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Abstract—We extend exhaustive verification of networked
applications to applications using the User Datagram Protocol
(UDP). UDP maximizes performance by omitting flow control
and connection handling. High-performance services often offer
a UDP mode in which they handle connections internally
for optimal throughput. However, because UDP is unreliable
(packets are subject to loss, duplication, and reordering),
verification of UDP-based applications becomes an issue. Even
though unreliable behavior occurs only rarely during testing,
it often appears in a production environment due to a larger
number of concurrent network accesses.

Our tool systematically tests UDP-based applications by pro-
ducing packet loss, duplication, and reordering for each packet.
It is built on top of net-iocache for the Java PathFinder
model checker. We have evaluated the performance of our
tool in a multi-threaded client/server application and detected
incorrectly handled packet duplicates in a file transfer client.

Keywords-Software Model Checking; Java PathFinder; Test-
ing of Distributed Systems; User Datagram Protocol; Unreli-
able Network IO.

I. INTRODUCTION

Modern software often involves both multi-threading and
network communication based on TCP (Transmission Con-
trol Protocol) or UDP (User Datagram Protocol). Testing
such systems is complex due to non-determinism in thread
scheduling and in messages transmitted across the network.
Software model checking ensures that a program conforms
to formal properties by exhaustive exploration of its state
space, given enough memory and time.

In contrast to TCP, UDP is neither connection-oriented nor
reliable: Connections between communicating peers are not
established and terminated explicitly, and data packets sent
by UDP may get lost, duplicated, or arrive at the destination
in a different order [1].

Despite its unreliability, UDP is widely adopted for spe-
cialized applications such as real-time communication be-
cause of its lower latency and higher achievable throughput.
However, it places the responsibility on the developer to
ensure a sufficient level of data integrity by implementing a

suitable application-level protocol. Specialized application-
level protocols must be tested thoroughly since their im-
plementation cannot be expected to have the same level of
maturity as widely used implementations of TCP.

In local test environments with limited network traffic,
problematic behavior such as packet loss can hardly be
observed and reproduced. In test environments, UDP often
behaves like TCP: All packets are received exactly once and
arrive in the same order in which they have been sent. We
call this the reliable behavior of UDP.

We consider the following cases of unreliable behavior of
packets: 1) loss: a packet does not arrive at its destination,
2) duplication: a packet arrives more than once, and 3)
reordering: packets arrive in a different order.

Testing a UDP-based application requires checking its
behavior for both the reliable and unreliable cases of UDP
input/output (I/0). Existing approaches [2], [3], [4], [5]
generate unreliable UDP behaviour with a configurable
stochastic distribution. However, it is hard to guarantee cov-
erage and to reproduce rarely occurring errors by randomly
generating unreliable UDP behaviour. To ensure a desired
level of coverage, combinations of unreliable UDP behavior
need to be generated systematically. For reproducibility,
control over the outcome of UDP-based I/O is necessary.

We propose the use of software model checking for
systematically executing the system under test (SUT) for
the different possible outcomes of UDP I/O operations
in a reproducible way (systematic UDP simulation). We
implement our approach using the software model checker
Java PathFinder [6] and its extension net-iocache [7] for
distributed systems.

Considering both the reliable and (combinations of) un-
reliable behaviors for each UDP I/O operation leads to
an exponential growth of the state space in the number
of exchanged messages. To ensure scalability, we provide
means for restricting the simulation of UDP behavior in two
dimensions: 1) to certain kinds of unreliable behavior and
2) to certain locations of interest in the program code.
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Figure 1. Levels of execution when model checking an SUT (system

under test) with JPF (Java PathFinder).

Our contribution is as follows:

Method: We propose software model checking as a suitable
method for testing the behavior of an SUT for possible
outcomes of UDP I/O in a systematic and reproducible way.
Implementation: We add support of UDP to the JPF exten-
sion net-iocache, including the configurable simulation of
UDP’s unreliable behavior.

Evaluation: We compare the performance of our tool to
previously implemented TCP-based benchmark scenarios
and demonstrate its usefulness for finding defects in the
application-level communication protocol of a client/server
application for file transfer.

This paper is structured as follows. We give some back-
ground on software model checking with JPF and its ex-
tension net-iocache for networked systems, as well as UDP
in Section II. Section III explains net-iocache’s architecture,
its redesign and extension towards UDP, and the implemen-
tation and configuration of systematic simulation of UDP
behavior. We report on experimental results in Section IV
and discuss related work in Section V before concluding the
paper in Section VI

II. BACKGROUND

In this section, we introduce the concept of software
model checking through Java PathFinder (JPF) and its exten-
sion for network applications net-iocache, and explain how
the UDP protocol is supported by the Java APIL.

