammar, hard-coded in fuzzing tools like CNFuzz and FuzzSAT [4]
or it may follow the approach of [10], where the structure of the formulas to be
generated is specified in a domain-specific language.

For propositional formulas, several models have been proposed whose prac-
tical hardness may be configured by a few parameters, like the ratio of variables
and clauses [11,12]. Since the language of propositional logic is not very com-
plex, in general only few syntactical restrictions have to be considered. As argued
in [4], besides the high degree of automation, the main success factor of fuzzing
SAT solvers is based on the fact that a high throughput of test cases is achieved.
Therefore, a balance between hard and trivial formulas has to be found.

2.3 Delta Debugging

Given an input which observably triggers a failure of the system under test, the
delta debugger has the goal to simplify the input while preserving the failure. On
this simplified input the analysis of reasons for the failure, i. e., the debugging,
becomes easier. In the context of SAT, input formulas often consist of tens of
thousands of clauses. For a human developer it is hardly feasible to manually
step through the code of the SAT solver when such a huge input is processed.
In order to reduce the input to a new syntactically correct test case, and also
for the delta debugging process itself, knowledge on the structure of the input
data is useful. For SAT formulas in CNF, delta debuggers remove either clauses
or some literals of a clause. Delta debuggers for non-CNF formulas like qprodd5

or for SMT like deltaSMT6 and ddSMT7 need more sophisticated reduction
techniques, since the underlying data structures are trees instead of lists of lists
(see also [13]).

In contrast to the test case generator, the delta debugger has to call the
system under test. In order to simplify given input data, the delta debugger
goes through the following process: First, the SUT is run on the given input
data. Then the delta debugger tries to reduce the size of the input based on
some heuristics. The SUT is run again, now with the reduced test case. If the
failure is still observed, the delta debugger tries to perform more simplifications.
Otherwise, it undoes the changes and applies different reductions. The latter
steps are repeated until either a time limit is reached or the obtained test case
fulfills some predefined quality criteria.

5 http://fmv.jku.at/qprodd/
6 http://fmv.jku.at/deltasmt/
7 http://fmv.jku.at/ddsmt/
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Fig. 2. Extended Workflow for Fuzzing and Delta Debugging.

3 General Architecture

The testing approach discussed in the previous section is agnostic of the SUT.
Communication with the SUT is done via a file, which is generated by the test
case generator and reduced by the delta debugger in the case a failure has been
found. For solving propositional formulas, all SAT solvers which are able to
process the standard DIMACS format, can be plugged into the testing workflow
shown in Fig. 1. In that workflow, the test case generator and delta debugger
produce and reduce propositional formulas in CNF. However, little control over
the execution behavior of the SUT is possible with the consequence that not all
features of the system are covered by the generated test cases.

In particular, incremental SAT solving as implemented in most modern SAT
solvers, cannot be tested. Incremental SAT solving is used for many applications,
e. g., for enumerating all solutions of a formula. After solving a satisfiable for-
mula, the solver neither terminates nor is reset; instead, additional constraints
are provided. The SAT solver checks if the formula is still satisfiable with the
new constraints. Furthermore, the SUT is run with certain options set, but there
might be defects which only show up under a certain combination of options.

To circumvent these problems, we propose to use a model-based testing ap-
proach for verification back-ends like SAT solvers. In particular, we suggest to
fuzz not only the input data, but to generate sequences of API calls, to cover
more features of a solver. The sequences of valid API calls are described by a
state machine. To test different combination of options, setting options is also
fuzzed. The range of possible options is also defined by a model. The adopted
workflow is shown in Fig. 2. The goal is still to produce syntactically valid in-
put data, which uncovers defects of the SUT. The individual components of the
proposed approach are described in the following.



3.1 Test Case Generation

The test case generator takes three different kinds of models as input: (1) the
data model, which is basically the same as the data model used in the approach
described in the previous section. Additionally, (2) the option model and (3) the
API model have to be provided.

The option model describes valid options and valid combinations of options
of the SUT. For example, if an option requires an integer of a certain range, this
constraint is documented in the option model. Further, the model might contain
probabilities stating the chance that a certain option is selected to be set. This
feature is necessary to avoid that options which are not so relevant are tested
too extensively at the expense of other, more important options. The selection
of the probabilities is based on the experience of the modeler.

