
Java Pathfinder at SV-COMP 2019 (competition
contribution)

Cyrille Artho1[0000−0002−3656−1614]? and Willem Visser2[0000−0002−0913−3091]

1 EECS, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
artho@kth.se

https://people.kth.se/˜artho/
2 Department of Computer Science, University of Stellenbosch,

Stellenbosch, South Africa
visserw@sun.ac.za

Abstract. This paper gives a brief overview of Java Pathfinder, or jpf-
core. We describe the architecture of JPF, its strengths, and how it was
set up for SV-COMP 2019.

Keywords: Java Pathfinder · Software model checking · Java program
analysis

1 Verification Approach

Java Pathfinder (JPF) is a framework for Java bytecode analysis [13]. At the
core of the system is an explicit-state model checker [4], often just called JPF
(but officially called jpf-core). This core can be extended to allow a variety of
other analyses, most notably there is an extension for doing symbolic execution,
called Symbolic Pathfinder [9]. Here however we focus only on the core system,
i. e., on the explicit-state model checker.

JPF is a mature system with its first version released in the late 1990s. It was
first open-sourced by NASA in 2004 and since around 2016 it is a community
project hosted on GitHub [12]. It is based around the core algorithms for doing
on-the-fly explicit state model checking, similar to SPIN. Unlike SPIN however,
it does not support temporal logic property checking by itself. Instead, this
functionality can be added as an extension; the core system used here only
checks for uncaught exceptions (which include assertion violations).

2 Software Architecture

The main architectural component of JPF is a Java virtual machine (JVM),
implemented in Java. This component supports functionality for executing byte-
code as well as backtracking over already executed code. Additionally a finger-
print of each state of the JVM (using hash-compaction [5]) is stored to allow

? Jury member



2 C. Artho and W. Visser

Java Pathfinder

SUT

Model classes

JPF VM

Native peer classes

Host JVM

Fig. 1. Architecture of JPF

state-matching and to keep the analysis linear in the size of the state-space of the
program being analyzed. Another optimization to allow for the efficient analysis
of concurrent programs is a form of partial-order reduction that groups bytecode
together in a transition as long as they cannot have any visible effect on other
threads. Note that both the hash-compaction and the implementation of partial-
order reduction (JPF group instructions that can only have a local effect into
the same transition, but this is based on heuristics) used can cause behaviours
to be missed during analysis and for this reason JPF is only a bug-finding tool,
not a verification tool.

At its core, JPF treats any source of non-determinism as a choice; common
choices are scheduling choices and non-deterministic choices over a range of val-
ues, e. g., whether a network is available or not [3]. In the context of SV-COMP,
symbolic inputs were always treated as entirely non-deterministic choices when
using jpf-core.

Java Pathfinder itself is written in Java and therefore runs on the standard
JVM, called host JVM (see Figure 1). The system under test (SUT) is run inside
the JPF VM, and cannot directly interact with the host VM. This allows JPF to
capture the full address space of the program, and revert any changes in memory
when backtracking the state of the SUT during the state space search. However,
this approach cannot handle native methods, which execute unmanaged code
(written in C or C++) that is not supervised by JPF. Changes to memory
by native methods, or other side effects thereof, are not visible to JPF. To
overcome this limitation, JPF allows model classes to be defined, which replace
the standard library classes with custom code. With this mechanism, a class with
native methods can be replaced with a Java-based model class that does not use
native code. Such model classes are fully managed by JPF. Sometimes, though,
it is necessary to access native code, for example, to perform input/output. To
achieve this, JPF supports native peer classes, which are executed directly on
the host VM. This means that any built-in library functionality (such as I/O)
is available to native peer classes. Furthermore, native peers have access to low-
level data structures inside the JPF VM, and thus can read and modify the state
of model classes or any other classes that are managed by the JPF VM.

Java Pathfinder is highly extensible and modular. Its VM can handle dif-
ferent platforms and instructions sets (such as Java bytecode and Dalvik code
for Android), use different state space exploration strategies and schedulers, and
also allows listeners to receive notifications of program state changes or execu-



Java Pathfinder at SV-COMP 2019 (competition contribution) 3

tion actions, allowing users to build run-time monitoring algorithms on top of
JPF. JPF extensions are vital to expand its capabilities, and allow it to handle
features like the verification of distributed systems [7, 11], generating missing
native code on the fly [10], or monitor temporal-logic properties [8].

3 Discussion of Strengths and Weaknesses of the
Approach

As expected, JPF performed very well on examples with simple non-deterministic
inputs such as Boolean parameters. In this case, the state space is small enough
that an exhaustive search is easy, and there is no need to track path conditions
(which are implemented by the Symbolic Pathfinder extension [9]). It is there-
fore also unsurprising that JPF did poorly in some cases where a constraint
solver is required to analyze the full state space effectively. An example would
be assert3 in the jbmc-regression suite where an error occurs when the input
satisfies the constraint i ≥ 1000 ∧ i ≤ 1000. JPF will only enumerate the inputs
for small ranges of values. Because the range of i is not directly specified, but
indirectly derived through constraints, JPF does not analyze this variable and
therefore misses this error. Finally, there were a few cases where JPF did not
conclude its analysis due to missing model classes or native peers.

