
Precondition Coverage in Software Testing

Cyrille Artho

AIST, Osaka, Japan

c.artho@aist.go.jp

Quentin Gros

University of Nantes, Nantes, France

quentin.gros@etu.univ-nantes.fr

Guillaume Rousset

University of Nantes, Nantes, France

guillaume.rousset@etu.univ-nantes.fr

Abstract—Preconditions indicate when it is permitted to use
a given function. However, it is not always the case that both
outcomes of a precondition are observed during testing. A
precondition that is always false makes a function unusable; a
precondition that is always true may turn out to be actually an
invariant.

In model-based testing, preconditions describes when a transi-
tion may be executed from a given state. If no outgoing transition
is enabled in a given state because all preconditions of all outgoing
transitions are false, the test model may be flawed.

Experiments show a low test coverage of preconditions in the
Scala library. We also investigate preconditions in Modbat models
for model-based testing; in that case, a certain number of test
cases is needed to produce sufficient coverage, but remaining cases
of low coverage indeed point to legitimate flaws in test models or
code.

Keywords—Unit testing, model-based testing, preconditions,
coverage

I. INTRODUCTION

Contracts in software specify under what preconditions
a function may be used, such that it guarantees a well-
defined outcome (postcondition) [13]. Eiffel [12] introduced
such contracts as a language element by distinguishing be-
tween preconditions (that must be fulfilled by the caller),
postconditions (that are guaranteed by the function), and
invariants (consistency conditions that guarantee a well-defined
state of a component). Other programming languages like
Java use exceptions such as IllegalArgumentException or
IllegalStateException to codify preconditions, in addition to
assertions, which can represent preconditions, invariants, or
postconditions [11]. The library of the Scala programming
language [16] features assertions, assumptions (for static ver-
ification), postconditions, and the require function, which
automatically throws an IllegalStateException if a requirement
(precondition) is violated [17].

Preconditions are also used in model-based testing. In
that domain, many tools use extended finite state machines
(EFSM) [9] as a mechanism to specify the behavior of the
system under test (SUT). In an EFSM, transitions relate to pairs
of states; the SUT must be in the right state for a transition
to be executable. In addition to that, a transition function may
optionally feature an enabling function (a precondition), which
must hold for a transition to be executable. ModelJUnit [20]
and Modbat [2] are two model-based testing tools that support
such enabling functions.

Test coverage is an indicator of defect detection ability.
High coverage is difficult to achieve [14]. We argue that
preconditions should have full branch coverage (i. e., both the

successful and the failing outcomes should be tested). A true
outcome implies that the given function can be executed in at
least one setting; a false outcome ensures that at least some
cases that violate the requirements exist and are caught. In
the context of model-based testing, the situation where all
preconditions (in the test model) of all outgoing transitions
are false, forces a test case to terminate. This situation is not
always intentional, so detecting such cases may reveal flaws
in a test model.

Therefore, a precondition that is always true or always false
indicates a problem. The problem may be that the existing test
suite does not cover enough behaviors, so more diverse test
cases are needed. However, it may also be the case that a
precondition is always true, and hence actually an invariant;
in this case it should be encoded as such. If a precondition is
always false, the given function is unusable, as the precondition
is too strong.

The intrinsic difficulty of achieving very high code cov-
erage [14] may be responsible for the low coverage of such
preconditions in current code. In this paper, we present the
results of preliminary experiments on the Scala collection
library and various Modbat test models. We show that in
existing code, failed preconditions are almost never observed
during testing. In test models, after a sufficient number of test
cases has been generated, preconditions that are always true or
always false provide valuable insights into flaws in the model.
Corrections entail either a conversion of a precondition to an
invariant, or strengthening or weakening a precondition.

The remainder of this paper is organized as follows:
Section II shows related work. Our experiments are described
in Section III. Section IV concludes and outlines future work.