The API model describes valid traces of API calls. It documents how the
API has to be used. To generate a trace, the results of fuzzing options and input
data have to be included. Hence the test case generator has to combine the
three models. For example, the input data may be either read from a file or it
may be programmatically handed over by dedicated API calls. As the call of
certain functions might be optional, also the API model may be equipped with
probabilities for the selection of functions which are not mandatory to be called.

Both the API model and the option model contain information specific to the
SUT. Since verification back-ends like SAT solvers often have similar function-
ality and APIs, reuse is achievable by specifying a generic model and appending
to each state the API calls to be performed. If another system with similar
functionality has to be tested, only the names of API calls have to be changed.

In principle, the test case generator could be used without communicating
to the trace execution environment which is described in Section 3.3. If the test
case generator has a direct exchange with the SUT while generating the test
data, the results of API calls can be directly considered during the search for a
trace which triggers a failure.

3.2 Delta Debugging

For the API testing approach, the delta debugger not only has to reduce the input
data, i. e., the formula, but the trace itself such that the failure still occurs. As a
trace is a linear sequence of API calls, no complicated rewriting is needed when a
call is removed as it would be necessary if the internal node of a tree is removed.
However, the delta debugger has to obey the description of the API model in
order to maintain a valid trace. For example, there might be calls which may
not be removed, like the initialization and release routines or the function which
starts the actual solving process.

As for the test case generator, the delta debugger communicates with the
system under test in order to incorporate the result of a selected action into the
reduction process. Since the mere removal of an API call may not be enough to
obtain the expected reduction, it might be necessary also to vary the arguments
of a call.



3.3 Trace Execution

In our approach, both the test case generator and the delta debugger commu-
nicate with the SUT to achieve better results. For the test case generator this
means to get a high coverage rate for uncovering defects. For the delta debugger
this means to reduce the failure-triggering traces as much as possible. Commu-
nication can be achieved in two ways: either the test case generator and delta
debugger directly call API functions. Although this is the more direct implemen-
tation, it reduces the reusability of the framework. Alternatively, calls could be
attached to the transitions of the API model. If a transition is taken, its attached
function is invoked as in Modbat [14]. A potential issue of that approach is that
such a testing framework may only support certain programming languages. Fur-
thermore, the testing framework has to interpret the output and return values
of the SUT; this again makes the testing framework tailored towards a given
system.

Alternatively, the SUT may be wrapped into an execution environment,
where a trace interpreter interacts with the SUT. The trace interpreter has
to be developed for each SUT individually and is able to call the functions of
the SUT directly. The output of the SUT may then be translated into a format
which can be processed by the testing framework. The trace interpreter allows to
replay the trace reduced by the delta debugger which can then undergo manual
debugging in order to find and eliminate defects.

Using a trace interpreter to replay a trace has another practical advantage. If
a solver is used as a verification back-end in a larger verification system, it might
happen that the solver triggers a failure when a certain sequence of API calls
is performed. It might be difficult to reproduce the failure by simply dumping
the formula and passing it as command line argument, because internally the
solver follows another sequence of API calls. In order to report the defect to the
solver developer without giving away the whole verification system, the trace of
the failing run of the solver might be produced (under the assumption that the
solver is equipped with a logging functionality). The solver developer can replay
the trace, analyze the undesired behavior, and fix the bug.

3.4 Discussion

With three different kinds of input models, better control on the test case gen-
eration is achieved, assuming the models reflect the behavior of the SUT in an
accurate manner. If a model is too restrictive, code coverage is decreased for the
test case generator and also less reduction can be achieved by the delta debug-
ger. If the model is too lax, i. e., not precise enough, (external) contracts of API
functions might be violated and invalid traces are generated.

In order to obtain good code coverage and increase flexibility for delta de-
bugging, but also for reducing modeling effort, the testing framework is able to
deal with under-approximative models by relying on a callback feature to give
certain feedback from the SUT back to the testing framework. Then the test-
ing framework can react immediately when contract violating traces occur. To



use this feature, the SUT also has to be equipped with API contract assertions
similar to assertions used in specification-based testing (cf. for example [15]).

4 Case Study: Model-Based Testing for Lingeling

In this section, we show how the presented testing framework is used for test-
ing the SAT solver Lingeling. Therefore, the three different models have to be
specified as well as the different components presented in the previous section.
The framework is available at http://fmv.jku.at/lglmbt. Before we discuss
the details of the testing framework, we shortly review the features of Lingeling.