A. Software Model Checking with Java PathFinder

Our implementation extends JPF [8], [6], an explicit state
software model checker for Java bytecode which explores
multiple outcomes due to non-determinism such as thread
interleaving and random input data.

Figure 1 shows the basic architecture of JPF. JPF is a
custom Java Virtual Machine written in Java, i.e., in runs on
top of a host Java Virtual Machine (JVM). The application
verified by JPF is called the system under test (SUT). In
contrast to a standard JVM, JPF executes the SUT for all
outcomes of non-deterministic operations such as thread
scheduling, random numbers, or certain I/O operations. To
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Figure 2. Tool net-iocache intercepts the communication between the SUT
executed by JPF and remote peers.

cover all combinations of non-deterministic outcomes, JPF
backtracks the SUT to previous states with unexplored
choices and creates an new execution branch for each choice.
If JPF is able to find a state that violates a property, it shows
the execution trace from the initial to the error state. The
properties to be verified against the SUT can be generic
properties such as data races and deadlocks, or user-defined
assertions in the SUT. Because JPF targets Java bytecode,
it can be applied to any language that can be compiled to
bytecode (e. g., Scala, C/C++, Ruby).

JPF cannot backtrack native code. Such code may execute
system calls such as I/O that have side effects on the host
environment. In that case, model classes, which simulate the
original API, need to be provided; They must be entirely
written in Java. Part of our effort to support verification
of UDP-based distributed applications was to implement
a model class for DatagramSocket. JPF allows model
classes to invoke methods of so called native peer classes
that run on the host Java Virtual Machine and thus have
access to the standard Java APIL. This way, the execution
of methods with native code such as network I/O can be
delegated from the JPF to the JVM execution level which in
turn may interface with the host operating system to perform
the operation. Figure 1 summarizes the different levels of
execution.

B. Cache-based Model Checking of Networked Systems with
net-iocache

Our approach builds on net-iocache, an extension to JPF
that enables it to verify distributed systems [9], [7]. For
scalability, net-iocache verifies one process at a time (the
SUT), while the other processes are executed as remote peers
on the host JVM (see Figure 2).

By tracking the state of all objects involved in network
communication (sockets, I/O streams, network ports) and
caching the result of I/O operations, net-iocache synchro-
nizes the state of remote peers with the SUT if its state is
backtracked by JPF. For model checking of UDP applica-
tions, we added support of datagram sockets to net-iocache
as described in Section III.

C. UDP in Java

Java supports UDP through the java.net package. The
following two classes provide the basic functionality:



e DatagramPacket contains the data and the remote
destination (IP address and port) the packet will be sent
to or received from.

e DatagramSocket handles the transmission of data-
gram packets. A datagram socket can be connected,
restricting the exchange of datagram packets to a dedi-
cated destination. The connection semantics is however
different from TCP sockets in that no communication
channel over the network is maintained.

Note that, in case a datagram packet arrives at its destination,
lower-level protocols ensure that its data is unmodified.

III. UDP SUPPORT AND SIMULATION OF UNRELIABLE
BEHAVIOR IN NET-IOCACHE

For software model checking UDP-based applications
with systematic generation of packet loss, duplication, and
reordering, we solve the following problems:

A) extension of JPF towards UDP support;

B) simulating UDP’s unreliability by systematically gen-
erating combinations of packet loss, duplication, and
reordering;

C) controlling the combinational complexity of UDP’s
unreliability simulation by restricting it 1) to locations
of interest in the SUT and 2) to certain types of
unreliable behavior, according to user-defined settings.

A. UDP Support in JPF

JPF does not cover package java.net of the Java
library: When an SUT calls methods of a class such as
DatagramSocket, JPF stops with an exception because
of non-supported native methods.

jpf-nhandler [10] is a JPF extension that adds
generic support of native method calls to JPF by delegating
them to the host JVM. In the case of network sockets, a
delegation-based approach does not suffice: When JPF back-
tracks the SUT, the states of the backtracked model-level and
corresponding host-level sockets may become inconsistent,
causing spurious behavior such as I/O exceptions.

net-iocache [7], [11] is a JPF extension that supports,
in contrast to jpf-nhandler, the backtracking of network I/O.
However, it did not support UDP because, originally, it has
been designed and highly optimized for connection- and
stream-oriented network communication between a single
server and one or more client processes using TCP.

Rather than adding specific backtracking support of data-
gram sockets to the generic tool jpf-nhandler, we opted for
extending net-iocache towards support of UDP.

