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Abstract

Testing cannot cover all execution schedules in con-
current software. Model checking, however, is capable
of verifying the outcome of all possible executions. It
has been applied successfully to networked software,
with all processes being analyzed in conjunction. Un-
fortunately, this approach does not scale very well.
This paper presents a partial-order reduction through
which a performance gain of up to 70 % was achieved.

1. Introduction

Model checking explores, computational resources
permitting, the entire behavior of a system under test
by investigating each reachable system state [8], ac-
counting for non-determinism in external inputs, such
as thread schedules. Recently, model checking has
been applied directly to software [2, 3, 6,9, 10, 12, 21].
While model checking has enjoyed some success in the
analysis of single-process systems, analysis of multiple
communicating processes remains difficult.

If nothing is known about the architecture of the ap-
plications analyzed, analysis has to include all appli-
cations. This can be achieved with a model checker
that supports multiple processes [7, 12, 16, 17], or
by transforming multiple processes into a single pro-
cess [1, 4, 19]. Both approaches cover all possi-
ble communication behaviors but suffer from the state
space explosion problem.

To combat the state space explosion, model check-
ers employ various state space reduction techniques.
One of these is partial-order reduction, which ig-
nores redundant interleavings between independent ac-
tions [8, 14]. In software model checkers, these tech-
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niques try to determine if certain program steps (tran-
sitions in the model) result in changes that only af-
fect the current thread, but no other threads. A se-
quence of such steps can be executed atomically, with-
out taking interleavings between different threads into
account [5, 11, 21]. As partial-order algorithms have to
be conservative (they must not eliminate interleavings
producing different results), they do not always opti-
mize the state space as much as theoretically possible.

In Java and many other widespread programming
languages today, a thread has two roles: It is both an
executable task and a data structure [13]. The thread
data structure holds information such as thread name
and ID, and can be extended with other data. A thread
as a task constitutes a light-weight process that shares
the global heap with other threads [20]. A thread can-
not be executed directly, but merely be enabled for exe-
cution. Execution itself may therefore be delayed [13].
If several threads are spawned at the same time, in-
terleavings between start actions and actions of previ-
ously enabled threads are possible. Because one can-
not a priori assume that each thread can be started in-
dependently of other events, conservative partial-order
reduction among such interleavings is not always pos-
sible. We propose such a reduction for cases where this
independence holds. The reduction can be applied di-
rectly to centralized programs [1], making it useful for
a large family of programs.

This paper is organized as follows: Section 2 moti-
vates our partial-order reduction for thread startup. Its
implementation is shown in Section 3. Section 4 lists
experimental results, and Section 5 concludes.

2. Elimination of Thread Interleavings

Parallel programs often delegate tasks to worker
threads. A similar structure also exists in applications



where several processes have been merged (“central-
ized”) into a single application. Such a transformation
wraps processes as threads [19], and is used to model
check networked programs [1]. A direct implemen-
tation of wrapping allows for interleavings between
execution of client threads and the code of the wrap-
per thread that starts each client. This paper presents
a partial-order reduction which, when applied to such
programs, eliminates exploration of such interleavings.
In Java [13] and other widespread programming
languages, execution of a child thread is enabled when
the parent thread calls a special method, such as start.
In this paper, we will refer to this as the spawning of
the target thread. After spawning, a child thread is
ready to run. Execution of the child thread code (the
run method in Java) as a separate task may begin af-
ter an arbitrarily long delay [13]. Other threads may
execute any number of actions in between. Such inter-
leavings can often be ignored during model checking.
Many algorithms assign a subset of the entire prob-
lem to a worker thread, and collect aggregate results
after computation. If individual subsets of data do not
overlap, worker threads can be spawned independently
of whether other worker threads are already execut-
ing. A similar property is inherent in many server ar-
chitectures, where a master thread delegates requests
to different worker threads. In such an architecture,
actions that spawn individual workers threads are of-
ten completely independent of each other. This in-
dependence allows programmers to dispense of lock-
ing at that point, even if subsequent computation uses
global data that requires lock protection. If a number
of threads is spawned in a loop, independently of other
events, then the sequence of spawnings can be consid-
ered to be atomic.! This allows for substantial state
space reductions in model checking. However, the
(safe) absence of mutual exclusion locks usually pre-
vents on-the-fly heap analysis algorithms from safely
deducing that certain instruction sequences can be ex-
ecuted independently of each other. Partial-order re-
duction based on heap reachability often falls short be-
cause intrinsic algorithmic properties (such as disjoint
index ranges or other mechanisms making potentially
unsafe access safe) are not recognized. It is here where
architecture-specific partial-order reductions can en-
hance existing (generic) optimizations. In our case,
the optimization is specific to software model check-
ers, and programming languages using a POSIX-like