Java Pathfinder would really excel when analyzing simple to moderately com-
plex concurrent applications, and applications using advanced functionality like
input/output and network communication. In the 2019 benchmark set, no con-
current applications were present, so JPF is not fully utilized in this preliminary
evaluation. The addition of networked applications would require additional con-
figuration information, so it is therefore not clear how soon the benchmark suite
can be extended with such additional, realistic applications. Examples that have
been successfully verified by JPF in the past include a WebDAV client [2], and
scp client [6], and HTTP servers [1, 7].

4 Tool Setup and Configuration

Java Pathfinder is available on GitHub [12]; the submitted compiled version is
archived under
https://gitlab.com/sosy-lab/SV-COMP/archives-2019/blob/master/2019/jpf.zip.

Java Pathfinder (jpf-core) has no external dependencies; JUnit is necessary
to run the unit tests, but not to build and use jpf-core.

JPF is compiled with ./gradlew build.
We used the default values for all options, except that cg.enumerate random

was changed to true from the default configuration, because this option forces
JPF to explore all possible values for random choices.3 This setting was necessary

3 JPF will explore all outcomes for Boolean choices, and a set of predefined corner
cases for choices on integers.



4 C. Artho and W. Visser

to enable JPF to explore non-deterministic inputs. It is not enabled by default
because JPF is normally used to analyze concurrency.

JPF participated in all Java benchmarks.

5 Software Project and Contributors

The project is managed by the Java Pathfinder group. Contact person is Cyrille
Artho (artho@kth.se). JPF is available under the Apache License, version 2.0
and hosted on GitHub [12].

Acknowledgements

We thank all contributors who have participated in the development of JPF over
the last 20 years.

We would also like to thank Peter Schrammel and Dirk Beyer for their sup-
port, and for providing the scripts and configuration files for the competition.

References

1. Artho, C., Hagiya, M., Potter, R., Tanabe, Y., Weitl, F., Yamamoto, M.: Software
model checking for distributed systems with selector-based, non-blocking commu-
nication. In: Proc. 28th Int. Conf. on Automated Software Engineering (ASE 2013).
pp. 169–179. IEEE Computer Society, Palo Alto, USA (2013)

2. Artho, C., Leungwattanakit, W., Hagiya, M., Tanabe, Y., Yamamoto, M.: Cache-
based model checking of networked applications: From linear to branching time.
In: Proc. 24th Int. Conf. on Automated Software Engineering (ASE 2009). pp.
447–458. IEEE Computer Society, Auckland, New Zealand (2009)

3. Artho, C., Suzaki, K., Hagiya, M., Leungwattanakit, W., Potter, R., Platon, E.,
Tanabe, Y., Weitl, F., Yamamoto, M.: Using checkpointing and virtualization for
fault injection. IJNC 5(2), 347–372 (2015)

4. Holzmann, G.: The SPIN Model Checker. Addison-Wesley (2004)
5. Holzmann, G.J.: An analysis of bitstate hashing. Formal Methods in Systems

Design 13(3), 289–307 (Nov 1998). https://doi.org/10.1023/A:1008696026254,
https://doi.org/10.1023/A:1008696026254

6. Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M.: Model
checking distributed systems by combining caching and process checkpointing. In:
Proc. 26th Int. Conf. on Automated Software Engineering (ASE 2011). pp. 103–
112. IEEE Computer Society, Lawrence, USA (2011)

7. Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M., Taka-
hashi, K.: Modular software model checking for distributed systems. IEEE Trans-
actions on Software Engineering 40(5), 483–501 (2014)

8. Lombardi, M.: jpf-ltl. https://bitbucket.org/michelelombardi/jpf-ltl (2013), last
accessed: 2019-01-211

9. Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic PathFinder: integrating symbolic execution with model checking for
java bytecode analysis. In: Proc. 28th Int. Conf. on Automated Software Engineer-
ing (ASE 2013). pp. 391–425 (2013). https://doi.org/10.1007/s10515-013-0122-2,
https://doi.org/10.1007/s10515-013-0122-2



Java Pathfinder at SV-COMP 2019 (competition contribution) 5

10. Shafiei, N., Breugel, F.v.: Automatic handling of native methods in Java
PathFinder. In: Proceedings of the 2014 International SPIN Sympo-
sium on Model Checking of Software. pp. 97–100. SPIN 2014, ACM,
New York, NY, USA (2014). https://doi.org/10.1145/2632362.2632363,
http://doi.acm.org/10.1145/2632362.2632363

11. Shafiei, N., Mehlitz, P.: Extending JPF to verify distributed systems. ACM SIG-
SOFT Software Engineering Notes 39(1), 1–5 (2014)

12. The Java Pathfinder Group: jpf-core. https://github.com/javapathfinder/jpf-core
(2019), last accessed: 2019-01-11

13. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2), 203–232 (2003)