1) Redesign of net-iocache: Extending net-iocache to-
wards packet-oriented communication using UDP turned out
to be difficult because, in a connection-less protocol such
as UDP, it is not always possible to distinguish whether
a communicating peer takes the role of a server or a
client. UDP support required a redesign of net-iocache,
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Figure 3. Conceptual model of net-iocache v2 (abstract classes in italics).

targeted at general applicability (e.g., support of peer-to-
peer communication) and easy extensibility towards new
communication protocols.

Figure 3 depicts the conceptual model of net-iocache
v2, including its extension towards UDP. The upper part
of Figure 3 contains JPF model classes for the cov-
ered Java network API which are the classes Socket,
ServerSocket, and DatagramSocket. While model
classes are executed by JPF, native classes are executed
by the host Java Virtual Machine as part of JPF. Native
class SyncObject (Figure 3, center) is a generic host-
level representation of network model classes. Similar to
jpf-nhandler [10], net-iocache v2 delegates method
calls of model classes to host-level objects of the same
type. Each such method call is represented as an object
of class Action (Figure 3, center). For instance, a single
invocation of dsocket . send (packet) is represented as
an Act ion object, associated with sync object dsocket.!

When JPF backtracks the SUT, the state of model class
objects, which are controlled by JPF, may differ from the
state of their corresponding host-level objects not controlled
by JPF. For synchronizing host objects with model objects,
net-iocache v2 maintains a Hi st ory of executed actions for
each sync object (Figure 3, center right). This history is used
for 1) detecting state mismatches between model and host
objects and 2) synchronizing host objects with model objects
after backtracking: A host object oy is synchronized with
the backtracked state of its corresponding model object o,,,
by resetting oy, to its initial state and re-executing recorded
actions on oy, until its state matches that of o,,.

2) Adding support for UDP to net-iocache: Classes
SyncObject, Action, and History form the generic
core of net-iocache v2. Since these classes are entirely
abstract from the kind of executed actions and manipulated
objects, the architecture is easily extensible. Adding support
of UDP amounts to providing a simple model class for

ISync objects are implemented as native classes for performance reasons.



DatagramSocket (Figure 3, top) and implementing the
supported actions as subclasses of abstract class Action
(Figure 3, bottom right). Each (non-abstract) subclass of
class Action needs to override methods for 1) determining
the set of sync objects modified by the action, 2) comparing
the action with other actions (cache matching), 3) executing
it natively, 4) capturing the execution results such as return
values or thrown exceptions.

In the case of UDP, one model class and 8 Action
subclasses had to be implemented with an average of 27 lines
of code (lines without statements excluded). This compares
to 5 model classes and 13 Action subclasses with an
average of 23 lines of code for TCP support.

B. Systematic Simulation: Design and Implementation

Consider a UDP-based network communication where a
server sends two distinct UDP packets (p,q) to a client.
Each individual packet can be subject to different types of
unreliability intrinsic to UDP. The following lists the packet
sequences the client could possibly receive, assuming that
duplication occurs at most once per packet:

0 @ @p) @pad a9
(q) (q,q) (q, q p) (¢,4,p,p)
(r,9) (p,a,p) (P,q,p:9)

(,p) (g, pa q) (¢,p,9,p)

Eq ,p,0)  (P,4,4,p)

»,4,9) (¢,p,p,9)

Our objective is to generate these non-deterministic UDP I/O
outcomes in net-iocache and verify the SUT against them.

Under exhaustive simulation each packet can either be
(1) lost, (2) transmitted exactly once, or (3) duplicated
and transmitted twice, resulting in 3 cases per packet.
This leads to a combined complexity of 3" for n packets.
While simulation of loss and duplication is a combinatorial
problem, packet reordering is a permutation problem with a
complexity of n!. Furthermore, the set of packet sequences,
where the number of duplications of a single packet is
not restricted, is infinite. To avoid an infinite number of
outcomes and to control complexity, we set upper limits on
the number of duplications one packet can experience and
for the reordering window size. For exhaustive simulation
within finite bounds, we use the term systematic simulation.
This sets our work apart from other work [2], which uses
stochastic methods to generate unreliable UDP behavior.

The modular approach for software model checking of
distributed applications that net-iocache adopts, by verifying
one peer at a time (the SUT), enables it to act similarly to a
proxy of that SUT where it can manipulate packets coming
from and going to the remote peers [7]. When the SUT calls
method send to trigger a packet transmission to a remote
peer, the physical transmission of that packet is delegated
to net-iocache. Conversely, the same logic applies when the
SUT executes receive.
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Figure 4. Generation of packet loss by net-iocache.
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Figure 5. Systematic generation of UDP unreliable I/O in model class
DatagramSocket of net-iocache.