4.1 Lingeling at a Glance

Lingeling [5] is a SAT solver that interleaves searching with very powerful prepro-
cessing techniques. Preprocessing techniques are effective, but computationally
expensive techniques which are traditionally applied only at at beginning of the
solving process. In Lingeling, such techniques are integrated within the search
process by binding their applications to a given extent. These bindings can be
controlled both by command line and programmatically, which cause Lingeling
to have more than 140 options with many of them requiring an integer value
to be selected. For this purpose, fuzzing the options is extremely valuable for
testing combinations of different features. In the implementation of Lingeling,
much emphasis is spent on a compact representation of clauses for processing
very large input formulas as they occur in practice. The implementation is done
in C and consists of more than 20,000 lines of code. Without dedicated tool
support for testing as proposed in this paper, finding and eliminating defects
would hardly be possible.

Actually, the work presented in this paper can be seen as a crucial technique
for enabling the integration of an incremental SAT solving API into Lingeling,
which in turn made it possible to use a state-of-the-art SAT solver back-end in
our SMT solver Boolector. A substantial part of the success of Boolector in the
SMT 2012 competition is attributed to this fact.

Besides explicitly running Lingeling from the command line, the solver can
also be included as a library. The API includes more than 80 functions. Ad-
ditionally to the sequential version of Lingeling, there is also a multi-threaded
variant which builds on top of the sequential version. The testing framework
discussed in the following has only been used for testing the core library and the
sequential solver. The API functions used by the multi-threaded front-end are
hard to test with, since they mainly define call-backs. We leave it to future work
to extend the framework to the multi-threaded case.

4.2 Test Case Generation

The goal of the test case generator is to produce traces which are valid sequences
of calls to Lingeling’s API. For our prototype we encoded the models necessary to

http://fmv.jku.at/lglmbt
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Fig. 3. Simplified API Model of Lingeling.

describe valid traces, input data, and options directly in C, which allows direct
communication with the solver. For test case generation, no intermediate layer is
necessary. By sacrificing generality, the prototypical implementation is tailored
towards testing Lingeling and allows to gain a first understanding of the power of
the suggested approach for testing a state-of-the-art SAT solver. A sample trace
is shown in Fig. 4.

init

option actstdmax 80
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option cgrmineff 200000

add -58

add 1

add 2

add 0

add -1

add -2

add 0

assume 1

setphase -2

sat
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Fig. 4. Example of a Trace.

API Model. The API model (see Fig. 3) docu-
ments some contracts which have to be fulfilled
when using the API. The omitted features deal
with additional optimization techniques which
have to be called at certain positions within the
model. After initialization (state Init), options
(state Opts) may be set. The path to be taken
is decided by random. By empirical evaluation
it turned out that setting options with a proba-
bility of 0.5 is a good choice. If the path to Opts
is taken, then options are set according to the
option model. In the next step, the formula to
be solved has to be generated. Here, knowledge
of the data model is necessary.

After having created the formula, optimiza-
tions are performed with a certain probability.
The formula is then handed to the solver. After
completing the solving process, the incremental
feature of the solver may be tested by changing
to the state Inc (this is only possible if the for-
mula is SAT), to extend the formula with additional constraints, and to start
the solving again. Alternatively, the solving process could be stopped. If this is
done according to the API contract, some functions to free memory have to be
called.



Option Model. The description of the options to be generated uses an introspec-
tive API function of Lingeling which allows to query the solver for its available
options and how they shall be initialized. A list of options to be excluded from
testing is also provided, including options related to logging. An option is set to
a new value with a probability of 50 %. The choice of the new value depends on
the range of valid option values.

Data Model. Lingeling processes propositional formulas in CNF. In our frame-
work, this formula is randomly generated. Unlike in previous work, the formula
is not written to a file, but it is fed programmatically to the solver. API calls are
used to add literals, represented as positive and negative integers. The generated
formulas should not be trivial, but they should also not be too hard, to avoid
that the solver does not terminate. It also has to be ensured that no tautological
clauses are generated, i. e., clauses which contain a literal in both polarities.

Experiences showed that formulas with between 10 and 200 variables give
the best results. If n is the number of variables, the number of clauses is given
by (n ∗ x)/100 where x is a number between 390 and 450. Again, the values are
based on many years of solver development experience, but related to the phase
transition threshold of SAT solving.

The length of individual clauses is decided as follows. Clauses of length one,
two or three are special and are handled differently than other clauses. For
example, in unary clauses (clauses of length one), the truth value of its literal can
be decided immediately and therefore be propagated to all other occurrences of
the respective variable. The generation of these three kinds of clauses is fostered
by giving them a higher probability to be generated than other clauses. The
length of a clause is naturally constrained by the number of variables occurring
in a formula. A variable in a clause is negated with the probability of 50 %.

