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Abstract—GRT (Guided Random Testing) is an automatic test
generation tool for Java code, which leverages static and dynamic
program analysis to guide run-time test generation. In this paper,
we summarize competition results and experiences of GRT in
participating in SBST 2015, where GRT ranked first with a score
of 203.73 points over 63 Java classes from 10 packages of 9 open-
source software projects.

Index Terms—Software testing, automatic test case generation,
program analysis, random testing

I. INTRODUCTION

In 2015, the 8th International Workshop on Search-based
Software Testing (SBST) organized the third testing tool
competition for unit testing of Java programs. The objective
of the competition is to promote testing research and tool
development. Each participating tool follows a protocol for
given by the competition committee and generates tests for
each class in the SBST benchmark [1], [2]. These generated
tests are evaluated to compare the efficiency and effectiveness
of each testing tool by using a score-function based on (1) time
to prepare, generate and execute test cases, (2) achieved code
coverage (i. e., instruction coverage and branch coverage), and
(3) mutation score (to measure fault detection ability). Seven
tools have participated and been evaluated in the competition,
including Evosuite [3], Evosuite-Mosa [4], GRT [5], jTex-
Pert [6], T3 [7], Randoop [8], and a commercial tool (referred
as CT). Randoop and manual test creation are used as the two
baselines for all tools, where each represents an extreme end
of the level of intelligence.

GRT (Guided Random Testing) is a fully automatic test
generation tool for Java programs. Table I summarizes the
basic feature of GRT. GRT accepts the class under test (CUT)
as Java bytecode and generates test cases, without requiring
the source code. Source code of a CUT can be optionally
provided as the input of GRT to generate code coverage report
automatically. GRT generates test cases in both JUnit 3 and
JUnit 4 format. It leverages both static analysis and dynamic
analysis to guide each step of test generation, while random
selection is adopted when multiple choices exist.

In this paper, we summarize the results of GRT over the
benchmarks in the SBST 2015 tool competition. Following a
manual analysis of those benchmarks where GRT encounters
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TABLE I
BRIEF DESCRIPTION AND SUMMARIZATION OF GRT

Prerequisites

Static or dynamic Dynamic testing at class and system level

Software Type Java classes

Lifecycle phase Unit testing for Java programs

Environment Java virtual machine/Java bytecode

Knowledge required Unit testing and Java programming
Experience required Basic software testing and unit (Junit)

testing knowledge

Input and Output of the tool

Input The bytecode of target classes and their
dependencies

Output JUnit test cases (version 3 or 4)

Operation

Interaction Command line interface

User guidance Through command line and manuals

Source of information https://sites.google.com/site/grtprojectut
Maturity Research tool

Technology behind the tool | Program analysis guided random testing

Obtaining the tool and information

License To be determined
Cost Free
Support Contact the developer

Empirical evidence

Data is going to be published [5].

low coverage, we discuss the reasons for low code coverage
and propose some potential future enhancements.

II. THE TECHNIQUES OF GRT
A. The Workflow of GRT

GRT works in two phases (see Figure 1). Given a System
Under Test (SUT), GRT first performs static analysis on the
SUT to extract domain knowledge of the given SUT (byte-
code) such as the possible primitive constants, method side ef-
fects, and dependencies between methods. Combined with the
static information from the first phase, GRT further performs
dynamic analysis on method sequence execution feedback.
The runtime phase generalizes the idea of feedback-directed
random testing [8] (that only uses the execution results of a
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Fig. 1. Simplified overall workflow of GRT.

test sequence to decide whether to use it as inputs for further
test generation), by analyzing dynamic information like the
exact type information and code coverage information to guide
method selection to methods with currently low coverage.

Similar to Randoop [8], GRT adopts a bottom-up style to
construct test sequences incrementally. A method with fewer
input dependencies is tested first. At each step of the run-time
test generation, GRT picks a method from the method pool and
uses objects from object pool as inputs to construct a new test
sequence (see Figure 1). Upon successful execution (where
no failures and errors occur), new objects returned from the
test sequence are stored in the object pool and are used as
inputs for other methods, to construct new test sequences. GRT
repeats the same procedure to generate more test sequences
iteratively until the resource budget (such as the time limit or
test sequence size) is exhausted.

B. Major GRT Components

The core of GRT is consisted of six collaborative program
analysis components that extract domain knowledge of the
SUT to guide each step of test generation to improve the
overall testing efficiency and effectiveness:

1) Constant mining (static): Constants are extracted from
the SUT to seed the object pool (see Figure 1). The
mined constants are also used as input for specific
methods.

2) Impurity (static + run-time): Impurity performs static
analysis on all Methods Under Test (MUT) to identify
whether they have side effect on program state upon
executed. At the run-time phase, it further fuzzes input
objects based on method purity analysis before using
them as inputs to test an MUT.