Figure 4 illustrates the ability of net-iocache to drop
a packet sent to or received from the remote peer, by
not forwarding the packet to the network or to the SUT,
respectively. In the upper part of Figure 4, net-iocache drops
packet 2 sent by the SUT, while in the lower part, packet 1
sent by the remote peer is not forwarded to the SUT.

Figure 5 depicts the components involved in system-
atic simulation of unreliable UDP behavior. As men-
tioned in Section III-A, net-iocache is divided into model
classes and native classes. We implemented our so-
lution in the model class of DatagramSocket in
the form of two modules: the PacketMultiplier
module, and the PacketPermutator module. The
PacketMultiplier generates cases of packet loss
and/or duplication, while the PacketPermutator uses
a buffer to change the order of datagram packets.

Both the multiplier and permutator modules perform
non-deterministic choices. These are implemented in the
chooseFrom method in Algorithms 2, 3, 5, and 6.

In the sequel, we describe the realization of the
PacketMultiplier and PacketPermutator mod-
ules in send direction (Algorithms 2 and 3). The receive
direction (Algorithms 5 and 6) is implemented similarly.

When the SUT sends a datagram packet, the sent packet
is forwarded to the PacketMultiplier (Algorithm 1,
line 2). PacketMultiplier determines the number of



1 Function send(packet)
2 | packetMultiplierPush(packet);

Algorithm 1: send method of DatagramSocket in net-
iocache.

1 Function packetMultiplierPush(packet)

2 counterpacket <— chooseFrom(MULTIPLY CHOICES);
3 if counterpacket > 0 then

4 L packetPermutatorPush(packet);

Algorithm 2: PacketMultiplier module in send di-
rection.

1 Function packetPermutatorPush(packetin)
2 sendBuffer < sendBuffer U {packetIn};
L flushSendBuffer(tBUFFERLIMIT — 1);

w

Function flushSendBuffer(newSize)

while |sendBuffer| > newSize do
packetOut <— chooseFrom(sendBuffer);
sendToNetwork(packetOut);
counterpacketOut <~ COUNtETpacketOut — 13
if counterpacketour = 0 then

10 | sendBuffer <— sendBuffer\ {packetOut};

e X 9 A

Algorithm 3: PacketPermutator module in send di-
rection.

1 Function receive(packet)
2 L packetPermutatorPull(packet);

Algorithm 4: receive method of DatagramSocket in
net-iocache.

1 Function packetPermutatorPull(packetOut)

2 while receiveBuffer= ) \V (|receiveBuffer| <
BUFFERLIMIT A —timeout) do

3 packetMultiplierPull(packetIn);

4 receiveBuffer < receiveBuffer U {packetIn};

packetOut <— chooseFrom(receiveBuffer);
counterpacketOut < COUNEETpacketOut — 13
if counterpacketour = 0 then

| receiveBuffer < receiveBuffer\{packetOut};

®e 9 !

Algorithm S5: PacketPermutator module in receive
direction.

1 Function packetMultiplierPull(packet)

2 flushSendBuffer(0);

3 receiveFromNetwork(packet);

4 counterpacket <— chooseFrom(MULTIPLY CHOICES);
5 if counterpacket < 1 then

6 | packetMultiplierPull(packet);

Algorithm 6: PacketMultiplier module in receive
direction.

instances to be generated from the passed packet, based on
the user-configured list MULTIPLYCHOICES. For instance,
if MULTIPLYCHOICES is setto “0, 1”7, line 2 of Algorithm
2 performs a non-deterministic choice from the cases “packet
loss” and “packet delivery exactly once”, and stores the
result of this choice in a counter for the packet to be sent.

Function packetPermutatorPush (Algo-
rithm 3) adds packets passed from function
packetMultiplierPush to a set sendBuffer

whose maximum size is constrained by the configurable
number BUFFERLIMIT. Line 6 of Algorithm 3 makes a
non-deterministic choice every time a packet is selected
from sendBuffer and forwarded to the network.
The combination of non-deterministic choices in the
PacketMultiplier and PacketPermutator
modules generates all instances of reliable and unreliable
UDP behavior in the limits given by MULTIPLYCHOICES
and BUFFERLIMIT.

The non-deterministic choice chooseFrom in Algo-
rithms 2, 3, 5, 6 is implemented using the choice generation
mechanism provided by JPF’s verification API. Choice gen-
erators create a separate execution branch for each choice
from a specified range. For instance, the statement int
i=Verify.getInt (min, max) instructs JPF to exe-
cute the rest of the SUT for all values of i between min
and max in max-min+1 separate execution branches. This
is used in chooseFrom to let JPF exhaustively explore
the different possibilities of packet loss, duplication, and
reordering within the constraints of MULTIPLYCHOICES
and BUFFERLIMIT.