II. RELATED WORK

In earlier work, we have investigated how parts of a system
are never covered because of human bias by the modeler [4],
which causes the model to exclude valid test sequences. For
object-oriented software, test cases are often designed to cover
possible exceptions, but tend to stop at the first exception [8],
[19]. This bias was confirmed in our case studies for designing
models for network libraries [2], [3]. In this work, we present
evidence for a bias for using valid parameters or states over
invalid ones, which again shows that incorrect uses of libraries
(including multiple incorrect uses) are not sufficiently consid-
ered by human testers.

Instead of being poorly tested, a precondition that always
holds may simply be too general to be falsifiable. In hardware
analysis, the problem of properties being trivially true has been
well-known for two decades [7]. So-called vacuous properties



Table I. OCCURRENCES OF PRECONDITIONS IN THE SCALA LIBRARY.

Entire library Collections
Occurrences Files Occurrences Files

require statements 24 16 15 9
IllegalArgumentException 38 17 22 9
IllegalStateException 5 4 2 1

All preconditions (Scala) 67 31 (5 %) 39 18 (6 %)

Eiffel (for comparison) 3318 407 (59 %) 2236 230 (49 %)

include implications of type a → b, where the antecedent a is
never true. Regardless of the value of b, such a property holds.
However, because the second part of the formula becomes
irrelevant, this case of an “antecedent failure” is likely not
what the modeler intended [6].

In software testing, modified condition/decision coverage
(MC/DC) and similar test coverage criteria try to ensure
that each part of a complex conditional statement is actually
relevant for the outcome of a test suite [1]. For each location
in the software code where compound conditionals exist,
MC/DC demands that, among other criteria, each condition
in a decision is shown to independently affect the outcome of
the decision [21]. If a condition has no effect on the outcome
of a decision, it is likely incorrect (too weak) or redundant. The
application of coverage criteria on the model level is emerging
work, with only a few relatively simple coverage criteria such
as state, transition, and path coverage, being commonly used
so far [1]. This work shows that precondition coverage merits
being included in such metrics.

III. EXPERIMENTS

We analyze the outcome of preconditions in the regression
test suite of Scala 2.11.7 [15] and several transition-based test
models written for Modbat [2]. We chose the Scala library
because it offers Eiffel-like contracts that can also be used by
Modbat models, which itself is based on Scala as well.

A. Scala collection library

The Scala base library contains 579 files in version 2.11.7.
Almost half of these (288 files) represent collections, algorith-
mic data structures such as lists, sets, and maps, and functions
to access and modify them, such as iterators and filters.

Unfortunately, contracts were introduced relatively late
(around version 2.8) [10], when much of the Scala library was
already written. Requirements (preconditions) are therefore
relatively rare. Table I shows that require statements occur
only 24 times in the entire library, spread over 16 files.

Other ways to express invalid uses of a function, such as the
use of IllegalArgumentException or IllegalStateException, are
also rather uncommon (see Table I). We count these constructs
together but elide IndexOutOfBoundsException, which is more
parameter-specific and occurs 57 times in 41 files (in the col-
lections, 35 times in 19 files). Most of the preconditions are in
the collection classes, where 6 % of all files contain at least one
such precondition. We compare this to the Eiffel library [12],
where the base libraries contain such data structures and other
helper functions in 468 files, which contain 2236 require

statements in 230 files. The entire Eiffel library of 682 files,
contains 3318 require statements in 407 files. In Eiffel, the
use of preconditions is therefore quite pervasive while they are
still rather scarce in Scala.

 0

 2

 4

 6

 8

 10

 12

 14

10
00

 5
00

0

 1
00

00

 2
00

00

 5
00

00

 1
00

00
0

 0

 20

 40

 60

 80

 100

 120

 140

N
u

m
b

e
r 

o
f 
w

a
rn

in
g

s

T
im

e
 [
s
e

c
]

Number of test cases

LinkedList: Number of warnings
ArrayList: Number of warnings

LinkedList: Test execution time
ArrayList: Test execution time

Figure 1. Precondition coverage and test generation time for collec-
tion/iterator models.

