Run-time Verification of Networked Software

Cyrille Artho
c.artholaist.go.jp

Research Center for Information Security (RCIS),
National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. Most applications that are in use today inter-operate with
other applications, so-called peers, over a network. The analysis of such
distributed applications requires that the effect of the communication
with peers is included. This can be achieved by writing or generating
stubs of peers, or by including all processes in the execution environ-
ment. The latter approach also requires special treatment of network
communication primitives.

‘We also present an alternative approach, which analyzes a networked ap-
plication by recording and caching its communication with peers. Caching
becomes useful when several traces of the application are analyzed. It dis-
penses with the need of generating a new peer application execution for
each different execution of the main application. Such a caching frame-
work for input/output has been implemented on the Java PathFinder
platform, which can be used to verify executions of non-deterministic
applications at run-time.

1 Introduction

Most of the software written today does not implement a stand-alone system,
but communicates with other software. Testing such networked software requires
that either all necessary applications be running, or that applications outside the
scope of the analysis be replaced by an open environment, or stubs. An open
environment non-deterministically returns all possible outcomes of a given func-
tion, and is often used for analysis on a more abstract level. In model checking,
approaches exist that iteratively narrow down the scope of an open environ-
ment, to generate a result that mirrors actual executions more closely [7,12,13].
Nonetheless, such techniques may not always generate over-approximations that
are precise enough to analyze complex systems.

Run-time verification takes a different approach to analysis, executing the
actual system under test (SUT) rather than an approximation. This has the
benefit that observed execution failures always correspond to actual system fail-
ures. However, the analysis of a few execution traces may miss certain defects if
a system is not fully deterministic. In particular, concurrent systems suffer from
this problem: The thread schedule is not controlled by the application, and may
vary between executions. Classical testing invariably covers only a subset of all
possible schedules and may miss defects.

For concurrent software, run-time verification provides several means of ex-
tending classical testing. Approaches exist that analyze the detailed behavior
of software, for example, its lock usage, in addition to its output [27]. Other
approaches observe several execution traces that are generated in a way as to
maximize the potential of finding faults [9,18]. For smaller systems, the coverage
of possible execution schedules may even be exhaustive [22,30]. Exhaustive tech-
niques are at the boundary between model checking and run-time verification,
analyzing concrete executions while striving to cover all possible outcomes.

If one attempts to apply such techniques to networked software, the challenge
of orchestrating the execution of a distributed system arises. Multiple executions
may be achieved by restarting the SUT, or by backtracking it to a previous state.
In either case, after the SUT has been backtracked or restarted, its state may not
be logically consistent anymore with the state of its peer processes. Distributed
systems can therefore not be directly executed when using backtracking.

1.1 Overview
This tutorial presents several approaches for verifying networked software [4]:

1. Stubs. Stubs summarize the behavior of the environment, replacing it with
a simpler model. The model may be written manually, or recorded from a
previous execution to represent the behavior of the environment for a given
test case [8].

2. Multi-process analysis. The execution environment may be augmented in
order to keep the state of multiple processes in sync, for example, by back-
tracking multiple processes simultaneously [13,19]. Alternatively, multiple
processes may be transformed into a stand-alone system, requiring several
program transformations to retain the original semantics [2,29].

3. Caching. Communication between the SUT and its environment is observed,
and a model of observed communication traces is generated. This model can
then be used to replay communication on demand for subsequent repeated
executions of the SUT [3]. Caching yields major performance benefits if dif-
ferent outcomes of the SUT are analyzed by backtracking, thus replaying
subsets of the full execution many times [5]. Challenges in this approach in-
clude tracking message boundaries while having only an incomplete knowl-
edge of peer processes [3], and handling non-deterministic input/output of
the SUT [5].

1.2 Outline

This text is organized as follows: Section 2 shows how software model checking
relates to run-time verification. Problems arising with distributed systems are
covered in Section 3. The three approaches presented in this tutorial are covered
in Sections 4, 5, and 6. Section 7 concludes.