Note that in many applications, some packets are sent or
received in response to previous network traffic [11]. We do
not reorder packets across such logical message boundaries,
as this would produce communications that are not possible
in reality. In our implementation, before receiving packets,
all packets in the send buffer are forwarded to the network in
line 2 of Algorithm 6 to ensure that responses to previously
sent packets are transmitted. Emptying the send buffer on
receive restricts the reordering of outgoing packets.

Conversely, if the remote peers do not send sufficiently
many packets to the SUT, it is not possible to fill the
receiveBuffer up to its limit which restricts the reorder-
ing of incoming packets. In this case, the while loop in
line 2 of Algorithm 5 terminates early because of a time out.

As a result, the communication pattern between the SUT
and the remote peers may restrict packet reordering beyond
the user-defined BUFFERLIMIT. In particular, a sequential
request-response pattern, where a peer waits for the single
response to a previous request before sending the next
request, prevents packet reordering.

C. Configuration of Systematic Simulation

For UDP-based distributed applications, the size of
the SUT’s state space depends mainly on two factors:



the number of packets exchanged and the settings of
MULTIPLYCHOICES and BUFFERLIMIT, constraining the
explored UDP behaviors.

In the case of single threaded SUTs and few exchanged
packets (<5), it may be feasible to verify the SUT against
all combinations of packet loss, duplication, and reordering.
In other cases, the number of I/O outcomes may be too large
to be explored exhaustively within the available amount of
memory and time. We leverage JPF’s configuration frame-
work to enable user-defined setting of systematic simulation
to control complexity.

Simulation of packet loss and duplication are de-
fined in the MULTIPLYCHOICES parameter, while the
window for reordering is defined in BUFFERLIMIT in
PacketMultiplier and PacketPermutator.

For the configuration of these parameters, we added the
following JPF properties:

Jjpf-net-iocache.UDP.multiplyChoices=1,0,2
jpf-net-iocache.UDP.bufferLimit=1

The setting of the BUFFERLIMIT to 1 disables
reordering  of  packets. The sequence 1,0,2
set for MULTIPLYCHOICES configures the
PacketMultiplier module to explore three execution
branches for each packet; first, packet sent/received
exactly once (1), second, sent/received packet lost (0),
and third packet sent/received twice (2). In the case of
jpf-net-iocache.UDP.multiplyChoices=0,2,1
JPF explores the same cases as above but with packet loss
as the first choice, followed by duplication, and finally
normal delivery of packets.

Using similar properties we can set the parameters
MULTIPLYCHOICES and BUFFERLIMIT for receive
and send methods separately.

JPF’s framework enables us to set properties statically in
a configuration file for each SUT or by inserting instruc-
tions inside the SUT’s source code using the API method
Verify.setProperties to dynamically change config-
uration settings during exploration. This method can be used
to restrict systematic simulation to sections of interest in the
SUT’s source code. The dynamic configuration mechanism
increases scalability and modularity of unreliability simula-
tion, because it can be tailored to specific requirements of
each SUT component.

IV. EXPERIMENTAL RESULTS

In this section, we analyze the performance of net-iocache
v2 with UDP support, and demonstrate its usefulness for
finding defects in a protocol for UDP-based file transfer.

A. Performance Analysis

In a first experiment, we analyzed the performance of net-
iocache v2 w.r.t. runtime and memory consumption, using
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Figure 6. Architecture of the alphabet client/server application.

the alphabet client/server application as described in [11].
Figure 6 depicts the basic architecture of the application.

The alphabet client starts concurrent sessions, each com-
municating independently with the alphabet server through
an own dedicated connection, implemented either by a TCP
or UDP socket. Each session runs two threads: the producer
thread sending requests and the consumer thread receiving
the corresponding responses from the alphabet server. The
alphabet server answers requests, consisting of a single digit
0, ’1’, ... with corresponding letters ’a’, ’b’, ... For
comparability, the UDP-based alphabet client is kept similar
to the original TCP-based version and hence does not cope
with UDP’s unreliability.

The complexity of the alphabet client is determined by

o the number of sessions/connections to the server;
« the number of requests sent on each connection.

In the subsequent experiments, we report the results obtained
for 3 connections and 1-8 requests, because this setting
turned out to be challenging but still manageable.