3) Exact type analysis (run-time): Each generated object
from run-time sequence execution uses its exact (dy-
namic) type to decide whether it is used on a specific
MUT, instead of simply using its declared static type.

4) Detective (static + run-time): Detective analyzes the
method input and output type dependency statically, and
constructs missing input data (i.e., non-primitive data)
on demand at run-time.

5) Orienteering (run-time): The execution cost of each
method sequence is measured, and method sequences
that require lower cost are favored as inputs for further
test sequence construction.

6) Coverage Guidance (run-time): All CUTs are instru-
mented during dynamic class loading, and the coverage

of each MUT is analyzed to intelligently guide the
method selection for sequence generation at run-time.

Although each of the six GRT components functions inde-
pendently, they are designed to work collaboratively and can
enhance each other when being used together [5]. For example,
exact type analysis enables detective to further diversify the
input object types so that a seemingly unobtainable input
object can still be found with the exact type information.

C. Use Case of GRT and Adaptations to the Contest

In software development, the time budget for testing is often
limited. GRT is mainly designed to automatically generate
high-quality test cases for a target software or library under a
given time constraint. Although GRT supports to test a target
SUT either as a whole or class by class, its current design
works better if all classes or a whole package of a given
SUT are tested together, because classes of an SUT usually
have dependencies. In this contest, GRT follows the SBST
protocol [2], [9] and tests a target SUT class by class.

The test execution of a method sequence may cause the
undesirable side effect such as deleting files or even the
entire working directory. To prevent this, we equip GRT
with a security manager that prohibits potentially dangerous
operations. Evosuite uses a similar solution [3], [10].

The Impurity component of GRT uses the type inference
approach to analyze whether a method has side effects (purity
analysis). However, the current implementation sometimes ex-
hibits slow performance, and may fail in some circumstances
such as when memory is constrained. We therefore disable
the Impurity component of GRT during the contest to comply
with the SBST protocol that requires full automation.

III. BENCHMARK RESULTS

The SBST 2015 competition benchmark consists of 63
classes from 10 packages of 9 open source projects. Each
participant tool is required to be previously installed in its
home directory of the contest server running Ubuntu 12.04
on an Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83 Hz with
8 GB of main memory. The contest is fully automated. When
a tool finishes all its evaluation, its author will be notified of
its score, calculated by the scoring function [2]:

> (1 covi+2- cove+4- covim) = (tprep + > (tgen +teace))
class

where cov;, covy, cov,, represent the instruction, branch and
mutation coverage; and tprep, tgen, tezec are the time (in
hours) for tool preparation, test generation, and execution of
generated tests, respectively.

GRT scores 203.73 points over the benchmark, and ranks
first among all seven participants. Compared with the two
baseline approaches, GRT scores more than twice than Ran-
doop, which scores 93.45 points, and is very close to human
tester score of 210.45 points. For the test generation time,
GRT uses 4.58 hours in total, which is longer than Randoop
with 1.77 hours but far less than the time a human tester took,
which was more than 22 hours [2].



The detailed results of GRT are summarized in Table II,
where the data are the averaged results over six runs. Among
all benchmark classes, GRT achieves 61.0 % instruction cov-
erage in average (per class), and 44.6 % and 45.2 % for branch
and mutation coverage, respectively. As discussed in [2], each
participating tool adopts different techniques and performs dif-
ferently on a CUT of the benchmark. When all combined (by
taking the best result for each CUT among all tools), an even
higher score 266.7 points could be obtained, with the averaged
instruction coverage 78.0 %, branch coverage 64.7 %, mutation
score 60.3 %. This shows a large potential for improvement.

In line with the GRT evaluation from competition organiz-
ers, we also repeat the evaluation of GRT and perform manual
analysis over the benchmark by ourselves. In the rest of this
section, we summarize some of the issues we have found that
cause the low score of GRT on specific CUTs, and discuss
some potential solutions.

A. Low Code Coverage

Our manual analysis on the competition benchmark shows
that the low code coverage is mainly caused by two reasons.
The first reason is that GRT is designed to test an SUT as
a whole or in the package level. GRT is not well tested after
being adapted to follow the SBST contest protocol to test class
by class as we had little time to tune this new feature. This
caused GRT to obtain very low coverage (zero or close to zero)
on more than 8 out of the 63 CUTs. Another reason is that
some branch condition is difficult to satisfy, where a non-trivial
method combination with specific order and inputs is required
to set its precondition to cover it. Although the Impurity
component of GRT enables to create sequences with diverse
states, which helps on this issue partially, we disable this
option to ensure GRT works correctly with full automation.