2 Run-time Verification and Software Model Checking

Model checking [14] explores the entire behavior of a system by investigating
each reachable system state. In classical model checker, both the system and the
properties to be checked are translated into finite state machines. The properties
are negated in the process, such that the analysis of the state space can detect
whether undesired states are reachable. The system starts in an initial state, from
where iteration proceeds until an error state is reached, or no further states are
to be explored. This iteration can also be performed in the reverse manner, where
iteration starts from the set of error states and proceeds backwards, computing
whether one of these error states is reachable from an initial state.

Model checking is commonly used to verify algorithms and protocols [23].
However, more recently, model checking has been applied directly to concrete
software systems [6,7,12,15,17,19,30]. Software model checking investigates the
effects of all non-deterministic choices in the SUT, and in particular, all pos-
sible interleavings between threads and processes involved. The number of in-
terleavings is exponential in the number of operations and threads, resulting in
a state space explosion for any non-trivial system. For a more efficient system
exploration, a number of partial-order reduction techniques have been proposed.
They have in common that they do not analyze multiple independent interleav-
ings when it can be determined that their effect is equivalent [11,23].

Properties typically verified in model checking include temporal properties,
typically expressed in linear temporal logics [26] or similar formalisms such as
state machines [10]. For software, typically checked constructs include pre- and
post-conditions such as specified by contracts [25] and assertions. Furthermore,
software model checkers for modern programming languages typically regard
uncaught exceptions and deadlocks as a failure.

In software verification, model checking has the advantage that it can auto-
matically and exhaustively verify systems up to a certain size. If the state space
of the SUT becomes too large, a possible solution is to prioritize the search of
the state space towards states that may more likely uncover defects. User-defined
heuristics guide the state space search towards such states. This type of anal-
ysis may be implemented in a software model checker framework [21] or in the
standard run-time environment, by choosing a heuristic that likely uncovers new
thread schedule with each program execution [9,28].

In this sense, the two domains have much in common. Both software model
checking and other run-time verification tools analyze the actual implementa-
tion of the SUT (or a derived version of it that preserves the original run-time
behavior). Both techniques cover a set of execution traces that characterizes a
large part of the behavior of the SUT, but not necessarily the entire state space.

In this paper, the term backtracking will denote the restoration of a previous
state, even if that state is not a predecessor state of the current state. This
definition allows the term “backtracking” to be used for search strategies other
than depth-first search, and for techniques where a previous system state is
restored by re-executing the SUT again from its initial state with the same
input (and thread schedule) up to the given target state.

3 Distributed Applications

The analysis of multiple execution traces of a SUT becomes challenging if the
SUT communicates with external processes. Backtracking the SUT allows the
restoration of a previous state without having to execute the system again up to
a given state. However, when backtracking the SUT, external (peer) processes
are not affected. As a consequence of this, the states of the SUT is likely no
longer consistent with the states of peer processes. From this inconsistency, two
problems arise [3]:

1. The SUT will re-send data after backtracking, which interferes with peers.
2. After backtracking, the SUT will expect the same external input again. How-
ever, a peer does not re-send previously transmitted data.

Some run-time environments may be able to control the states of multiple pro-
cesses at the same time. For example, a hypervisor can execute the entire oper-
ating system inside a virtual machine, and store and restore any state. However,
such tools are, at the time of writing, slow for the usage of state space exploration
because of the large size of each system state (consisting of an entire operating
system at run-time). Furthermore, processes running on external systems can-
not be handled on this way. We therefore focus on dealing with distributed
(networked) software executing on verification tools that support one process at
a time. In this context, the SUT will denote the process to be verified, and a peer
process denotes another application running outside the scope of the verification
tool. The environment of the SUT consists of several peer processes, and other
resources used by the SUT, such as communication links to peers.

4 Modeling External Processes as Stubs

If an external process cannot be controlled by an analysis tool, a possible ap-
proach is to exclude it from analysis, and replace it with an open model that rep-
resents all its possible behaviors. Such an abstract environment model has been
successfully used in software model checking [7,12,16]. When targeting complex
applications, though, an open model may include too many behaviors of the
environment to make analysis tractable. Furthermore, for run-time verification,
concrete executions of environment processes are needed, as the SUT cannot be
executed against an open model at run-time.