We run the alphabet client as an SUT on JPF with net-
iocache to check whether the received responses are correct
for all interleavings of producer and consumer threads,
sending and receiving messages concurrently on different
connections. Therefore, the consumer thread checks the
following assertion after receiving response; for the i-th
request request; sent on its connection to the server:

response; = request; + OFFSET

OFFSET denotes the difference of the ASCII codes of
letters "a’ and ’0’. The assertion holds as long as connections
to the server are reliable because on each connection, the
alphabet server sends responses in the order of the received
requests. However, it is likely to fail if, in the case of UDP,
packets are lost, duplicated, or reordered.

Table I shows the results of executing the TCP and UDP-
based alphabet client on the standard Oracle JVM (32 Bit
Java RTE 1.7.0_25-b15 / Java HotSpot Server VM 23.25-
b01). Both the alphabet client and server were executed on
the same 8 core Mac Pro workstation with 24 GB of memory
running Ubuntu 12.04.4.

Since the SUT passes the assertion in all test cases we
conclude that UDP behaves reliably in the test setting.
The runtime in column 4 of Table I includes the invo-
cation of the JVM. The total number of I/O operations



Table I
TCP AND UDP ALPHABET CLIENT, 3 CONN.
AND 1-3 REQUESTS, ON THE ORACLE JVM.

Table II

TCP AND UDP ALPHABET CLIENT, 3 CONNECTIONS AND 1-3 REQUESTS, ON NET-IOCACHE.

(column #I/O in Table I) comprises operations for creat-
ing/connecting/closing sockets and transmitting messages.

Table II shows the results of executing the TCP and
UDP alphabet client on JPF 7 rev 1155 with net-
iocache vl (no UDP support [7]) and v2 (with
UDP support as described in Section III-A). The UDP
test cases were executed both without and with sim-
ulation of packet loss using the configuration property
Jjpf- net-iocache.UDP.multiplyChoices (see
Section III-C). Failing cases were re-executed with the
failing assertion deactivated, to let JPF explore the entire
state space of the SUT. This simulates an SUT without
defects.

In addition to the test result, the execution time, used
heap memory, the number of executed I/O operations, and
the number of transitions were determined for each test
case (columns 6-10 in Table II). The number of transitions
is proportional to the number of instructions JPF executed
for the exploration of the SUT’s state space, including
instructions in called methods of library classes such as
java.net.Socket. It is a good indicator of the problem
size. The results are as follows:

o All test cases meet the assertion except UDP verified
with packet loss simulation for more than one request.
Similar as in the case of using the standard Oracle JVM
(Table I), we did not observe unreliable UDP behavior
even in test cases with more than 10,000 I/O operations,
as long as net-iocache does not inject it in the form
of packet loss. If net-iocache drops packets, JPF finds
defects early in its state space search which is consistent
with results in our previous work [9].

o Exhaustive packet loss simulation is expensive if no
error is detected (see, e.g., last row of Table II).
Packet loss simulation introduces—in addition to thread
schedules—another dimension of exponential growth
of the state space in the number of requests. This is
because on each send and receive, JPF executes the

. #Req | Protocol 1\2;;0:; ll; l;ts Assertion 1!:) ilglctl [hh:mg:g:]: [HNTEI]) #1/0 | #Transitions

#Req | Protocol Fault | Time | Heap #1/0 1 TCP 1 _ i — -:00:
found | [s] | [MB] v active 0:00:18 | 176 5512 109,286
V2 0:00:08 |77 1,158 2,183
1| TCp — [0082) 26| 15 UDP v2 | no | active 1o 0:00:03 | 109 1,158 2,146
UDP | no [0.078] 26] 15 yes 0:01:13| 77| 10,758 28,450
2| TCP — |0082] 26] 21 2] TCP Vi — T active - 00131 672] 47,898 573,711
UDP | mo [0079] 26] 21 V2 0:0037 [ 77 5,190 7,807
3] TCP — [0083] 26] 27 UDP v2 | no | active 1o 0:0029 [ 77 5,190 7810
UDP | no [0.080| 26| 27 yes yes | <00:00:01 | 61 26 56
inactive no 0:45:12 109 231,984 534,592
3] TCP Vi — [ active - 0:06:13 | 1,017 | 233,367 | 2,303,302
V2 0:02:06 | 77| 17,346 23,440
UDP v2 no active no 0:01:36 77 17,346 23,443
yes yes | <00:00:01 61 32 68
yes | inactive no 11:03:02 77 | 3,276,081 7,066,609
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Figure 7. Runtime behavior of net-iocache on different variants of the
alphabet client. The first case refers to UDP on net-iocache v2 with packet
loss enabled and no assertions.

rest of the SUT twice, to check its behavior for the
two outcomes “packet delivered” and “packet lost”.

