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Abstract—Various techniques for software verification are in
use today, including testing and software model checking. Each
of them has certain limitations, imposed by limited memory and
computation time. This limits the types of properties that can be
analyzed during one execution on a given computer.

By carrying out additional analysis of program traces outside
the execution of the program, one can extend the scope of
the analysis. This paper presents the Trace Server, a solution
for collecting, storing, querying and processing data describing
program execution traces. The work is implemented as an
extension of the Java PathFinder model checking tool. The
collected data can be saved in a database for further processing,
or be processed during the operation of the system. Data can
also be sent to a remote server.

The tool defines the interface for creating data analyzers and
includes examples of its use, providing a deadlock analyzer and
an analyzer of executed methods. A developer using our tool can
create new reports or supplement existing data.

Index Terms—Software verification; software execution traces;
trace analysis.

I. INTRODUCTION

Model checking can be seen as a kind of dynamic analysis,

which is executed against the model of the program. The

model of the system consists of an initial state, a set of

program states, and transitions between states. Model checking

traverses the state space in order to find reachable states that

violate the properties of the system [11]. The big challenge

with this approach is the state space explosion problem.

Various techniques are used to alleviate this problem, such

as system abstraction or partial-order reduction.

Java PathFinder (JPF) [20] is a model checking tool for

Java programs using an explicit representation of the program

state. It uses the program as a model, in the form of Java

bytecode instructions. JPF implements a Java virtual machine

that is able to execute all possible paths of the program (in

accordance with the described general limitations of all tools).

A. Generating, storing, and analyzing execution traces

An execution trace is defined as a sequence of events

that represent the important moments in the execution of

the program (instructions executed, a thread being blocked,

etc.). When detecting property violations, trace information

can generate the path that led to this state, aiding in discov-

ering the cause of a disturbance. If an exhaustive search is

not feasible, incomplete trace information may give clues to

possible system behaviors. Trace generation can be done in

several ways [4]: (1) by code instrumentation, (2) by defining

wrappers or (3) by customized execution environment. This

paper describes a way to store data by extending JPF, which

can be classified as (3).

Saving execution traces in memory is a significant problem.

The verification of a large software can result in sequences of

several billion instructions. If these execution traces are to

be kept in memory for further analysis, they compete with

the memory needs for storing the search space during model

checking. A possible solution to this problem is to preserve

the results of all choices (choice generators in JPF), while

discarding detailed execution trace data. After execution, if

more detailed information are needed, it is necessary to restart

the analysis and execute all choices again. This solution is not

ideal, as it may be difficult to faithfully recreate the results of

system calls or interactions with external processes.

Another problem is caused by storing trace data and ana-

lyzing it adequately. It is difficult to store arbitrary data about

an executed program. Currently it is possible to generate a

report in readable form with information on traces, but the

implementation of the report is specific to a particular platform

and cannot be easily extended. Analysis of traces collected that

way, after verification, requires parsing the report.

Many analyzers currently implemented in JPF (deadlock

analyzer, methods analyzer and others) use their own data

structures to store trace data. In addition to that, they must

implement mechanisms to maintain execution paths, due to

state space exploration. Much of this code is common to all

analyzers and can be aggregated. From the above it follows

that there is a large overhead for the development of an

analysis algorithm. Furthermore, such an analysis can be

carried out only while the JPF is executed, not post-mortem.

B. Architecture of our solution

Our tool, the Trace Server, is implemented as an extension

to Java PathFinder (JPF). JPF does not support persistent trace

data, but provides a flexible mechanism for notifications on the

internal state of the program being checked. Our aim was to

use that mechanism and develop a tool that manages trace

data, and provide an infrastructure for storage and processing.

Our tool can store trace events in memory or in a database,

or it can forward them to a remote computer.