In the case of networked programs, any interaction between the SUT and its
environment occurs through the application programming interface (API) pro-
viding network access. Responses of an environment process are also retrieved
through this API. This allows a replacement of the API with a light-weight skele-
ton, or stub, which only returns the appropriate response of the environment
process, without actually communicating with it. The open model is therefore
closed with a specialized implementation that is tailored to one particular veri-
fication run (or a limited number of tests). Compared to the actual environment
process, the implementation of the stub can usually be simplified significantly,

removing operating system calls and inter-process communication. The imple-
mentation of such a stub is often simple enough to be written manually. For
larger projects, frameworks exist that implement some of the common aspects of
network APIs [8]. Another approach is to record a communication trace between
the SUT and its environment for a given test run, and then generate a stub that
implements the recorded responses [8].

In some cases, not all responses from a peer process may be fully determinis-
tic. Network communication involves inherent non-determinism: Even during the
verification of a concrete execution with deterministic input, it is possible that
network communication is severed due to transmission problems. The reason for
this lies in possible transmission problems and is not visible in the SUT. From
the point of view of software, communication failures may be regarded as a non-
deterministic decision of the environment. As a result, an exception indicating
the loss of connectivity may be thrown at run-time, as an alternative outcome
to the expected response.

Such exceptions cannot always be tested easily using conventional unit or
system tests. A stub is quite suitable for modeling such outcomes, though. In
the stub model, one execution for the successful case and another execution for
the failure case can be covered. For verification, one can either use a software
model checker that interprets such non-determinism as two related test execu-
tions, backtracking when necessary [30], or use a run-time verification tool that
analyzes execution traces and then selectively implements fault injection, cover-
ing both outcomes [1].

Client P N—— Server

(Conventional) test combining client and server

Verification tool a Verification tool a
=] =}

Client - > O Server - > O
Verification of client application Verification of server application

Fig. 1. Verification using stubs.

Finally, an approach using stubs for peers is unlikely to find defects in peer
processes. When using stubs to analyze a distributed system, one system is an-
alyzed at a time (see Figure 1). It is therefore advisable to alternate the roles
of SUT and stubs. Even then, a stub that replaces the other processes during
verification may not reflect all possible outcomes of a peer process, especially
when a stub is synthesized from recording one sample execution. This limits the
degree of confidence gained. Nonetheless, stub-based verification is an elegant
and efficient way of analyzing a distributed system, and works especially well

when the target is concurrency within the SUT, and fault injection for the inter-
action between the SUT and the environment. The simplification of peers usually
removes interleavings between the SUT and peers, which can be regarded as a
partial-order reduction. The performance gained by this abstraction enables the
usage of techniques such as fault injection or software model checking, in cases
when they may not scale up to multi-process systems in their entirety.

5 Centralization

Many existing software analysis tools can only explore a single process and are
not applicable to networked applications, where several processes interact. More
often than not, extending the capabilities of these systems towards multiple
processes would take considerable effort. It is often easier to reverse the problem,
and transform multiple processes into a single process that behaves the same as
the original (distributed) application. This approach is called centralization [29].

For centralization, processes are converted into threads and merged into a sin-
gle process. Networked applications can then run as one multi-threaded process.
Figure 2 illustrates the idea: All applications are run inside the same process, as
threads. I/O between applications has to be virtualized, i.e., modeled such that
it can be performed inside the execution environment. In the remainder of this
section, the term “centralized process” will denote all threads of a given process
that was part of a distributed system. In that terminology, three processes are
centralized in the example in Figure 2, and converted into one physical process.

Process 1 process
Server Server
main main
PrOCeSS creates creates
\J \J
Client |~ | Worker E:> Worker
A A
accesses accesses
Process
A J A J
Client |«—S | Worker Worker

Fig. 2. Centralization.