1) Zero code coverage: GRT encounters zero cov-
erage on several classes like net.sf.javaml.core.Fold,
org.scribe.model.Request. This is because that GRT fails to
create several critical input objects of a target CUT (i.e., the
inputs of the constructor to create an object) so that GRT
simply skips testing all of its MUTs.

As we have discussed in Section II, GRT is designed to test
all classes or a whole package of an SUT, where all MUTs
are loaded into the fixed method pool (see Figure 1) before
testing starts. To test an MUT m(Tyt1,Tats, ..., Ty tys),
where T; ...T,, are the input type dependencies of m, GRT
selects the previously generated objects with desired types
from the object pool as inputs. If an input object of an MUT
is not available at run-time, such an MUT would be skipped
for testing until its input objects are available. This issue is
diminished if multiple CUTs of an SUT are tested together
as they usually have input and output dependencies, where an
object returned from testing a CUT can be used as the input
to test an MUT of another CUT.

However, if we test an SUT class by class, we lose the
ability of reusing objects obtained when testing other CUTs.
In the worst case, no input objects can be constructed for all
MUTs of a CUT, resulting in zero coverage. Although it would

be tempting to include all dependent libraries when testing
a CUT, this would waste much effort in testing unrelated
classes. Therefore, GRT adopts a lightweight demand-driven
approach (the detective component) to construct missing object
types online. When a missed input object with type T is
required, GRT loads necessary constructors and static methods
of T and its methods’ dependent types to construct an object
typed T'. The effectiveness of this approach is shown in our
study over 30 benchmarks containing more than 7000 classes,
when testing an SUT as a whole [5].

With our adaptation to the competition protocol, the de-
tective component of GRT seems limited in constructing
some complicated objects at run-time. We plan to enhance
this component by selecting a suitable subset of dependency
methods of a CUT to perform demand-driven construction so
that more methods could be covered.

2) Code that is difficult to cover for GRT: The first category
of difficult code to cover is comprised of the non-abstract
methods of abstract classes. As there is no way to initialize
an abstract class, to test its non-static methods, subclassing
the target abstract class is required. However, it is not trivial
to create such a subclass, especially for the abstract methods
that have to be overridden. GRT partially solves this issue by
collecting subclasses of the target abstract class. There remains
the issue of testing non-abstract methods in the abstract parent
class: These methods are only tested by the subclass if they
are either not overridden, or explicitly called by the overriding
method.

The second category of difficult cases consists of methods
that require a complex object state, such as methods in
de.tudarmstadt.ukp.wikipedia.api.PageQuerylterable.
Such methods contain branches that usually require a tester to
understand the specific structure and condition of an object to
set it to the specific state to satisfy the branch conditions. Such
code is still challenging to be covered by automatic tools.
We think symbolic execution [11] can be useful for covering
some non-trivial branches. Its effectiveness and a possible
integration with GRT still requires further investigation.

Another kind of difficult code requires the
MUTs to be tested in some specific order, like
org.asynchttpclient.SimpleAsyncHttpClient. This often

occurs when an SUT implements a non-trivial API protocol,
and is a challenge for automatic tools like GRT, as the API
protocol specification is not available from the bytecode of an
SUT. Automated inference of API protocols is future work.

B. Low Mutation Score

The current version of GRT only captures simple program
regression behaviors on primitive values to generate test asser-
tions. However, many mutants require non-trivial assertions to
be killed, e. g., a collection that is expected to have a specific
size, or an array that has to contain a specific element. High-
quality assertion generation is important future work.

Non-deterministic behavior of certain tests is also respon-
sible for a low mutation score. GRT currently removes all
assertions in a test method if one of them is non-deterministic.



Although this does not influence the code coverage, it de-
creases the mutation score. This can be improved by only
removing the assertions that fail upon replay.

In addition, we find that all participating tools (even the
human testers) have a relative low score on the void method
call (VMC) mutants compared to other kinds of mutants [2].
This might be caused by the program state change not being
captured when executing a mutated (removed) method with
void return type. This can be possibly improved by analyzing
the class attributes that can be influenced by VMC mutations.
In summary, we think the assertion enhancement is another
major future work of GRT.

IV. CONCLUSION

We have summarized the techniques of GRT and discussed
our experience in participating in the SBST 2015 testing
competition. At current stage, GRT’s score is close to the score
obtained by manually created test cases. However, there is still
a long way to go to for GRT to create high-quality test cases
with both high code coverage and bug detection ability. GRT
scores less than a half of the ideal full score 441 = (763 —0)
points, showing that there is still room for improvement. The
participation in this competition helped us to uncover issues
and new research directions for GRT.
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TABLE 11
DETAILED RESULTS OF GRT OVER SBST CONTEST BENCHMARKS.

