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Abstract—Many text mining tools cannot be applied directly
to documents available on web pages. There are tools for
fetching and preprocessing of textual data, but combining
them in one working tool chain can be time consuming. The
preprocessing task is even more labor-intensive if documents
are located on multiple remote sources with different storage
formats.

In this paper we propose the simplification of data prepara-
tion process for cases when data come from wide range of web
resources. We developed an open-sourced tool, called Kayur,
that greatly minimizes time and effort required for routine
data preprocessing steps, allowing to quickly proceed to the
main task of data analysis. The datasets generated by the
tool are ready to be loaded into a data mining workbench,
such as WEKA or Carrot2, to perform classification, feature
prediction, and other data mining tasks.

Keywords-automation; information extraction; natural lan-
guage processing; web content mining

I. INTRODUCTION

Textual information located on the Internet is usually
designated for a human reader, but as the growth rate
of available data is increasing, more and more automated
tools are used to process such data to get insight about its
properties or discover trends and patterns. Although some
web resources are designed to facilitate machine processing
by providing an Application Program Interface (API) to
export data in structured formats, such as XML, CSV, or
JSON, on many web resources useful information is still
available only in HTML format. This makes automated
processing more difficult, because, unlike XML, HTML tags
do not describe the data they contain.

Web mining tools that extract data from HTML docu-
ments usually require a user to set up the extraction rules
for each data field; the navigation rules to define transition
between documents; and the integration rules to translate
extracted data into the desired format. This configuration
step may be labor-intensive, especially when dealing with
multiple web resources of different structure. Partially be-
cause of that reason, there are web resources to which text
mining has never been applied to.

Although web resources are different, some common pat-
terns can be found in structure of information they provide.

If we leverage these similarities, we may arrive at substantial
simplification of web mining application to a wide range of
remote sources. In this work, we argue that by imposing
certain restrictions on web resources and data, web mining
process can be simplified, so that dataset construction step
can be accomplished quickly and conveniently.

First, we suggest that data to be analyzed are a collection
of texts written in a human language, so that it can be
stored in the uniform format (see Section III-A). This allows
the fetched data to be stored uniformly, which improves
reusability and makes possible to generate a dataset using
subsets of documents that span over multiple web resources.

Second, we focus only on web resources that provide
a search engine to find documents, and assign to each
document a unique identifier. These conditions are met by
many resources, because a web resource that provides to a
user a collection of documents usually provides means to
locate documents of interest as well. If these conditions are
met, the navigation between documents can be automated,
so that extraction and navigation rules can be simplified and
their number can be substantially reduced.

We developed an open-sourced tool, called Kayur [1],
to demonstrate these concepts. The tool can be applied
to web resources that satisfy the mentioned conditions. It
fetches documents from the Internet, translates them into
the uniform format, and stores the results in a relational
database. Textual data of stored documents are converted
using underlying OpenNLP library [2] into a filtered list
of normalized words that are then represented numerically
according to the vector space model [3] with specified
weight method. The resulting vectors are converted into
an input format of a data mining tool (WEKA [4], Car-
rot2 [5], or LDA/HDP topic modeling tools by J. Chang
and C. Wang [6]).

The tool demonstrates a shortcut to quickly generate
a dataset for text mining needs from web resources that
satisfy certain properties. Kayur requires minimum user
input, has the most commonly used settings preconfigured,
and provides the intuitive user interface, which makes it
useful even for people unfamiliar with data preparation and
preprocessing steps. By minimizing routine work, Kayur
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Figure 1. Workflow of Kayur

allows to quickly proceed to the most important step of data
analysis. The tool itself and its source code is available on
its home page [1].

The rest of this paper is structured as follows: Section II
provides a brief theoretical background on text mining
concepts; Section III explains Kayur’s architecture and im-
plementation; Section IV presents examples of the usage of
our tool and its evaluation; Section V discusses the related
projects; Section VI summarizes the obtained results and
presents directions for future work.

II. BACKGROUND

A. Web mining and information extraction

Data mining is the process of automatic analysis of large
stores of data to discover patterns and trends. Classification,
clustering, association learning, and numeric prediction are
the main types of information analysis in data mining [7].
The use of data mining techniques to extract and analyze
information in web documents is known as web mining.