For testing incremental SAT solving, additional clauses have to be generated
which are added to the current formulas between calls to the solving routine.
These clauses are generated in the same way as just described, over already
existing and a certain small number of new variables.

4.3 Delta Debugging and Trace Execution

We developed a delta debugger which reduces a given trace as follows. First, the
file containing the trace is parsed and a list of all commands is built. At the
moment, about 30 different commands are supported, having either one or no
argument. Then the original trace is replayed in order to obtain the golden exit
status of the execution, which should also be returned by the execution of the
reduced trace. Then the rewriting of the trace is initiated.

In principle, only sub-traces are extracted, but it has to be ensured that the
API model discussed in the previous subsection is not violated, i. e., certain parts
like the initialization and the release commands may not be removed. Also the
values of the solver options are changed during the trace reduction process, with
the hope that another configuration of the solver triggers the failure earlier.



For replaying the traces, a simple interpreter is provided. This interpreter
executes not only the traces produced by the fuzzer and delta debugger, but
also traces produced during all runs of the solver. The solver is equipped with a
logging functionality implemented by the means of a macro calling a certain API
function of Lingeling, which outputs every API call in the required format. Log-
ging can be enabled through an API call or by setting an environment variable
(LGLAPITRACE) to point to the trace file.

For dealing with inadequate API models and for realizing the previously
described call back functionality, Lingeling internally executes a state machine.
If an invalid state transition would be caused by an API call not possible in the
current state, a special assertion fails. This gives the feedback to the caller of
the API function that the invocation was incorrect. With this information the
caller could adopt its behavior accordingly, i. e., in the case of the delta debugger
a different kind of reduction is performed.

5 Experimental Evaluation

Our experience in using the presented framework when developing Lingeling is
extremely positive. This section describes experiments to corroborate this, mea-
suring efficiency in terms of throughput, code coverage and detect defection
capability.

5.1 Experiment 1: Code Coverage

We measured the code coverage with the tool gcov of the GNU compiler col-
lection. The evolution of the code coverage for 10,000 runs is shown in Fig. 5.
CNF Fuzzing achieves code coverage of about 75 % after 10,000 runs which could
be improved by 5 % by MBT without option fuzzing, and by additional 5 % by
MBT with option fuzzing. The difference between CNF Fuzzing and the MBT
approaches might be explained by the fact that CNF Fuzzing does not test the
incremental feature of the solver. Coverage of 100 % is not possible due to the fact
that only correct formulas and traces are generated, so the error handling code
is never called. We observed that even for more runs, the values do not change
anymore. Creating corrupted input for testing error handling is not within the
scope of this work, but might be interesting in the future.

5.2 Experiment 2: Throughput

The effectiveness of random resp. fuzz testing depends not only on the quality
of the generated tests, but also on the number of test cases executed per second,
which we define as throughput. For our MBT approach we achieved a throughput
in the order of 251 test cases per second: 919,058 test cases were executed during
one hour of running the model-based tester on an Intel Xeon E5645 2.40 GHz
CPU.
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Note, that roughly 10 % of these test cases are actually terminated early due
to contract violations. This occurs because the model is not precise enough to en-
tirely exclude invalid API call sequences. Those are executed at the point where
the contract violation is detected (by API contract assertions in the library) and
thus can still be considered valid test cases. This feature of our approach allows
a trade-off between the effort needed to capture API contracts precisely in the
model and the effectiveness of testing.

To measure the throughput of file-based fuzzing we piped the output of the
fuzzer to Lingeling to avoid disk I/O. Still the throughput did not reach more
than 25 runs per second, measured for batches of 100 runs, on the same machine.
This is an order of magnitude slower than for MBT. In both cases we used a
binary compiled with -O3 but assertion checking enabled (so no -DNDEBUG). By
this huge difference in the throughput, the benefits of accessing the solver via
the API become directly visible. No time is wasted with I/O and parsing.

Note that fuzz testing is “embarrassingly parallel” and we have successfully
used the combination of fuzz testing and delta debugging on a cluster with 128
cores, with the goal to produce smaller failure traces than an existing but large
and impossible to delta debug trace obtained from an external user or from
failing runs on huge benchmarks.