There is also a need for examining the collected data

(by placing a query) through a well-defined interface. Trace

processing can be conducted during or after verification. The

tool enables the creation of analyzers, units that analyze

properties of the executed program. Our work includes the

implementation of several analyzers. The provided infrastruc-

ture enables the creation of analyzers with much less code. A

powerful reporting system is also implemented, which allows

an easy creation of custom reports.

C. Paper outline

This paper is organized as follows: Section II gives more

background on model checking and JPF, and lists related

work. Section III describes the architecture of our tool, and

Section IV gives an evaluation based on several algorithms we

have implemented. Section V concludes the paper and outlines

future work.

II. BACKGROUND

A. Model checking

Model checking analyzes a representation of a system

(model), to determine the validity of properties of inter-

est [11], [18]. Traditionally, model checking has been applied

to descriptions of programs or algorithms. Recently, software

model checkers that directly verify the program have been

developed [5], [6], [9], [12], [14], [20]. This dispenses with

the need of creating a special representation of the program

in the form of the model.

If a property violation is found during verification, the

tool should generate a counterexample trace, which represents

a sequence of execution that leads to a property violation.

Software model checking tools provide insight into the current

state of the program being checked, enabling one to gather

information about the trace.

B. Java PathFinder (JPF)

Java PathFinder (JPF) [19], [20] provides an executive

environment for test and verification of Java programs. It is

implemented in the Java programming language, with empha-

sis on scalability and configurability. Many modules that can

be connected to the core of JPF expand the range of possible

uses of this tool.

The JPF core represents a virtual machine (VM) that in-

terprets Java bytecode. Speed is not the main feature of JPF

because represents a virtual machine running on top of the

original Java virtual machine (JVM).

JPF identifies non-deterministic choices in a program, and

systematically covers all outcomes of these choices. Choice

points can be scheduling-related, or assignments of a set of

values to a variable. JPF is especially suitable for the verifi-

cation of concurrent programs because it allows traversing all

execution paths caused by thread scheduling.

JPF is able to detect various defects in a system. By

default, it checks for deadlocks and unhandled exceptions,

including assertion violations. In addition to that, JPF provides

a mechanism for defining arbitrary properties to check. If a

property violation is found, JPF generates a counterexample.

C. Related work

TraceContract [7] implements an API for trace analysis in

the Scala programming language. Its expressive specification

notation specifies trace properties to be checked, in form of a

hybrid between state machines and temporal logic. TraceCon-

tract can be used for analyzing log files or for monitoring

systems executing online. However, trace data cannot be

collected and stored persistently. Furthermore, TraceContract

does not separate report generation from property analysis.

Java PathExplorer (JPaX) [15] is a runtime verification tool

for monitoring the execution of Java programs. Only one

execution path is observed and trace data are collected by

code instrumentation. A fixed set of events is written to a file

or to a socket, in plain text format, unlike our Trace Server

which stores a configurable set of events in a database. Like

in our tool, trace analysis algorithms are customizable. JPaX

contains specialized trace analysis algorithms for deadlock and

data race analysis. These algorithms take a single (defect-free)

execution trace and try to conclude the presence or the absence

of deadlocks and data races in other potential traces of the

program [8], [15].

Another concurrency analysis tool, jPredictor [10], detects

possible property violations based on a technique called sliced

causality. The program under test is instrumented to log partial

information of its execution. The log is then post-processed to

construct a more informative trace using static analysis on the

original program.

The SPIN [17], BLAST [16], and MoonWalker [2] model

checking tools, generate data on performance only when they

detect a violation of characteristics of the system. Unlike them,

JPF Trace Server generates data on all paths executed during

the test, whether the error occurred or not. SPIN can work

as a simulator, execute only one program path and report the

executed code sequence.

To our knowledge, compared to our tool, no other model

checking tool has implemented the option of such detailed data

collection and reporting on the executed program.

III. ARCHITECTURE

A. Event and trace analysis inside JPF

The listener mechanism provided by JPF allows external

modules to observe and even influence program execution, by

interacting with JPF. Listeners can be added at run time; JPF

and its listeners are executed on the same virtual machine.