Because document structure greatly differs between web
resources, one of the straightforward adopted approaches
to extract information was to write a stand-alone program
(script) for each resource using programming language such
as Perl [8]. However, better methods were developed in
web information extraction area, and such programs were
superseded with extractors (wrappers) that allow working
with multiple web resources by describing unique properties
of sources with extraction rules [9].

However, not all the extracted data are immediately ready
to be used by a data mining tool. Numeric values and various
identifiers (names, locations) can be used as is most of the
time, while texts written in human languages usually require
additional processing using text mining methods.

B. Text mining and the vector space model

When data mining is applied to human-written texts, the
term text mining is usually used instead. Text mining has
many important applications, including analysis of stock
reports, product manuals, business and normative docu-
ments [10]. It is also proved to be useful for bug report

analysis, including bug report classification [11] [12], detec-
tion of duplicates [13], and prediction of certain properties
of software flaws [14].

The standard approach for applying data mining tech-
niques to textual data is to transfer the textual data into
a vector space model. This model represents the text as
algebraic vectors in a multidimensional space, to allow
calculation of similarities between documents using linear
algebra operations. The dimension on the vector space
equals the number of distinct terms (words) in a document
collection. Each document is represented as a vector with
components reflecting the frequency of a particular term in
the document.

The values assigned to vector components depend on the
term weighting method being used. For the Boolean method,
the value of a document vector component is zero if the
corresponding term does not occur in the document, and
one otherwise. For the raw frequency method, the value
assigned to a component is the number of occurrences of
the corresponding term in the document.

The term frequency method differs from the raw frequency
method in that the assigned frequencies are normalized by
dividing on the maximum number of occurrences of a term
in the document. The most widely used term frequency / in-
verted document frequency (TF-IDF) method considers both
term frequency in the current document and its frequency
in the whole document collection. There are several ways to
calculate TF-IDF; Kayur uses the following formula [15]:

wij = tfij × log N
dfi

,

where tfij is the term frequency of the term ti in the
document dj , dfi is the document frequency of the term ti ,
and N is the number of documents in the whole collection.

III. TOOL ARCHITECTURE AND IMPLEMENTATION

Kayur is an open-sourced cross-platform tool written
in Java. It comprises: 1) the information extraction (web
import) component to fetch data from the Internet, translate
them into the uniform document format, and store the result
in a database; 2) the text processing component to load
documents from the database and process their contents;



and 3) the export component to convert the results of text
processing into formats of data mining workbenches. The
complete workflow is shown on Figure 1.

In this section, we first describe the uniform document
format, and then proceed to the description of each men-
tioned component.

A. The uniform document format

The structure of textual data to extract differs between
web resources. For example, bug reports contain attributes
such as “status” or “priority”, while a firm catalog has fields
“firm name”, “location”, and “phone”. Because of that, data
from different sources are not usually stored uniformly.

To simplify the configuration, storage, and access to
documents obtained from the web, we propose the uniform
format that describes a document as having the title, content,
comments, date, and metadata. These fields are chosen to be
appropriate for most textual documents on the Internet. The
first three fields are designated to store textual data that need
to be preprocessed before they can be used in a data mining
tool. The metadata field is a storage for all other parameters
as name/value pairs; it is designated for data that do not
require processing and can be used as is.

The main benefit of such format is that configuration
process is greatly simplified, so that it can be performed even
by non-trained people. Another benefit is that documents
from multiple web resources are stored uniformly, and hence
they can be processed and analyzed together.

B. Information extraction

The information extraction from a web resource is the first
step towards dataset construction. This step often requires
extensive configuration, as tools need to know the location
and type of data to extract, how to navigate between docu-
ments, and what the structure of results is.

We propose a simplification of this process in the case
when a web resource has two properties: a) every document
in the collection has a URL that includes a unique identifier,
and b) the web resource has a search engine to locate doc-
uments. Many web resources satisfy the second condition,
as they are oriented for a human reader and hence provide
convenient means to find documents of interest. The first
property is usually satisfied for web resources that allow to
view each document in a separate page.

If the mentioned conditions are satisfied, the number
of extraction and navigation rules that user is required to
specify can be significantly reduced. Moreover, the format of
rules can also be simplified if the uniform format (discussed
above) is being used.

1) Navigation rules: Suppose that the first condition is
satisfied, so that the URL of each document has the form
http://...id..., where id is a numeric or string
identifier.