We instrument the code to log all 39 uses of require
statements, IllegalArgumentException, and IllegalStateExcep-
tion in the Scala collections. The instrumentation analyzes pos-
itive outcomes, where the requirement is fulfilled, and negative
outcomes, where a requirement fails. We run the instrumented
code with Scala’s unit tests (build target test.junit), and
with all its tests (build target test, using a variety of test
harnesses).

Table II summarizes the results. Cases where a positive
outcome is not covered, and cases where negative outcomes
have been observed, are shown in bold. Some requirements
were never tested at all, neither for the positive or negative
case; this concerns 17 out of 39 requirements when running all
unit tests, and 11 cases after all tests have been run. Negative
outcomes are hardly ever triggered by unit tests (only two cases
are covered), while seven cases are covered after all tests have
been run.

B. Modbat test models

Modbat [2] is a model-based test tool that allows a user
to describe the usage of a system under test (SUT) using
extended finite-state machines [9]. Such state machines allow
for optional preconditions in a transition, which have to hold
for a transition to become executable when the model is in the
given state. Preconditions in Modbat models are executed at
run-time and evaluated before the body of a transition function
is executed. The remainder of the transition typically calls the
SUT and verifies the outcome of its operation. Recent versions
of Modbat evaluate the outcomes of all executions of each
precondition in the model, and issue a warning if the outcome
is always the same.

1) Collections: Java collections include lists, sets, and
maps, and iterators that can access elements one by one.
Iterators can only be used as long as the underlying collection
has not been modified. The combination of list modifications
and iterator usage yields a fairly complex model [5]. For a
model representing lists, the number of warnings drops sharply
with an increasing number of tests, as more model states are
covered (see Figure 1). Test generation time is linear in the
number of tests, as all tests have a similar execution time.



Table II. TEST COVERAGE OF REQUIREMENTS IN SCALA COLLECTION LIBRARY.

Class Method Unit tests All tests

Passed Failed Passed Failed

Iterator range 11 0 22 0

GroupedIterator constructor 419 0 9,587 0

GroupedIterator.copyToArray 0 0 10 6

Leader.finish 1 0 1 0

SeqViewLike Patched.update 0 0 3 0

convert.Wrappers SetWrapper.constructor 0 0 0 0

MapWrapper.constructor 0 0 0 0

generic.GenTraversableFactory range 2,149 0 387,227 1

generic.GenericTraversableTemplate transpose 1,342 0 366,759 0

immutable.BitSet + 4,200 0 6,797 0

− 716 0 847 0

immutable.NumericRange check 37,870 7,106 37,906 7,107

count 73,560 0 524,485 0

immutable.Range count 32,346 0 32,359 0

length 106,341 705 8,212,426 1,122

numRangeElements 137,833 0 47,091,134 196

validateMaxLength 120,041 0 119,869,845 0

immutable.StringLike parseBoolean 0 0 0 0

parseBoolean2 0 0 0 0

immutable.Vector cleanLeftEdge 0 0 0 0

cleanRightEdge 0 0 0 0

requiredDepth 112,308 0 712,537 0

VectorPointer.copyRange 0 0 0 0

VectorPointer.getElem 156,632 0 14,016,297 0

VectorPointer.gotoNextBlockStart 0 0 0 0

VectorPointer.gotoNextBlockStartWritable 0 0 0 0

VectorPointer.gotoPos 0 0 0 0

VectorPointer.gotoPosWritable 0 0 0 0

mutable.AVLTree Node.insert 0 0 1,027,648 0

mutable.ArrayBuffer remove 5,588 0 191,100 0

mutable.BitSet add 10,553 0 1,112,010 0

ensureCapacity 11,709 0 1,472,708 0

remove 2,033 0 361,746 0

mutable.LinkedListLike insert 0 0 2 1

tail 15,299 0 520,712 0

mutable.ListBuffer remove 0 0 0 1

mutable.MutableList tailImpl 3 0 3,701 0

mutable.ResizableArray reduceToSize 7,490 0 360,544 0

parallel.mutable.ParArray constructor 0 0 849 0

Total 838,444 7,811 196,319,262 8,434

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
00

 5
00

0

 1
00

00

 2
00

00

 5
00

00

 1
00

00
0

 0

 20

 40

 60

 80

 100

N
u
m

b
e
r 

o
f 

w
a
rn

in
g
s

T
im

e
 [

s
e
c
]