5.3 Experiment 3: Fault Seeding

In a third experiment we randomly inserted defects by either adding an abort
statement or deleting a line in the code of Lingeling. These “mutations” were
restricted to the core component of Lingeling in the file lglib.c consisting of
19,141 lines of C code (computed by the Unix wc utility). A mutation is consid-



number of average average relative
name variant successful runs time in trace #lines trace #lines

(out of 404) seconds size covered size covered

model-based, actual 398 98.51 % 1.67 2172.94 3796.49 100.00 % 100.00 %
no option fuzzing ∆ dbg 398 98.51 % 81.43 291.66 2873.58 13.42 % 75.69 %

model-based, actual 397 98.27 % 1.69 2228.53 3951.01 100.00 % 100.00 %
with ∆ dbg 1 396 98.02 % 72.30 290.54 2916.24 13.05 % 73.99 %

option fuzzing ∆ dbg 2 390 96.53 % 158.25 51.23 1318.45 2.26 % 32.79 %

file-based, actual 357 88.37 % 1.64 2908.97 4356.41 100.00 % 100.00 %
no option fuzzing ∆ dbg 347 85.89 % 154.25 1141.55 4084.62 39.53 % 95.24 %

file-based, with actual 324 80.20 % 1.21 2666.28 3573.27 100.00 % 100.00 %
option fuzzing ∆ dbg 314 77.72 % 179.78 31.19 1325.90 1.18 % 38.05 %

regression, actual 354 87.62 % 0.85 1056.34 4267.77 100.00 % 100.00 %
no option ∆ dbg ∆ dbg 346 85.64 % 37.32 360.15 4207.34 49.11 % 100.00 %

regression, with actual 354 87.62 % 0.87 1056.33 4271.84 100.00 % 100.00 %
option ∆ dbg ∆ dbg 349 86.39 % 160.96 82.83 1641.41 9.51 % 38.83 %

Table 1. Mutation Experiments: 963 mutations, 681 compilable, 404 defective.

ered as invalid (counted as “not compilable”) if the line it affects contains the
use of a macro for initializing an option or tracing the API.

This experiment was run on two identical computers (Intel Xeon CPU E5645
2.40 GHz, the same hardware as for Exp. 2) for roughly one week and produced
the results presented in Tab. 1. The table is split vertically into three parts:
model-based fuzzing / delta debugging (∆ dbg) as presented in this paper, file-
based fuzzing / delta debugging as in [4], and regression runs over 93 collected
and hand-crafted CNF files used for many years in the development of various
SAT solvers. The regression testing is of course deterministic and the base-line
regression suite (before introducing mutations) takes 10 seconds to complete.

We include runs with and without fuzzing options resp. with and without
delta debugging of options. In the experiments for model-based testing with
option fuzzing, we distinguish two variants of delta debugging. The first variant
“∆ dbg 1” only reduces options explicitly set in the failing test, while default
options are not changed. The second variant “∆ dbg 2” considers all options for
delta debugging. Note, running regressions only allows to delta-debug options
but does not really allow to fuzz them.

The 3rd and 4th columns show the success rate of fuzzing resp. delta debug-
ging with respect to all 404 mutations, for which at least one method was able
to produce a failure: an assertion violation, segmentation fault, etc. As in Exp. 2
the executable is optimized (-O3) but does include assertion checking code (no
-DNDEBUG). Mutation and compilation time are not taken into account.

Both model-based approaches (with and without option fuzzing) have the
highest success rate. Actually, for 31 mutations only these two were successful in
producing a failure within a time limit of 100 seconds. The file-based fuzzers did
not produce any failure that was not found by model-based testing as well. The



regression suite was slightly more successful and detected three failures that no
other method could detect. The 5th column contains the average time needed
to produce a failure (not including time-outs).

For each compilable mutation, testing resp. fuzzing continued until the first
failure or the time limit of 100 seconds was reached. Each failing test case was
then subjected to delta debugging with a time limit of one hour. The algorithm
for delta debugging depends on the type of testing: trace shrinking for MBT,
and CNF reduction for file-based fuzzing and regression testing. Even with a
time limit of one hour per test case, some delta debugging runs timed out and
thus the success rate dropped slightly (except for model-based testing without
option fuzzing, the first row below the header in Table 1).

In order to be able to compare the effectiveness of trace based and CNF
based techniques, we show in the remaining columns the size of failing test cases
as well as the number of lines executed. The size of a failing test is measured in
terms of the size of the API trace produced either directly by the model-based
tester or obtained implicitly after tracing the API calls when reading and solving
the CNF file. Commands to set options are not counted. This size metric allows
to compare sizes of test cases across different testers (with and without fuzzing
options).