In the remainder of this section, we discuss the treatment of Java [20] pro-
grams. The ideas presented here can be readily generalized to other platforms.
Centralization of a Java program involves four issues [2,29]:

1. Wrapping applications (processes) as threads, and starting them as such.

2. Keeping the address space of each process separate. In object-oriented lan-
guages, this is not a problem for normally created instances, as they are cre-
ated separately for each application. Therefore, this problem is reduced to
the management of global variables, which are contained in the data segment
of C or C++ programs, and in static fields in Java. In Java, each static field
is unique and globally accessible by its class name. This uniqueness applies
per class and thus per VM. In the centralized version, field accesses to static
fields are shared between centralized processes, must be disambiguated. In
addition to that, access to environment variables may have to be wrapped
to present a distinct environment to each centralized process.

3. Static synchronized methods. In Java, instance-level synchronization is per-
formed implicitly by the VM whenever a method is synchronized. For
static methods, synchronization accesses a class descriptor that should again
be unique for each centralized process. In programming languages that have
no built-in concurrency constructs, like C or C++4, global locks are already
transformed in the previous step.

4. Shutdown semantics. When a process is shut down, its run-time environ-
ment closes open sockets and files before exiting. Furthermore, background
(daemon) threads are killed. These actions do not occur if just a thread ter-
minates. After centralization, such clean-up actions therefore do not occur
automatically anymore, unless all centralized processes have terminated.
Likewise, actions that terminate an entire process would end up terminating
all centralized processes in the centralized version; this has to be prevented
to retain the original semantics.

Figure 2 illustrates the overall approach on a typical client-server example.
Clients are single-threaded and communicate with the server. The server uses
one main thread to accept requests, and one worker thread per request to handle
accepted requests. Worker threads on the server side share a global state, such
as the number of active connections. Centralization transforms the given pro-
cesses into one process. In most cases, this transformation results in an additional
wrapper thread that launches the main thread of each process involved.

Once all applications have been centralized, the effects of network commu-
nication have to be internalized, such that they can be analyzed entirely within
the memory space of the centralized program. In this transformation, blocking
and unblocking calls, and bidirectional communication, have to be modeled such
that their semantics are preserved. The remainder of this section covers the nec-
essary program transformations to address the four points listed above, and the
treatment of network communication in the resulting transformed program.

5.1 Program transformations for centralization

The four points above address two underlying problems: combining all processes
into a single process, and adapting the resulting single-process system such that
it exhibits the same behaviors as the original multi-process system.

The first challenge of the required program transformation is to wrap the
main method of each centralized process in its own thread (see Figure 3). The

wrapper code constructs an instance of CentralizedProcess, which extends
the built-in thread class with a virtual process ID. This process ID is used later
on to distinguish the address spaces of the centralized processes [29]. Each ap-
plication is called with its original arguments and receives a distinct process ID.
In Figure 3, the exact arguments to main, and the code that ensures that the
server is ready to accept incoming client requests, are elided.

1 /* Wapper for running a process inside a thread */
public class CentralizedProcess extends Thread {
public int pid;

5 public CentralizedProcess (int procld) {
super () ;
pid = procld;
Pl

10 /* Wapper for conbining all processes */
public class LaunchProcesses {
public static final void main(...) {
new CentralizedProcess(0) {
public void run() {
15 Server. mai n(server_args);
}}.start();

/1 wait for server to be ready

20 for (int i =1; i <= N, i++) {
new CentralizedProcess(i) {
public void run() {
Client.min(client_args);
}}.start();
25} } 1}

Fig. 3. Wrapping and launching centralized processes.

Second, in the implementation of the SUT, access to global data has to
be changed. Code belonging to distinct applications must not (inadvertently)
access the same memory location when centralized. Such a disambiguation of
data accesses can be achieved by changing each global variable to an array,
using the virtual process ID as an index to that array [29]. This transformation
can be automated by tools that rewrite source code or byte code [2,29]. For
complex data structures in Java, care has to be taken that code to initialize the
resulting arrays is generated. For example, an integer field is set to 0 by default
in Java, but an array is not created without corresponding code to create it. The
initialization of array entries to 0 is again automatic in Java.