« net-iocache v2 performs better than v1, especially in
terms of memory consumption. The major source of
overhead in JPF/net-iocache vl is the number of exe-
cuted transitions, caused by the code in model classes
such as java.net . Socket that net-iocache provides
to support TCP sockets in JPF (Section III-A). In net-
iocache v2, we reduced the code in model classes to a
minimum.

o Without simulation of unreliable behavior, UDP per-
forms slightly better than TCP, although the number
of I/0O operations and transitions are (almost) identical
(entries in blue in Table II). We suppose that establish-
ing and terminating connections, which is missing in
UDP, takes significant extra time.

Figure 7 shows the runtime results for model checking
each test configuration for up to 8 requests (horizontal axis).
The vertical axis shows the time in minutes it took JPF to
explore the entire state space of the SUT or to detect an
assertion violation. Our observations are:



o Except for UDP/v2/loss, the runtime of all configura-
tions increases exponentially in the number of requests.
This is because the number of interleavings of producer
and consumer threads grows exponentially in the num-
ber of requests. For UDP without assertions, packet
loss simulation adds another dimension of exponential
growth (UDP/v2/loss/na in Figure 7). Conversely, the
runtime of UDP/v2/loss (with assertion) is largest for
one request (1.2 min) because this case still passes. If
more than one request is sent, JPF reports the failing
assertion within one 1 second.

o net-iocache v1 runs out of 2 GB heap memory when
executing it on the TCP alphabet client for more than 4
requests (TCP/v1 in Figure 7). net-iocache v2, however,
succeeds to verify 8 requests on each connection using
only 109 MB of memory, in 1 hour and 41 minutes
(TCP/v2 in Figure 7).

o The difference between TCP/v2 and UDP/v2 (no packet
loss) rises from a factor of 1.3 for smaller cases to a
factor of 1.9 in the case of 8 requests. We assume that
the system runs out of ephemeral ports when executing
larger series of benchmarks and the OS requires more
time to re-allocate used TCP ports than UDP ports.

B. Verifying a UDP-based File Transfer Protocol

We choose as an example a UDP-based client/server
application for the transfer of multiple files from the server
to the client whose main method is shown in Algorithm 7.
Using a TCP connection, the client first requests the number
of packets necessary to transfer a specific file (line 3 of
Algorithm 7) from the server provided the file exists in
the server’s repository. After that, the client calls getFile
to initiate the file transfer using UDP. Function getFile
should ensure the validity of the returned packet array by
compensating for packet loss, duplication and reordering
(Algorithm 8). For testing purposes, we compare the con-
tents of the received data against a local reference copy of
the file (line 5 in Algorithm 7).

1 Function main()
Input: fileNames: identifiers of files to be retrieved from
the server

for fileName € fileNames do
filePackets < numberOfPackets(fileName);
data < getFile(fileName, file Packets);
assert isContentEqual(fileName, data);

s W N

Algorithm 7: main method of the file transfer client.

Function getFile (Algorithm 8) copes with loss, du-
plication, and out-of-order arrival of packets by using the
packet sequence numbers the server adds to the data of
each packet. The UML sequence diagram in Figure 8 shows
correctly handled cases of packet duplication and out-of-
order delivery.

1 Function getFile(fName, fPackets): Packet[]
2 data < new Packet[fPackets];

3 missingPackets < {0, 1, ..., fPackets — 1};

4 send(request(fName, missingPackets));

5 while missingPackets # () do

6 receive(packet);

7 if timeout then

8 \ send(request(fName, missingPackets));
9 else

10 index < sequenceNumber(packet);

11 if index € missingPackets then

12 data[index] < packet;

13 L missingPackets +— missingPackets\ {index};
14 return data;

Algorithm 8: Function getFile () of the client side of
file transfer application.

However, net-iocache demonstrates that incorrectly han-
dled packets may cause files to be received incorrectly,
resulting in an assertion failure (see UML sequence diagram
in Figure 9). The defect is revealed when the client of the file
transfer application is model checked and packet duplication
simulation is enabled using the following configuration (see
Section III-C):

jpf-net-iocache.UDP.multiplyChoices=1,2
jpf-net-iocache.UDP.bufferLimit=1

For two or more files requested by the client, the du-
plication of the last packet of a file f; is not discarded if
the subsequently requested file f;;; has at least as many
packets. This is, because the client interprets the duplicated
packet of file f; as a missing packet of file f; ;1 in line 11

Network
Environment File Server

[ T ]

1 requestFile

2requestFile

Open
FileOutputStream

Loop until all packets are received

Reached EOFj

e — — — — — — —

Discard | Mhacket #2 (duplicate)

x

Figure 8. Scenario where the client compensates for packet reordering
and duplication.
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Figure 9. Execution trace generated by net-iocache that finds a defect.

of Algorithm 8, and stores it in the data array for file f;,1.