'Note that the run methods of different worker threads can still
be interleaved arbitrarily!

thread model in particular. Our optimization requires
only that a loop that spawns multiple threads is inde-
pendent of other actions.

Related work in partial-order reduction for Java-like
programs includes algorithms that reduce interleav-
ings based on lock synchronization [5], and reductions
based on reachability information from which thread-
local data access can be inferred [21]. On a more ab-
stract level, if perfect points-to and alias information
is available, threads can automatically be summarized
by an environment model, allowing each thread to be
checked locally [11]. In our experiments, general al-
gorithms failed to infer the information necessary, re-
quiring architecture-specific enhancements to improve
symmetry reduction.’

Sound application of our specific optimization re-
quires certainty about the program to be analyzed. If
assumptions about an algorithm are incorrect, or its im-
plementation has an unknown flaw, then it is often im-
possible to detect the false assumption at run-time, and
program analysis may be unsound (possibly overlook-
ing flaws in the software).

This limits the applicability of specific optimiza-
tions. Indeed, in the general case, usage of such op-
timizations has to be complemented by prior analy-
sis of the program (such as pointer escape analysis).
However, unconditionality of thread spawning can be
shown relatively easily at compile time. Furthermore,
this assumption always holds for one specific kind of
application: An application resulting from merging
several processes into a single process by a transforma-
tion called centralization [1, 19]. This transformation
uses wrapper threads to execute individual processes.
Spawnings of wrapper threads are independent of each
other. Therefore, when pruning redundant interleav-
ings during model checking, significant gains are pos-
sible. As the transformation can be applied to any
multi-process system implemented in Java, our pro-
posed partial-order reduction is widely applicable.

3. Implementation

Centralized applications spawn independent worker
threads that encapsulate client processes. Our partial-
order reduction exploits this architecture to prune re-
dundant paths.

2 Analysis of heap isomorphism is NP-complete and can there-
fore not be performed exhaustively for the purpose of partial-order
reduction. In the contrary, the overhead of symmetry analysis should
to be smaller than the gain from the resulting state space reduction.
This precludes complex symmetry analyses.



3.1. Application Centralization

Centralization [19] allows to model check multi-
ple processes in a single-process model checker, by
wrapping several processes in a single process. Using
a TCP/IP model library, networked applications can
then be model checked [1]. Wrapper threads encap-
sulating application processes are derived from class
CentrProc.” Wrapper threads behave like normal
threads, except that their data structure is augmented
by a process ID field. This process ID is used to dis-
tinguish the original processes. In the resulting trans-
formed application, the main thread is just a wrap-
per for applications and spawns the original processes.
The wrapper first spawns the server process as a sep-
arate thread (lines 5-7), and waits for it to be ready
for client requests (lines 9-15).* After that, client
processes are initialized and spawned, again within
wrapper threads. Figure 1 shows an example using
one server process and several client processes.” The
code shown in Figure 1 generates two anonymous in-
ner classes [13] of CentrProc, each with their own
run method (lines 5-7 and 18-20). The constructor of
these process wrapper classes (not shown) stores the
process ID.

In the centralized application, spawning of client
threads (lines 22 — 24) may be interleaved with execu-
tion of previously spawned threads. The built-in par-
tial order reduction fails to recognize this redundancy.
Figure 2 illustrates this problem on an example with
two threads. The main thread executes two actions:
startl and start2. Without any restrictions, runl
may already execute prior to start2. After start2,
the run methods of both client threads are eligible
to run. Because start2 is independent of runl, the
schedules on the left hand side of Figure 2 produces
the same result as the schedule on the right hand side.