Third, it is possible in Java to use class descriptors for locking. Class descrip-
tors can only exist once in each run-time environment, so the approach described
above to replicate normal data structures is not applicable in this case. The so-
lution is to use prozy locks instead of a class descriptor [29]. One array of proxy

locks is created for each class descriptor used for locking. Proxy locks are ac-
cessed by virtual process ID as described above. Care has to be taken that class
descriptors are not replaced when they are used for the purpose of reflection. In
that case, the actual class descriptor, which is unique even in the centralization
version of the program, has to be used. The distinction of the two cases, followed
by code transformation, can usually be made by data flow analysis [2,29].

Finally, the semantics of program shutdown should be reflected accurately.
There are two sides of this problem: On the one hand, a call to exit termi-
nates only one process in the original application, but all centralized processes
in the centralized program. On the other hand, resources such as files or net-
work connections should be closed in the centralized version even if the run-time
environment has not terminated yet.

In Java, the first aspect of shutdown semantics can be addressed by chang-
ing calls to System.exit to throwing an instance of ThreadDeath, which
terminates the active thread. Complex cases may need code that manages the
number of active child threads per centralized process, as this necessary to deter-
mine when a process has terminated. This is not always trivial in a centralized
program, and an automatic transformation may not always be possible; for ex-
ample, in Java, there is no direct way to kill one thread from another thread [20].

The second aspect, the automated release of shared resources, can be imple-
mented by writing a custom shutdown handler, which is invoked whenever the
last thread belonging to a centralized process terminates. Both aspects of the
shutdown semantics require extensive run-time data structures to keep track of
the status of each process, and are work in progress [2].

5.2 Networking for the centralized program

Distributed applications need communication mechanisms to interact. Such com-
munication includes the usage of files or shared buffers. These can be modeled
using a shared global array in the centralized version. More typically, though,
communication takes place over a network. Inter-process communication mecha-
nisms involve low-level operating system calls and are often outside the scope of
run-time verification tools. While centralization itself makes multiple processes
visible to a single-process analysis tool, it is also necessary to make inter-process
communication transparent. This can be achieved by providing a communica-
tion model library. The library takes advantage of centralization, and provides
the original communication API while sending messages between threads rather
than (possibly remote) processes. Using this model library instead of the default
library, inter-process communication takes place entirely within the memory of
one application.

While this section only describes network communication in detail, the princi-
ples described are also applicable to other types of inter-process communication.
The common aspects are as follows:

1. In an initial phase, applications set up a communication link. This usually in-
volves one process waiting (listening) for another process to connect. Within

each process, both actions are blocking, and will suspend the current thread

performing this action until the action has completed.

In the centralized program, blocking system calls that require a response from

another process are modeled with inter-thread signals. In Java, wait /notify
pairs in both threads involved, model the “handshake protocol” between cen-

tralized processes.

2. Once communication is established, a bidirectional channel is available for
the transmission of messages. Data that is communicated between applica-
tions can be modeled with constructs that share data between threads, such
as arrays or inter-thread pipes.

For simplicity, network communication is described here as an interaction be-
tween two centralized processes, a client and a server. The server accepts incom-
ing connections at a certain port. The client subsequently connects to that port.
After a connection is established, a bidirectional communication channel exists
between the client and the server. Communication can then be performed in an
asynchronous manner: Underlying transport mechanisms (commonly TCP/IP)
ensure that sent messages arrive eventually (if a connection is available), but
with some delay. This applies to messages in both directions. A connection can
be closed by the client or the server, terminating communication.

Client Server

accept |n|tfal|zes new connection
waits
finishes conn. init.

notifies server

connect

wakes up

! bidirectional comm.
P
1

inter-thread pipe

Fig. 4. Client-server communication.