Number of test cases

java.nio: Number of warnings
java.nio: Number of warnings after fix

java.nio: Test execution time

Figure 2. Precondition coverage and test generation time for java.nio
models.

2) Networking: This model tests
java.nio.channels.ServerSocketChannel, a key component
for non-blocking network operations in the Java library [18].
This model was created before Modbat issued warnings related
to the same outcome of preconditions over all tests [2], [3].
Figure 2 shows the number of warnings issued by Modbat
against an increasing number of tests, and the test generation
time.

At first, the number of warnings increases as the number
of tests grows. This is because with very few tests, model
coverage is low, so certain transitions are never executed,
and hence no warnings are issued. The number of warnings
peaks around 5,000–10,000 tests in this case. After that, the
number of warnings decreases slightly with more tests, as they
reveal new system and model states and therefore cover more
precondition outcomes. After 50,000 tests, we hit a fixed point.
Note: test generation time increases after 20,000 tests because
the system needs time to “recycle” available network ports.

Manual inspection of the warnings shows three reasons for
the six warnings (see Table III):

1) Preconditions are always true because they are estab-
lished in the constructor of the model. In these cases,
they can be changed to assertions to guard against
changes in the model that would no longer establish
these invariants.

2) The precondition is already checked in (a) the caller
or (b) the preceding transition. As a model transition
is only executed if all preconditions hold, any precon-
dition that is checked twice will always evaluate to
true when checked more than once, as false outcomes
prevent further checks. These redundant checks can
also be changed to assertions but may have to be
changed back to preconditions if the model structure
changes.



Table III. REASONS WHY PRECONDITIONS EVALUATED TO ONLY ONE

OUTCOME.

Occurrences Reason

4 Always true (established in constructor)

1 Precondition already checked by caller

1 Precondition checked in preceding transition

IV. CONCLUSIONS AND FUTURE WORK

Preconditions describe the conditions under which a func-
tion may be used. In the Scala library, preconditions are
currently not widely used, and poorly tested; some precon-
ditions are never covered, while others are only tested for the
successful case. In some of these cases, the test suite is too
weak, in others, the preconditions is too general and may never
fail, regardless of the input or system state.

In test models, preconditions describe when a test action
is executable. If only one possible outcome of a precondition
is covered even after many tests, this shows a likely flaw. A
precondition that always fails may have to be relaxed to allow
it to succeed; a precondition that never fails should probably
be encoded as an assertion, to check the expected state of the
test model. We found that these flaws exist in real test models.

Future work includes the analysis of mutually exclusive
preconditions in test models. If all preconditions of all outgo-
ing transitions of the current state are mutually exclusive, the
choice of the next transition in that test model is deterministic.
This is often a desirable trait for a test model or at least parts
thereof. Validating this trait at run-time may provide further
insight into possibly incorrect preconditions.

ACKNOWLEDGEMENTS

This work was supported by kaken-hi grants 23240003 and
26280019 from the Japanese Society for the Promotion of
Science (JSPS), and Envoleo scholarships of the University
of Nantes.

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, New York, USA, 1 edition, 2008.

[2] C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe, and
M. Yamamoto. Modbat: A model-based API tester for event-driven
systems. In Proc. 9th Haifa Verification Conference (HVC 2013),
volume 8244 of LNCS, pages 112–128, Haifa, Israel, 2013. Springer.