A possible solution is including a file ID in each packet
the server sends and adding a condition to compare file IDs
in the if statement at line 11 of Algorithm 8. This allows
the client to distinguish packets of different files.

Classical testing of this file transfer application did not
reveal any bug, and would hardly detect any in network
environments where unreliable UDP behavior rarely oc-
curs. Classical testing therefore gives poor coverage of
the application-level protocol code (in getFile) because
scenarios where it has to compensate for unreliable 1/O
rarely occur.

Because the file download application fails in a very
specific I/O schedule, stochastic approaches that randomly
generate unreliable UDP I/O behavior [2], [3], [4], [5] (see
Section V-A) are likely to miss the fault.

V. RELATED WORK

Although testing of the UDP protocol is largely doc-
umented, software model checking targeting UDP-based
applications has not enjoyed much attention in research.

A. Analysis of UDP-based Applications

Previous work [2] proposes a framework for testing UDP-
based applications by adding a layer over the java.net
API that simulates network noises. The network emulator
NetEm [3] and its extensions [4], [5] are Linux modules that

inject stochastically packet delays, loss, duplication, reorder-
ing, and IP packet corruption to simulate non-deterministic
unreliable UDP I/O. In contrast to these approaches, instead
or randomly introducing faults, we systematically explore
outcomes of UDP-based communication while model check-
ing the application.

Rathje [12] proposes the concept of using JPF to simulate
UDP packet loss and reordering in a small proof of concept
implemented for educational purposes.

B. Systematic Testing of Actor-based Systems

In actor-based systems, multiple autonomous agents com-
municate by exchanging messages asynchronously. The dis-
tributed nature of agents in actor-based systems results in
the non-deterministic processing of messages since in-order
delivery of messages is not guaranteed unless constrained in
some actor language. Lauterburg [13] proposes a framework
for systematically testing actor-based systems by using JPF
for exploring different scheduling of messages. While this
work has in common with our approach the use of JPF to
enable exhaustive coverage of the state space and to control
the way messages are exchanged across the network, it
targets a different kind of applications (actor-based systems)
while our focus is on UDP-based applications.

C. Software Model Checking of Distributed Applications

There are two major approaches to software model check-
ing of communicating peer processes: 1) merging multiple
peer processes into a single multi-threaded process and
verifying it (centralized approach) and 2) verifying a single
process at a time (modular approach). The former approach
is complete but does not scale well in the number of
processes. The latter offers better scalability but is not
complete in general [7].

Stoller and Liu [14] introduced the concept of centrali-
sation first when they suggested to extend software model
checking of Java programs to distributed applications by
merging multiple processes into one and simulate Java RMI
method invocations by local method calls. This work has
since then been extended to full TCP sockets [15], [16]. A
similar approach analyzes the complete state space of all
processes by extending JPF itself [17], [10] rather than pre-
processing the SUT.

These approaches abstract from the physical behavior
of communicating processes by simulating the exchange
of messages using queues in shared memory. Low-level
network behavior such as packet loss or I/O exceptions
resulting from dropped connections, are not in the focus of
these approaches, except in one case where scalability was
addressed by limiting the types of faults injected [18]. The
above-mentioned approaches also take a global view of all
processes, whereas our approach is process-modular [7].

Conceptually our approach is related to the use of
stubs [19], but we execute unmodified peer processes [7],



rather than then user-defined stubs, to obtain the input data
for the SUT.

VI. CONCLUSION AND FUTURE WORK

We combine software model checking (exhaustive execu-
tion of non-deterministic thread-interleavings) and system-
atic simulation of UDP I/O outcomes at the packet-level, to
analyze UDP-based applications.

This required the redesign of net-iocache, which now
decouples the caching and communication mechanisms. The
exhaustive simulation of UDP I/O outcomes results in a
state space explosion, which we curb by a user-configurable
limitation of possible outcomes. Our experiments show that
the resulting tool is scalable and can detect subtle defects
that are not found by classical testing. This helps to reduce
the effort for quality assurance and to increase the reliability
of distributed applications using UDP.

Future work includes the complexity analysis of the pre-
sented algorithms, based on a formal model of UDP I/O. We
also want to check the compliance of our implementation of
the DatagramSocket API with the standard Java library,
using the Modbat [20] tool for model-based testing, similar
to past work [9]. Finally, we consider integrating UDP
support with work on jpf-nas [17], which verifies distributed
systems based on centralization.
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