For establishing the network connection, we use a two-step initialization (see
Figure 4). In the first step, the accept call of the server, the server sets up
its part of the connection and then blocks (waits) on a common semaphore,
which exists in the network model code. When the client calls connect, it
completes its part of setting up the connection, and then unblocks (notifies)
the server. This ensures that the sequence of each original application passing
through blocking library calls is preserved in the centralized version. Upon con-
nection, two unidirectional inter-thread pipes are set up, as available through
java.io.PipedInputStream and java.io.PipedOutputStream. They
model the underlying network communication normally provided by system li-
braries, replacing inter-process communication by inter-thread communication [2].

10

Once the network model for the centralized application is available, the code
that starts the centralized clients after the server is ready, can be provided (see
Figure 3). By inspecting the state of the connection hand-shake, the wrapper
code sees if the server has partially initialized its first connection, and is able to
accept an incoming client request. At that point, the execution of the wrapper
code can continue, and the clients can be launched [2].

To summarize, centralization of networked software consists of program trans-
formation, and a network model library. The resulting centralized application can
be executed by any run-time environment, making the approach very versatile
for verification. While the complexity of all processes combined may be exceed
the capabilities of a heavy-weight analysis tool, centralization is a promising
technique for light-weight run-time verification algorithms, extending the scope
of single-process tools (such as debuggers) to multiple processes.

6 Input/Output Caching

Unlike approaches that execute multiple (possibly transformed) processes inside
the analysis tool, it is possible to execute only one process in the analyzer, and
mitigate the effects of backtracking by caching the input/output (I/0) of the
SUT. This I/O cache approach only runs a single process using the verification
tool. Other processes run in their normal environment, perhaps even on remote
hosts that are not controlled by the test setup. If multiple communication traces
of the SUT are generated by backtracking the state of the SUT, followed by
a different scheduling choice, then the state of peer processes has to be kept
consistent with the SUT. Without enforcing consistency after backtracking, the
state of the SUT would no longer correspond to the state of the communication
protocol, as communication has taken place in the physical world and cannot be
backtracked.

This discrepancy between the state of the SUT and the physical world can be
overcome by caching communication data. A special I/O cache hides backtrack-
ing operations, and subsequent repeated communication, from external processes
(see Figure 5). Communication with external processes is physically executed on
the host until backtracking occurs. After backtracking, previously observed com-
munication data is fetched from the cache [3]. This idea requires an execution en-
vironment that is capable of enumerating, storing, and restoring program states;
software model checkers that virtualize the execution environment provide this
functionality [30].

The I/0 cache keeps track of data that has already been sent to or received
from the network. It determines if an I/O operation occurs for the first time; if
so, data is physically transmitted; otherwise, data is simply read from the cache.
Figure 6 illustrates the principle of the caching approach. Communication data is
kept persistent by the cache, in conjunction with a mapping of (1) program states
to stream positions, and (2) requests to responses [3]. The first mapping allows a
reconstruction of the exact stream state upon backtracking; the second mapping
determines the size of a response that corresponds to a particular request. After

11

Verification tool

el —

Application (SUT)

A
v

1/0 cache

S L] Peer

Target application
(model checked)

Fig. 5.

« S

Peer applications
(running normally)

Verification using 1/O caching.

backtracking, the cache replays duplicate responses from memory. It also verifies
that duplicate requests are consistent. If a different request is sent, because a
different interleaving of threads generates a different output, cached data is no
longer valid for the diverging communication trace [3].

Program state 1/0 Cache

1 -
(z e
1 2 3

3

1

—_
Qi
1 2 3

3

New state: I/O data is stored globally. The program
state is mapped to the positions of each stream. The
size of each message is also stored in a persistent data
structure.

Backtracking: The current read/write positions in
each stream are restored in accordance to the program
state, but stream data is kept persistently. This can
be regarded as rewinding the position of the stream
without erasing it.

Continued exploration: Cached data of previous
I/0 operations is replayed. Output data is compared
to previously cached data. Whenever communication
data differs from cached data, or exceeds it, a new in-
stance of the peer process is created. Previously cached
data is replayed up to the given point, after which a
new branch in the data cache is created (not shown in
this figure).