[3] C. Artho, M. Hagiya, R. Potter, Y. Tanabe, F. Weitl, and M. Yamamoto.
Software model checking for distributed systems with selector-based,
non-blocking communication. In Proc. 28th Int. Conf. on Automated

Software Engineering (ASE 2013), Palo Alto, USA, 2013.

[4] C. Artho, K. Hayamizu, R. Ramler, and Y. Yamagata. With an open
mind: How to write good models. In Proc. 2nd Int. Workshop on Formal

Techniques for Safety-Critical Systems (FTSCS 2013), number 419 in
CCIS, pages 3–18, Queenstown, New Zealand, 2014. Springer.

[5] C. Artho, M. Seidl, Q. Gros, E. Choi, T. Kitamura, A. Mori, R. Ramler,
and Y. Yamagata. Model-based testing of stateful APIs with Modbat. In
Proc. 30th Int. Conf. on Automated Software Engineering (ASE 2015),
pages 858–863, Lincoln, USA, 2015. IEEE.

[6] D. Beatty and R. Bryant. Formally verifying a microprocessor using
a simulation methodology. In Proc. 31st Conf. on Design Automation
(DAC 1994), pages 596–602, San Diego, USA, 1994.

[7] I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An
industry-oriented formal verification tool. In Proc. 33rd Conf. on Design

Automation (DAC 1996), pages 655–660, Las Vegas, USA, 1996.

[8] G. Calikli and A. Bener. Empirical analyses of the factors affecting
confirmation bias and the effects of confirmation bias on software
developer/tester performance. In Proc. 6th Int. Conf. on Predictive
Models in Software Engineering, PROMISE 2010, pages 10:1–10:11,
New York, NY, USA, 2010. ACM.

[9] K. Cheng and A. Krishnakumar. Automatic functional test generation
using the extended finite state machine model. In Proc. 30th Int. Design

Automation Conference, DAC 1993, pages 86–91, New York, NY, USA,
1993. ACM.

[10] J. Eichar. Daily Scala: Assert, require, assume, 2010. http://daily-scala.
blogspot.jp/2010/03/assert-require-assume.html.

[11] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java
Language Specification, Java SE 8 Edition. Oracle, 2015.

[12] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle River,
USA, 1992.

[13] Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–
51, 1992.

[14] Audris Mockus, Nachiappan Nagappan, and Trung T Dinh-Trong. Test
coverage and post-verification defects: A multiple case study. In
Empirical Software Engineering and Measurement, 2009. ESEM 2009.
3rd International Symposium on, pages 291–301. IEEE, 2009.

[15] A. Moors, S. Tisue, J. Zaugg, Ichoran, L. Rytz, V. Ureche, D. Shabalin,
E. Burmako, H. Miller, D. Wall, I. Dragos, A. Prokopec, and J. Bogucki.
The Scala programming language, 2015. http://www.scala-lang.org/.

[16] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A
Comprehensive Step-by-step Guide. Artima Inc., USA, 2nd edition,
2010.

[17] Martin Odersky. Contracts for Scala. In Howard Barringer, Yliès
Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace,
Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors, Proc. 1st

Int. Conf. on Run-time Verification (RV 2010), volume 6418 of LNCS,
pages 51–57. Springer, 2010.

[18] Oracle. Overview (Java platform SE 8), 2015. http://docs.oracle.com/
javase/8/docs/api/overview-summary.html.

[19] R. Ramler, D. Winkler, and M. Schmidt. Random test case generation
and manual unit testing: Substitute or complement in retrofitting tests
for legacy code? In 36th Conf. on Software Engineering and Advanced
Applications, pages 286–293. IEEE Computer Society, 2012.

[20] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers, Inc., San Francisco, USA,
2006.

[21] Y. Yu and M. Lau. A comparison of MC/DC, MUMCUT and several
other coverage criteria for logical decisions. J. Syst. Softw., 79(5):577–
590, May 2006.