We consider the number of lines executed during one test case as an impor-
tant metric for the quality of the test case. To obtain the number of executed
resp. covered lines, the binary was recompiled with debugging support (-g). The
compiler was also instructed to include code for producing coverage informa-
tion. After running the test case the number of executed lines was determined
with the help of gcov. For each tester resp. delta debugger the average numbers
are calculated over all successful runs, while the relative numbers give the same
information, but are normalized w. r. t. the tester.

The experiments showed that our MBT approach is substantially more effec-
tive in finding defects than previously used techniques. Taking the time-outs into
account, it is also faster and even without option fuzzing produces much smaller
test cases. Fuzzing and in particular delta debugging of options is particularly
effective in reducing the size of traces. We see a reduction of almost two orders of
magnitude by delta debugging options, while delta debugging without touching
options gives a reduction of slightly less than one order of magnitude.

6 Related Work

Only few publications about testing and debugging verification back-ends exist.
Grammar-based black-box fuzzing and delta debugging for SAT and its extension
QSAT have been presented in [4] where the authors showed state-of-art solvers
contain defects, not revealed by running the standard benchmark sets as used in
competitions. Several works deal with the generation of random formulas (e. g.,
[10,12,11]), but these focus on theoretical properties of formulas and not on their
suitability for supporting the solver development process. Similar approaches are
available for SMT [7] and ASP [8].



Model-based testing for verification back-ends as proposed in this work has—
to the best of our knowledge—never been applied specifically to verification
back-ends, but only to arbitrary software systems. Since the literature on model-
based testing is too vast to be discussed in detail, we refer to [16] for a survey.
Fuzzing options has been realized in the ConFu approach [17], which randomly
tests different configurations of a tool during runtime. To this end, the tester has
to annotate the parameters of the function to be tested with constraints. For
model-based option testing, research on model-based testing software product
lines are probably the most related (see for example [18]). A software product
line is a family of software systems derived from shared assets. By the means
of variability models, the possible configurations (the options) are described
which are applicable. However, the variability found in software product lines is
more complex than the configuration facilities found in SAT solvers in terms of
combination constraints, therefore, for a SAT solver a more focused realization
of option fuzzing is possible.

Model-based API testing is for example realized in the tool Modbat [14], which
is a Scala-based tool providing an embedded domain-specific language (DSL) for
specifying the model. Modbat supports only the testing of Java bytecode, but
provides a more sophisticated event handling than necessary for our purposes. In
the .NET framework, the Abstract State Machine Language (AsmL) can be used
for the automatic generation of method parameters and the automatic derivation
of test sequences [19]. In this context, also work has to be mentioned which uses
contracts as provided by the API for the generation of test data [20].

Delta debugging for SAT solvers has been described in [7], where the size of
a formula is reduced. There, the input data (the formula) is reduced such that a
failure still occurs. Shrinking techniques for reducing the size of execution traces
are for example described in [21]. Delta debugging traces in the context of SAT
solving has—to the best of our knowledge—never been presented before.

7 Conclusion

We propose to apply model-based testing for verification back-ends, like SAT
solvers. In this approach, not only the input data is randomly generated, but
also sequences of valid API calls. This makes it possible to test, for example,
the incremental features of SAT solvers. These incremental features play an im-
portant role in verification applications. Besides that, we additionally included
option fuzzing in our testing framework, which randomly selects different con-
figurations of the SUT.

We combined the presented model-based testing approach with delta debug-
ging, to reduce failure triggering traces. This combination of model-based testing
and delta debugging is a powerful tool for testing verification back-ends. As proof
of concept we implemented the proposed testing framework for the SAT solver
Lingeling and performed an extensive empirical evaluation. Different kinds of
experiments confirmed the effectiveness of model-based testing in combination
with delta debugging. Based on these experiments and on our long-time expe-



riences in solver development, we believe that the techniques described in this
paper are effective in general, and are particularly useful when applied to other
formal reasoning engines like SMT solvers, theorem provers, or model checkers.

In future work, we plan to compare our dedicated mutation tool to more
general approaches like Milu [22] and extend the presented testing framework to
multi-threaded and reentrant engines. Testing our SMT solver Boolector through
its API is another target. Furthermore, we plan to investigate how the design of
the input models is correlated with the quality of the generated test cases. Today
many developers of SMT and SAT solvers rely on fuzzing and delta debugging
from our previous work. Our new approach described in this paper is much more
effective and efficient, and is hoped to have a similar impact.
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