Fig. 6. Mapping program states to communication data.

Communication diverges

in cases where requests depend on a global program

state, for example, when the value of a global counter is sent over the network.
When communication diverges after backtracking, the state of peer processes is

no longer consistent with the

state of the SUT. In such cases, peer processes have

to be reset to a state that is equivalent to the state of the backtracked SUT.
An equivalent peer state can be obtained by sending the new (diverging) input
to a peer process, starting from the state at which communication diverged.
This requires a new copy of the peer program, running from the point where

communication diverges.

12

An extended cache model starts a new peer process in such cases, and replays
communication data up to the point before the trace diverged. This results in a
tree structure of communication traces. Despite the need to restart peer processes
occasionally, the cache-based solution is still far more efficient than approaches
where the peer processes are restarted each time after backtracking [5]. Work is in
progress to replace restarting peer processes with restoring a recorded snapshot
of all peers, by using virtualization tools [24].

The I/O caching approach analyzes one application in a distributed frame-
work at a time. The other applications run normally. When analyzing a client,
the service it requests may even be hosted on a remote machine that is controlled
by the verification setup. When analyzing a server, the verification environment
has to be able to execute a client on demand, to allow the server to receive re-
quests. In either case, peer processes are not aware that the SUT is not executing
serially, but subject to backtracking. Peer processes can therefore be executed
in their normal test environment. The cache enables the verification tool to use
backtracking to verify the outcome of non-deterministic decisions of the SUT,
without always having to restart all peer processes involved after backtracking.
As only the SUT is subject to backtracking, the caching technique ignores non-
determinism in peer processes. Therefore, the technique is potentially unsound,
but this unsoundness comes at a vast improvement in scalability compared to
sound approaches such as centralization [3].

7 Conclusion

Distributed applications consist of several processes interacting over a network.
Many existing analysis tools are designed to explore the state space of only a
single process. Luckily, there exist several ways to adapt a multi-process program
to a single-process analysis tool.

One approach is to treat each application separately. Interactions with other
applications can be simulated by stubs, which replace the original function call
and return a value suitable for testing. Stubs can be written manually or synthe-
sized from data recorded in a sample execution. The resulting system is simpler
than the original program. For concurrent peer processes, stubs generated from
sample executions provide unsound but efficient verification.

To fully verify a distributed system in a single-process environment, multiple
processes can be centralized, converted into a single process. In such a conversion,
distinctive features of separate processes, in particular, their separate address
spaces, have to be preserved. Finally, a new implementation of the network
API is needed for the centralized program, where inter-process communication
is replaced by inter-thread communication. The resulting program is fully self-
contained, and all effects of communication are visible inside a single process.

As another alternative, network communication can be captured and replayed
on the fly. This requires a caching system that provides transparent interaction
between the system under test and external processes. The cache has to be inte-

13

grated in the analysis tool, though, and the approach may be unsound. However,
it provides the performance advantage of stubs without requiring code synthesis.

Input/output caching requires a special run-time environment, but it has

the advantage of providing a virtual network environment that can communi-
cate with external peers. The other approaches can be used without requiring
adaptations of the verification tools, making it possible to verify multi-process
systems on tools that handle only one process by themselves.

References

1.

10.

11.

12.

C. Artho, A. Biere, and S. Honiden. Exhaustive testing of exception handlers
with enforcer. Post-proceedings of 5th Int. Symposium on Formal Methods for
Components and Objects (FMCO 2006), 4709:26—46, 2006.

. C. Artho and P. Garoche. Accurate centralization for applying model checking on

networked applications. In Proc. 21st Int. Conf. on Automated Software Engineer-
ing (ASE 2006), pages 177-188, Tokyo, Japan, 2006. IEEE Computer Society.

C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Efficient model check-
ing of networked applications. In Proc. TOOLS EUROPE 2008, volume 19 of
LNBIP, pages 22—40, Zurich, Switzerland, 2008. Springer.

C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Tools and techniques
for model checking networked programs. In Proc. SNPD 2008, Phuket, Thailand,
2008. IEEE.