Table I
THE MINIMUM NUMBER OF PARAMETERS TO DEFINE NAVIGATION

Navigation Type Extraction Rules URL patterns
Incremental 0 1
Search-based 1 3

If an identifier is a number, then the navigation between
documents can be simply defined by getting next the doc-
ument with an identifier incremented by some predefined
value. No extraction rules are need to be provided, and a
user only need to define one URL pattern that leads to a
document.

When identifiers are strings, the list of available identifiers
can be obtained using a search engine of the web resource.
A typical search engine provides search results as a list
of records that either lead to the desired documents or
contain their identifiers. These identifiers (links) can then
be collected automatically. The only parameters that user
need to define is one extraction rule (to get an identifier
(a link) from a search result), and three URL patterns: for
a document, the initial search page, and a next page with
search results. The Table I summarizes the required user
input for both cases.

2) Extraction rules: Extraction rules specify which part
of a web document is to be extracted. The format of extrac-
tion rules and the way they are set up varies between tools;
the rules can be assigned manually or (semi-)automatically
using machine learning methods.

In case of manual rule set up, the popular choice is
the use of XPath-based expressions, which denote the full
path inside the DOM tree of a document to a particular
node. XPath notation is especially useful for structured XML
documents, as tag names revealing the data being stored;
however, for generated HTML documents identification of
data by HTML attributes such as id and class is more
common. We propose to use the following notation that
simplifies the manual input of extraction rules.

rule ::= ‘[’token‘]’ | ‘[’token‘]’ rule | ‘[’token‘]’ ‘*’ rule
token ::= name | name ‘,’ type | name ‘,’ type ‘,’ index
type ::= ‘id’ | ‘tag’ | ‘cls’ | ‘attr’ | ‘title’

The type specifies the type of DOM element (defaults
to ‘id’), and index specifies its position among siblings
(defaults to zero). The star symbol indicates that the token
denotes a set rather than a single element; all subsequent
tokens are applied to every DOM element in the set.

An extraction rule may be accompanied by a filtering
expression that allows omitting unneeded part of the data
extracted from a DOM element.

3) Information Extraction Algorithm: Once extraction
rules are specified, the web import component fetches bug
reports from a remote source in the following way:



1) If numeric identifiers are being used, the identifier
of the first document to get is read from settings;
otherwise, the list of all available identifiers is obtained
by parsing search results.

2) The URL of the next document to fetch is determined
by its identifier.

3) The web page with the given URL is parsed, and fields
of a structure in the uniform document format are filled
according to the extraction rules of the current module.

4) The structure holding the document is stored in the
database.

5) The process is repeated until all available documents
are processed, or a user-defined limit is reached.

C. Storage

Documents obtained from different web resources are
stored in the same database using the uniform format.
This allows constructing datasets using arbitrary subsets of
documents from multiple sources. Documents from different
sources can be selected for inclusion in a dataset based on
a module identifier, date range, or metadata.

To simplify initial configuration, Kayur uses the embed-
ded Derby1 database, which is initialized on the first usage.
The tool can be configured to use another database, such as
MySQL, instead; the tables to store data will be generated
automatically (provided that the database user specified in
the settings has all necessary privileges).

D. Text processing

The text processing component performs a sequence of
operations on the textual data of selected documents to
remove irrelevant information and improve recognition of
similar documents. Each operation is optional and customiz-
able. The complete processing sequence includes:

1) Initial filtering.
2) Sentence detection.
3) Tokenization and conversion to lower case.
4) Part-of-Speech (word class) tagging and application of

stemming routines.
5) Word filtering.
6) Stop-word removal.
The core operations of tokenization, sentence detec-

tion, and Part-of-Speech tagging are performed using
OpenNLP [2]. This library relies on binary model files for
English language that can be obtained from the website of
the OpenNLP project [16].

Kayur includes two types of customizable filters in the
format of Java regular expressions. The initial filters are
applied to the whole text of a document to replace or remove
structural elements (such as “Bug description:”, “Steps to
reproduce:” in bug reports) and non-alphanumeric symbols.
The word filters do not have replacement functionality,

1https://db.apache.org/derby/

and simply remove words that match a predefined pattern.
They are especially useful to remove measurement units,
hexadecimal numbers, hyperlinks, and file names.

The component includes custom stemming routines that
are applied only to tokens that are detected by Part-of-
Speech tagger as:

• Noun, plural.
• Verb: third person singular present, gerund, present

participle, past tense, or past participle.
The stemming is performed accordingly to English gram-

mar rules; irregular verbs are converted to dictionary form
by the (customizable) list of such forms. Because the tagger
can mistakenly detect other parts of speech as verbs, the
converted word is validated against the large list of all
possible verbs from libmind library [17]. If the result is
not found in the list, the conversion for this word is skipped.