3.2. Semaphore-based Implementation

Centralization as implemented in recent work [1]
already includes one semaphore, which is used to pre-
vent client processes from connecting to the server be-
fore the server is able to accept requests (lines 9 —15

3Short for CentralizedProcess.

“The socket used here is a socket model class used for central-
ization [1]. Semaphores in Java are implemented by using a boolean
flag in conjunction with wait/notify [13, 15].

SFor brevity, parameters to main have been omitted. The aspect
of centralization discussed here only covers execution of processes
as threads. Several other program transformations are also required
to preserve the semantics of the original program [1, 19].

1 public class Wapper extends Thread {
public static final void main(...) {
CentrProc[] p = new CentrProc()[N];
new CentrProc(0) {

5 public void run() {
new Server (server_args);
}}.start();
/1 wait for server to be ready
try {
10 synchroni zed (Socket.port) {

whil e (! Socket.port.isQOpen) {
Socket. port.wait();

}
15 } catch (InterruptedException e) { }
for (int i =1; i <= N, i++) {
p[i] = new CentrProc(i) {

public void run() {
Cient.min(client_args);

20 )
}
for (|nt i = 1; i <= N; i++){
p[i].start();
P 1o}

Figure 1. Application centralization.
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Figure 2. Possible transition schedules.

in Figure 1). Premature connections would result in
spurious error traces [1].

Our first attempt was to use similar code to avoid
premature execution of client processes. The key
changes in the code (in lines 16-24 in Figure 1) are
shown in Figure 3. In the modified version shown
in the center, a new flag wrapperDone (initial set to
false) is added, which is set to true by the main
(wrapper) thread after its termination. This ensures
that all instances of CentrProc are ready to run at this
point, but their run methods have not yet progressed
past the initial (instrumented) statement.®

The full Java code also requires lock usage and a try/catch
clause for wait, see Figure 1 and [13].



for (int i =1; i <= N i++) {
p[i] = new CentrProc(i) {
public void run() {

Cient.main(args);
s h

} }
for (int i =1; i <= N i++) {

p[i].start(); p[i].start();

noti fyAll();

for (int i =1; i
p[i] = new CentrProc(i) {
public void run() {
if (!'wapperDone) wait();
Client.min(args);

for (int i =1; i

wr apper Done = true;

N, i++) { for (int i =1; i <= N, i++) {
p[i] = new CentrProc(i) {
public void run() {
Verify.ignorelf(!wapperDone);
Cient.min(args);
I
}
for (int i =1; i <= N i++) {
pli].start();

N, i++) {

wr apper Done = true;

Figure 3. Optimization. Left: Original wrapper code to execute a client process; center:
Optimization using wait/notify; right: Optimization using model checker API functions.

3.3. API-based Implementation

The first implementation manages to delay execu-
tion of clients until all clients have been spawned. Un-
fortunately, it falls short of achieving the desired state
space reduction. The wait statement (see Figure 3)
does not eliminate all interleavings but simply sus-
pends each client thread until the wrapper thread has
terminated. Despite the synchronization, it is still pos-
sible to execute all interleavings of the main thread
and the first line of the modified run method. At that
point, the state of all client processes is equivalent (iso-
morphic) under different interleavings. However, the
model checker does not recognize this, and continues
to explore several “copies” of equivalent states. Fur-
thermore, the overhead of wait/notify actually in-
creases the state space.

The desired solution prunes the path on the left hand
side of Figure 2. While the Java language does not
contain a mechanism to achieve this, model check-
ers have internal mechanisms to ignore states that are
considered redundant. The Java PathFinder model
checker [21] (JPF) offers an API method ignoreIf,
which ignores a state if a given condition holds. Our
partial-order reduction uses a flag to suppress all paths
other than one where the wrapper thread finishes first.
No restriction is imposed on the interleavings of the
body of the run methods (after the instrumented code).
Therefore, the full state space of the centralized child
processes is still explored. The resulting code is shown
on the right hand side of Figure 3.” Note that the orig-
inal semaphore that waits for the server to be ready
to accept requests can be replaced with a similar call
to ignoreIf, but the improvement in performance is

"Data races on flag wrapperDone are prevented by declaring it
as volatile [13].

negligible. The check cannot be eliminated, as com-
pletion of the wrapper code does not entail readiness
of the server.