JPF notifies registered listeners by using the observer design

pattern [13]. Notifications concern specific events during the

search (e. g., search start/end, search backtracked) and execu-

tion of JPF’s virtual machine (e. g., a new thread is started,

method or instruction executed) . With each notification, com-

plete information about the internal state of JPF and program

that is checked can be obtained.

The reporting system of JPF consists of several modules:

• Reporter: a data collector. Coordinates the work of other

parts of the system of reporting.



Figure 1. Trace Server architecture.

• Publisher: responsible for managing, formatting and

printing the data collected. Examples of formats are text,

HTML, XML.

• PublisherExtension: registered for each separate Pub-

lisher, for reporting on certain specific topics that define

the Publisher.

The default Publisher is ConsolePublisher, which generates a

human-readable report in text form. JPF allows the registration

of any number of reporters.

B. Trace Server

The architecture of the Trace Server comprises several

modules, as shown in Figure 1.

1) Trace emitter and filter: The trace emitter is an imple-

mentation of the JPF Listener interface. It listens to events

broadcasted by JPF, creates Event objects that describe these

events, and forwards them to a trace filter. Event objects

contain all the information about the event; events are encoded

using Java’s primitive types and strings. The data (event

properties) in the Event object are stored as <key, value> pairs,

where the key is of type PropertyID. A special key type is used

instead of a string to allow efficient transfer of information to

a remote server.

In our system there can be only one trace emitter. To

listen to any number of events, it is necessary to extend the

base emitter by overriding the appropriate methods. For every

event there is a special method. Certain methods cannot be

overridden as they are necessary to maintain the data structure

containing information about the executed program.

The trace filter receives events and may reject or change

events. The filter forwards its results to another filter, or to

the trace storer. This stage in the processing of events is

introduced in order to allow the use of existing emitters for the

purpose of on-the-fly processing and multiplexing. The filter

is capable of processing events in the order in which they are

received. Processing may consist of testing certain properties,

but a filter can also change events by adding, changing or

removing properties, before it forwards it to the next filter.

Filters implement a chain of responsibility design pattern [13].

If multiple filters are present, their execution order depends on

the order specified in a configuration file. Events are removed

from the filter chain by not forwarding them to the next stage.

Events are already preprocessed into the internal format that

the trace server uses, so events are filtered by their value

public class OnlyNewInsnFilter extends TraceFilter {

public void processInstructionExecuted(Event ev) {

String insnOpcode = (String)
ev.getProperty(PropertyCollection.INSTRUCTION_OPCODE);

if (insnOpcode.equals("new") {

forward(ev, eventType.instructionExecuted);

} } }

Figure 2. A filter that only keeps events on executions of NEW instructions.

attribute, as shown by an example in Figure 2. A real filter

should keep more events, as a meaningful analysis requires

richer information. More code examples and information on

the implementation and API can be found online [3].

2) Trace storage: The central part of the system is referred

to as the trace server in Figure 1. Its role is to accept events

(trace storer), store them in a database and provide an interface

to query the stored content (trace query).

The trace storer provides a database-independent interface

for storage, as defined by configuration parameters. The trace

storer stores all the events received from the filter.

Three types of storage are implemented: neo4j, inMemory

and remote. As stated earlier, the JPF search state space forms

a graph, with nodes representing states and edges representing

transitions. A relational database is not ideal to store this

kind of data. Therefore, we chose a specific type of database,

which uses a graph structure with nodes, links, and associated

properties to present and preserve information.

These requirements led us to choose the neo4j database [1],

which stores graph data persistently. This storage module

realizes the initial idea of developing the Trace Server, to

store data outside JPF in a persistent way. Unfortunately, neo4j

does not perform very well in terms of computation time

and storage space. The reason is that neo4j is designed as

a transactional database. This creates unnecessary overhead if

nodes are never updated or deleted. Furthermore, transactions

have to be committed periodically to allow queries to see

the updated data set. Empirically, we currently commit a

transaction after the creation of every 100,000 nodes.