The last step of text preprocessing operation is stop word
removal. Stop words are common words such as articles
or pronouns. The tool uses the initial stop word list from
MALLET project [18]. The list can be further expanded to
include high-frequency words of no particular importance
(e. g., “bug”, “problem”, or “issue”).

The tool builds a cache to speed up text processing. Each
time a new word is processed, the cache stores the mapping
between the word and its final form (or an empty string in
case when the word is to be removed).

Once all text processing steps are finished, Kayur saves
a corpus structure that contains processed documents, and
displays a statistics window that presents a short summary
of the data. The summary includes pie charts for metadata,
the list of top keywords in the corpus, and length distribution
of processed documents.

E. Export
The export component uses a corpus structure prepared

during the text processing stage to create an output file in
the selected format with a specified term weighting method.
Kayur supports two integer weighting methods: Boolean
model and raw frequency, and two floating point weighting
methods: term frequency and TF-IDF. Kayur supports the
following output formats:

1) Attribute-relation file format (ARFF) of WEKA.
2) Plain text format of LDA/HDP topic modeling tools

by J. Chang and C. Wang (only integer weights).
3) XML format of Carrot2 (only integer weights).2

A user can also set a rare term threshold to exclude words
that occur in less than a specified number of documents
in the corpus. This is important for all text mining tasks,
as it greatly reduces the dimension of the resulting vector
space, increasing the performance of a data mining tool and
reducing resource usage.

2Vector space model is not used when exporting to Carrot XML format,
because Carrot2 works directly with textual data. The input file is created
by composing documents from processed words.



Figure 2. Screenshot of Kayur (Text Processing View)

F. User interface and configuration

Kayur supports both a graphical user interface (GUI) and
a command line interface (CLI) designed as an interactive
shell (read-eval-print loop). The capabilities of both inter-
faces are the same, except that the latter supports scripts
comprised of valid Kayur commands.

The GUI consists of a single window with five tabs
for: 1) the web import component, 2) the text processing
component, 3) statistics, 4) program settings, and 5) the
journal that contains log messages for the current session
(see Figure 2). The GUI is especially useful for initial
calibration, as it allows a user to quickly change and test
different combinations of parameters.

Although the tool is preconfigured for typical usage
scenarios, the GUI allows tuning almost every step of
the processing chain to suit particular needs. Web import
modules can be freely adjusted to produce desired results.
The default internal Derby database can be replaced with a
stand-alone database such as MySQL or PostgreSQL. Text
processing routines can be disabled or their behavior can
be changed by using an external library instead (a call to a
library method must be wrapped by a class that implements
the interface provided by the tool).

IV. CASE STUDIES AND EVALUATION

We show two examples of using Kayur, which highlight
its abilities to obtain bug report data from various sources
using highly customizable filters.

A. Example: Bug Tracking Systems

Bug reports are invaluable source of important informa-
tion for software developers. Beyond a manual analysis of
bug reports, there is also a need to process sets of bug reports
as a whole using text mining techniques, such as clustering,
to discover trends in software flaws.

Bug reports are usually available on web pages generated
by bug tracking systems (BTS). While most of BTS support
export of the data into structured formats (XML, JSON),
there are also resources that offer the HTML format only.

Kayur allows to generate a dataset from both structured
and semi-structured web documents equally easily by pro-
viding only few extraction rules. Moreover, as BTS often
use numeric identifiers for bug reports, the navigation rules
can be omitted.

For example, the settings shown in the Table II are
sufficient to generate a dataset from the Gnome bug tracker3

based on a popular BTS Bugzilla. The rules use the fact
that this BTS allows to export a bug report as a structured
XML document.4 A similar simple configuration, shown
in Table III, is enough to fetch bug reports from Google
Android Issue Tracker, which does not support export in a
structured format.5

3https://bugzilla.gnome.org/
4https://bugzilla.gnome.org/show bug.cgi?ctype=xml&id=[id]
5https://code.google.com/p/android/issues/detail?id=[id]



Table II
EXTRACTION RULES FOR GNOME BUGZILLA

Data Field Extraction Rule
Title [short_desc,tag]
Content [long_desc,tag][thetext,tag]
Comments [long_desc,tag]*[thetext,tag]
Date [creation_ts,tag]