3.4. Final Implementation

Other implementation approaches are possible. JPF
offers an API to check whether the main thread, used
to spawn child threads, is still running. Instead of a
flag, this function can be used to ignore child threads
until the main thread has terminated. We have tried
several other implementation approaches in addition
to the ones shown here, and came up with a final ver-
sion that improved efficiency further by minimizing the
overhead of the partial-order reduction. These final re-
finements improved efficiency by up to another 18 %.
Figure 4 shows the full original wrapper code and the
final optimized version. The code changes in lines 15—
24 concern the partial-order reduction:

1. The call to CentrProc.start is performed just
after the constructor has been called. This dis-
penses with the need of keeping a reference to
all child threads to be started. The fact that
this does not reduce performance seems to be
somewhat counter-intuitive, as it seems to allow
interleavings between thread initializations and
thread spawnings. Nonetheless, in our experi-
ments, the model checker still did not generate
any redundant interleavings, as long as the above-
mentioned barrier (flag wrapperDone) was used.
We assume that the internal partial-order reduc-
tion of JPF recognizes the redundancy between
interleavings of different thread spawnings and
initializations. In isolation, though, this change
achieves very little.



1 public class Wapper extends Thread {
public static final void main(...) {
CentrProc[] p = new CentrProc()[N];
new CentrProc(0) {
public void run() {
new Server (server_args);
}}.start();
/1 wait for server to be ready
try {
10 synchroni zed (Socket.port) {
while (!Socket.port.isOpen) {
Socket . port.wait();
}

}
15 } catch (InterruptedException e) { }
for (int i =1; i <= N i++) {
p[i] = new CentrProc(i) {
public void run() {
Cient.min(client_args);
20 IoE

[&)]

}
for (int i =1; i <= N
p[i].start();

i++) {

Pr}

1 public class Wapper extends Thread {
public static final void main(...) {
static volatile int nProc = O;
new CentrProc(0) {

5 public void run() {
new Server (server_args);
}}.start();
/1 wait for server to be ready
10
Verify.ignorelf(!Socket.port.isQpen);
15 for (int i =1; i <= N i++) {
new CentrProc(i) {
public void run() {
Verify.ignorelf(nProc != pid);
++nProc;
20 Client.min(client_args);

}}.start();
}

nProc = 1;

I

Figure 4. Application centralization: Original code (left) and final optimized version (right).

2. A counter instead of a flag is used to eliminate re-
dundant interleavings of thread spawnings. This
counter is compared to the process ID field (pid)
of each centralized process. Counter nProc im-
poses a total order on thread spawnings. This
method only allows a single thread schedule to
pass the barrier. It is stricter than the flag-based
version, which eliminates redundant interleavings
between thread initializations and spawnings, but
permits multiple interleavings at the beginning of
the run method. Note that interleavings of cen-
tralized processes are not restricted by this opti-
mization: Calls to Client .main can still be made
in any order.

As mentioned earlier, the initial check against a prema-
ture client startup (lines 9-15 in the original code) can
also be streamlined using the JPF API (line 12 in the
optimized code), eliminating lock usage.

For larger instances, the final optimized version has
shown to be about 15 % more efficient than the pre-
vious optimization. In small instances, a performance
loss of up to 3 % was seen, compared to the implemen-
tation using a flag. This shows how small variations in
the implementation of the same design can have a large
impact when model checking a program.

Our approach to partial-order reduction is generic;
however, it requires usage of specific features of the
model checker. The actual code therefore requires
minor adaptations for each model checker. When

our partial-order reduction is used on centralized pro-
cesses, the centralization tool itself does not require
changes. Thread spawning code is contained in a code
template, which can be customized without changing
the centralization tool [1]. Other program transforma-
tions are orthogonal to thread spawning, and not af-
fected by our optimization.