SBST Benchmark ‘ JUFiles Time (min.) Instr. Bran. Mutat.
Package & Class Gen. [ Exec. | Cov (%) | Cov (%) | Cov (%)
package: com.google.gdata.data

AttributeHelper 2 04| 0.01 2.54 0 0
DateTime 39 45| 052 94.23 84.76 60.68
Kind 27| 3.82| 028 67.49 65.91 62.68
Link 16 | 4.27| 027 74.13 70.05 55
OtherContent 22| 439 021 42.48 38.64 30
OutOfLineContent 23 511 023 75.61 79.17 45.83
Source 13] 481 | 0.15 35.01 23.48 25.65
package: net.sf.javaml.core

AbstractInstance 24| 3.78 | 0.38 92.31 71.43 79.17
Complex 18| 4.17 | 0.16 100 0 100
DefaultDataset 19| 3.85| 0.17 48.81 37.5 41.94
Denselnstance 24| 552 032 100 100 88.71
Fold 0| 227 0 0 0 0
Sparselnstance 22 6.3 | 0.36 98.37 87.5 73.53
package: net.sf.javaml.tools.data

ARFFHandler 21] 491] 021] 3898 25] 2222
package: twitterdj

ExceptionDiagnosis 100 | 2.75| 092 0 0 0
GeoQuery 25| 431] 022 93.35 80.56 77.25
OEmbedRequest 22| 6.83| 023 97.33 84.88 67.34
Paging 57 55| 052 99.48 97.22 79.11
TwitterBaselmpl 2| 3.07| 0.01 0 0 0
TwitterException 26| 9.16| 0.24 75.35 64.29 67.07
TwitterImpl 2| 331| 001 0.19 0 0
package: com.puppycrawl.tools.checkstyle.api

AbstractLoader 53| 2.07| 071 435 8.33 1.67
AnnotationUtility 121 | 4.17| 095 19.05 10 0
AutomaticBean 32| 694 0.5 36.59 0 4.65
FileContents 26| 6.09 0.3 92.53 80.77 51.33
FileText 18 9] 023 90.18 87.82 64.18
ScopeUtils 18 | 10.57 | 0.14 26.58 11 29.51
Utils 121 | 1021 | 1.17 93.93 96.15 82.54
package: com.google.common.base

CharMatcher 17| 3.02 0.2 84.55 82.02 61.5
Joiner 12| 341 0.16 84.55 86.96 97.87
Objects 28 | 4.65| 027 100 99.07 100
Predicates 23| 525| 022 54.65 44.44 46.61
SmallCharMatcher 16 43| 034 98.16 96.79 74.31
Splitter 30| 447 028 95.39 89.1 66.85
Suppliers 24| 473 ] 023 46.34 20.83 27.27
package: org.hibernate.search

SearchException 28 | 3.03| 021 100 0 0
Version 2| 282 001 100 0 0
backend.BackendFactory 13| 3.19| 0.13 30.08 6.25 33.33
backend.FlushLuceneWork 19 35| 0.18 89.74 100 50
backend.OptimizeLuceneWork 17| 3.69| 0.17 89.74 100 50
util.logging.impl.LoggerFactory 2| 342| 0.01 56.25 0 50
util.logging.impl.LoggerHelper 19| 4.08| 0.24 100 0 33.33
package: de.tudarmstadt.ukp.wikipedia.api

CategoryDescendantslterator 0| 227 0 0 0 0
CycleHandler 118 | 2.79| 1.28 18.36 0 0
Page 81 55| 111 1.49 6 0
Pagelterator 5| 5.17| 0.05 11.26 0 0
PageQuerylterable 0| 232 0 0 0 0
Title 44 | 837 | 044 78.4 77.08 100
Wikipedialnfo 2| 5.64| 001 8.58 7.33 1
package: org.asynchttpclient

AsyncHttpClient 15| 295| 0.26 71.62 58.33 66.67
AsyncHttpClientConfig 17| 3.12| 022 95.17 54.44 84.55
FluentCaselnsensitiveStringsMap 11| 326 0.1 95.23 90.41 90.57
FluentStringsMap 10| 338 | 0.11 96.12 92.05 93.8
Realm 21| 5.13 0.2 92.95 59.46 84.37
RequestBuilderBase 13| 3.75 0.2 71.62 54.64 42.64
SimpleAsyncHttpClient 7| 5.84| 026 744 40.98 58.28
package: org.scribe.model

OAuthConfig 33| 3.12| 028 68.35 50 88.89
OAuthRequest 0| 031 0 0 0 0
ParameterList 14| 329 0.18 91.55 94.44 95.65
Request 0| 031 0 0 0 0
Response 2 15| 0.01 1.77 0 0
Token 41| 452 037 99.16 96.88 90.91
Verifier 106 | 6.66 | 0.83 100 0 50

Average 27] 436] 029] 61.01] 44.63] 4521