Table III
EXTRACTION RULES FOR ANDROID ISSUE TRACKER

Data Field Extraction Rule
Title [_,title]
Content [meta-container][pre,tag]
Comments [issuecomment,cls]
Date [date,cls][title,attr]

B. Example: Opinion Mining

Another popular topic that involves web mining is auto-
matic analysis of user opinions. Such analysis is useful, for
example, for companies to understand how their products
and services are perceived [19]. Kayur makes it easy to
create a dataset from user opinions, as they can be stored as
comments in the uniform format. As an example, Table IV
shows extraction and navigation rules to build a dataset from
customer reviews on TV sets available at Amazon.

Table IV
EXTRACTION RULES FOR CUSTOMER REVIEWS AT AMAZON

Data Field Rule
Title [productTitle]
Content [productDescriptionWrapper,cls]
Comments [revMHRL][a-section,cls]*

[a-spacing-small,cls][a-section,cls]

C. Performace Evaluation

The performance of the information extraction component
is mainly determined by network speed and bandwidth,
and by the responsiveness of web resources. For responsive
resources, such as Google Android Issue Tracker, and the
network speed of 50 Mbps, the document preprocessing rate
varies between 2 and 3.5 documents per second. The rate is
significantly lower for resources that forbid automatic data
fetching, because the delay up to few seconds must be set
between subsequent accesses.

The performance of the text processing component on a
test machine6, with all processing steps enabled and default
OpenNLP library plugin, is 50 – 60 documents per second.
On average, the use of cache reduces the execution time
by about 20 %. The main performance factor is the NLP
plugin in use, which can be replaced if for a particular task
the processing speed is not satisfactory.

6Intel Core i5-3210M CPU 2.50 GHz, 4.0 Gb RAM, Windows 7 32-bit

V. RELATED WORK

TraceLab [20] is a highly customizable general-purpose
framework for setting up experiments in the form of a data
processing tool chain composed of components that are
either built-in or created by a user. Compared to Kayur,
TraceLab offers richer text processing and visualization
capabilities and is more flexible, as it allows to arrange the
components in arbitrary way to obtain desired data flow.
Although the functionality of TraceLab and Kayur overlap
on the text processing stage, Kayur offers the following
benefits: 1) uniform access to any web resources that store
documents in HTML/XML formats; 2) a persistent storage
for fetched documents; 3) a simpler user interface with pre-
defined settings that minimizes time and effort for preparing
a dataset from an arbitrary web resource, even if it does not
provide API to get data in a structured format; 4) support
of popular data mining workbench formats.

There is a variety of stand-alone general-purpose tools
to perform subtasks corresponding to those of Kayur’s
components, but without being tailored for processing of bug
reports. Obtaining data from web pages can be performed
by Apache Nutch [21]. Text processing can be performed
by tools based on powerful toolkits such as NLTK [22]
and GATE [23], or even directly in several data mining
workbenches, including Carrot2 that implements tokeniza-
tion, stemming, and stop-word and rare-term removal. Input
files for WEKA and Carrot2 can be generated by conversion
utilities from other formats such as CSV or XML. The
mentioned tools can be arranged to work together to generate
results similar to Kayur’s, but this can be time-consuming,
especially when dealing with multiple sources.

VI. CONCLUSION AND FUTURE WORK

We developed our tool Kayur to speed up laborious
fetching and preprocessing steps that are often necessary
for raw data obtained from web resources before they can
be used in data mining workbenches. The tool is aimed at
a broad audience of data mining researchers, as it allows
them to obtain real-world data sets relatively easily. It also
can be useful for software maintainers that wish to analyze
bug reports or user feedback using text mining. As far
as we know, Kayur is the only tool that spans the whole
sequence of steps needed for textual data processing, ranging
from retrieving data from semi-structured documents, over
processing it, to exporting it to data mining tools.

For future work, we plan to make extraction rule input
easier by providing means for semi-automatic rule genera-
tion. We are also working on extending the range of available
export formats to include Orange’s input formats [24] and
the CSV format supported by R [25], and including more
term weight methods (such as ConfWeight [26]). Another
goal is to provide more ready templates for bug tracking
systems and other resources, and examples of plugin usage
to better demonstrate the functionality of the tool. We hope



that Kayur’s modular design and its scripting interface will
inspire novel uses and extensions by its users as well.
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