4. Experiments

We used four example benchmarks to test our ap-
proach. The daytime client connects to a server, which
sends a date string back to the client. Multiple clients
initiate concurrent requests.

HTTP refers to a scenario modeled after Jget [18].
Jget is a multi-threaded download client, which issues
a number of concurrent partial download requests in
addition to the main request. Depending on which
task finishes first, Jget either uses the entire file down-
loaded by the main thread, or it assembles the file from
the pieces returned by the partial downloads. Essen-
tially, the worker threads are in a (controlled) race con-
dition against the main thread. This creates the chal-
lenge of ensuring that the complete file is received
when the program shuts down. As the original program
was too complex for model checking using centraliza-
tion, we created a new version specifically for this case
study. In this version, a simpler centralization mech-
anism that does not require process IDs could be em-
ployed, exploiting application-specific properties such



as the lack of shared data in static fields [1, 19]. In
addition to an abstract HTTP protocol, the code also
features a simplified socket mechanism. The simplifi-
cation consists of closing the model server socket (the
open port) on the client side instead of the server side.
This change allowed us to eliminate session manage-
ment code in the socket abstraction, making the system
small enough for model checking.

HTTP features a single-threaded web server. Be-
cause the model checker still accounts for all possi-
ble delays in the responses from the server, the state
space explored in the client code is equivalent to what
is encountered when using a genuine, concurrent web
server. Such a concurrent web server was used (with
the same concurrent client) in case study HTTP2. Both
HTTP and HTTP2 include only a single client pro-
cess. Even though the client process utilizes multi-
ple threads, these threads are not spawned indepen-
dently of each other. These two test cases show the
overhead of our instrumentation in the case when the
partial-order reduction is ineffective because it cannot
be applied to multiple calls to start.

The chat server, described in more detail in [1],
sends the input of one client back to all clients, in-
cluding the one that sent the input. The architecture is
modeled after existing servers and uses worker threads
to serve each client. The size of a test scenario can
be varied by an optional limit on the number of client
connections allowed by the server.

All experiments were run on an Intel Core 2 Duo
Mac 2.33 GHz with 2 GB of RAM, running Mac OS
10.4.11. JPF version 4, revision 353 was used, with
1 GB of memory. The standard properties used by
JPF were verified: We checked against deadlocks, un-
caught exceptions, and assertion violations. No pro-
gram contained a critical error that would have termi-
nated the state space search by JPF and resulted in an
error message. JPF therefore investigated the full state
space, allowing for a comparison of the full state space
explored without and with our partial-order reduction.?

Table 4 compares the original centralized code with
our optimized centralization. As can be seen, our
partial-order reduction is very effective for fully cen-
tralized programs containing multiple embedded client
processes. The state space could be reduced by up to
70 %. Several larger benchmarks that could previously
not be analyzed can now be explored fully. HTTP
and HTTP2 constitute the worst-case scenario where

8Faulty versions result in very short error traces [1], with or with-
out using our partial-order reduction.

only one client thread is spawned. In these cases, our
partial-order reduction cannot reduce the size of the
state space further and adds an overhead of about 20 %.
We consider this overhead acceptable compared to the
possible gains, and due to the fact that it is known a pri-
ori how many client processes are tested. Our partial-
order reduction requires no manual transformation and
is applicable to any centralized program [1].

5. Conclusions and Future Work

Model checking explores the outcome of all possi-
ble thread and communication schedules in concurrent
software. However, analysis of complex systems suf-
fers from the state space explosion problem. Partial-
order reductions are needed to eliminate redundancy.

We have proposed a partial-order reduction mech-
anism that successfully avoids interleavings between
independent thread spawnings, exploiting architectural
properties of an application. The required properties
always hold for centralized applications, where mul-
tiple processes have automatically been transformed
into a single process, allowing for automated use of
our optimization. The resulting speed-up is consider-
able in any cases where several threads are spawned
at the same time. Future work includes investigating
the applicability of similar transformations to different
families of programs.
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