C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M. Yamamoto. Cache-
based model checking of networked applications: From linear to branching time.
In Proc. 24th Int. Conf. on Automated Software Engineering (ASE 2009), pages
447-458, Auckland, New Zealand, 2009. IEEE Computer Society.

C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimiiller. JNuke:
Efficient Dynamic Analysis for Java. In Proc. 16th Int. Conf. on Computer Aided
Verification (CAV 2004), volume 3114 of LNCS, pages 462-465, Boston, USA,
2004. Springer.

T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for
Model Checking C Programs. In Proc. 7th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2001), volume 2031 of LNCS,
pages 268-285, Genova, Italy, 2001. Springer.

E. Barlas and T. Bultan. Netstub: a framework for verification of distributed
Java applications. In Proc. 22nd Int. Conf. on Automated Software Engineering
(ASE 2007), pages 24-33, Atlanta, USA, 2007. ACM.

Y. Ben-Asher, Y. Eytani, and E. Farchi. Heuristics for finding concurrent bugs.
In Proc. Workshop on Parallel and Distributed Systems: Testing and Debugging
(PADTAD 2003), page 288a, Nice, France, 2003.

E. Borger and R. Stiark. Abstract State Machines — A Method for High-Level
System Design and Analysis. Springer, 2003.

D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis,
MIT, 1999.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. IEEE Transactions on Software Engineering, 30(6):388-402,
2004.

14

13

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

S. Chandra, P. Godefroid, and C. Palm. Software model checking in practice: an in-
dustrial case study. In Proc. 24th Int. Conf. on Software Engineering (ICSE 2002),
pages 431-441, New York, USA, 2002. ACM.

E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proc. 22nd
Int. Conf. on Software Engineering (ICSE 2000), pages 439-448, Limerick, Ireland,
2000. ACM Press.

J. Dingel. Computer-assisted assume/guarantee reasoning with VeriSoft. In Proc.
25th Int. Conf. on Software Engineering (ICSE 2003), pages 138-148, Washington,
USA, 2003. IEEE Computer Society.

M. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building your own software model
checker using the Bogor extensible model checking framework. In 17th Int. Conf. on
Computer Aided Verification (CAV 2005), volume 3576 of LNCS, pages 148-152,
Edinburgh, UK, 2005. Springer.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In
Proc. 20th IEEE Int. Parallel & Distributed Processing Symposium (IPDPS 2003),
page 286, Nice, France, 2003. IEEE Computer Society Press.

P. Godefroid. Model checking for programming languages using VeriSoft. In Proc.
24th ACM Symposium on Principles of Programming Languages (POPL 1997),
pages 174-186, Paris, France, 1997. ACM Press.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification,
Third Edition. Addison-Wesley, 2005.

A. Groce and W. Visser. Heuristics for model checking Java programs. Int. Journal
on Software Tools for Technology Transfer, 6(4):260-276, 2004.

K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. Int. Journal on Software Tools for Technology Transfer (STTT),
2(4):366-381, 2000.

G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, and M. Yamamoto. Intro-
duction of virtualization technology to multi-process model checking. In Proc. 1st
NASA Formal Methods Symposium, pages 106-110, Moffett Field, USA, 2009.

B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.
A. Pnueli. The temporal logic of programs. In Proc. 17th Annual Symposium on
Foundations of Computer Science (FOCS 1977), pages 46-57, Rhode Island, USA,
1977. IEEE, IEEE Computer Society Press.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391-411, 1997.

S. Stoller. Testing concurrent Java programs using randomized scheduling. In Proc.
2nd Int. Workshop on Run-time Verification (RV 2002), volume 70(4) of ENTCS,
pages 143-158, Copenhagen, Denmark, 2002. Elsevier.

S. Stoller and Y. Liu. Transformations for model checking distributed Java pro-
grams. In Proc. 8th Int. SPIN Workshop (SPIN 2001), volume 2057 of LNCS,
pages 192-199. Springer, 2001.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2):203-232, 2003.

15