The inMemory storage module stores trace data temporarily,

using a non-transactional database. It takes up less memory

and runs faster than neo4j.

Finally, the remote storage interface forwards events to

another host. On the remote side, a server receives events from

the client (where JPF is executing). The client sends all event

properties to the server, including their type (PropertyID). To



store trace data, the server uses one of the two solutions

already described, neo4j or inMemory.

3) Query interface, analysis: The trace query module al-

lows database-independent access to trace data and provides a

query interface that uses the search mechanisms offered by the

different underlying databases. A search can be implemented

as an iteration over events, or as a predicate. A predicate is

defined as a boolean function that takes an event, and decides

if that event should be included in the result set. In a query,

the predicate is evaluated on each graph node.

The main reason for the implementation of JPF Trace Server

is to create a common infrastructure for analyzing trace of

programs executed by JPF. The trace analyzer should query the

database, perform some analysis and report the results. Mul-

tiple types of analysis can be combined. The analyze method

provides a uniform interface to execute analyses. Thanks to the

trace server, there is no need to parse information obtained

from the database. For optimization, it is useful to use an

appropriate trace emitter that does not broadcast all the events

possible, to save time and space. This means that analyzers

need to be compatible with the data sets stored by the emitter

and filters. If multiple analyzers can work with the same set

of data, or a set is general enough, then this problem does not

exist and is not necessary to restart the model checking tool

to collect new trace data.

After data analysis, it is necessary to show the results in

human-readable form. We have seen that the analyzers can

define specific reports, characteristic for a particular type of

analysis. Since it is not possible to use JPF’s reporting system,

as data are collected in a completely different way, the need for

a custom reporting mechanism arises. The report subsystem

is implemented to generate general reports, which can still

be extended by specific information in predefined places. One

can print individual events, as well as the complete execution

sequence.

Reports can be displayed on the console, stored in a text

file, or viewed in a JPF shell panel, called trace report. Results

are grouped into topics that can be individually examined in

the same panel.

C. Example report

Figure 3 shows an example report generated by an extended

report, which compared to the default report adds information

about the location where the object is initialized. The specific

implementation needs to process data relating to all NEW

instructions to find out where every instance is created. This

data is gathered by an analyzer, which processes the execution

trace prior to printing it.

IV. EVALUATION

A. Analysis algorithms

Our current JPF Trace Server implementation includes three

analyzers [3]:

1) DeadlockAnalyzer: analyzes deadlocks by observing

thread interactions.

...

instructionExecuted

oldclassic.java:130

SecondTask.run()V

invokevirtual Event.wait_for_event()V

objectLocked

291 # LEvent; # init at: oldclassic.java:48

instructionExecuted

oldclassic.java:79

Event.wait_for_event()V

aload_0

objectUnlocked

291 # LEvent; # init at: oldclassic.java:48

objectWait

291 # LEvent; # init at: oldclassic.java:48

Figure 3. Example report that shows information about the location where
the object is initialized.

Table I
SAVINGS IN CODE SIZE FOR DIFFERENT ANALYZERS.

Analyzer module
Code size Ratio

old version with Trace Server old/new

DeadlockAnalyzer 306 160 1.91

MethodAnalyzer 212 86 2.47

OverlappingMethodA. 113 112 1.01

2) MethodAnalyzer: shows method calls (type of call,

transition, thread).

3) OverlappingMethodAnalyzer: specialized MethodAna-

lyzer that searches for overlapping method calls on the

same object from different threads. Such overlapping

calls indicate a data race.

To evaluate our claim that the trace server provides an ad-

vantage when writing analyzer algorithms, we compared how

many lines of code are needed to implement an analyzer with

and without the Trace Server. The results are shown in Table I;

in two out of three cases, we managed to reduce the amount

of code by about half. It is noteworthy that the Overlapping-

MethodAnalyzer extends MethodAnalyzer and thus share code

for storing trace data and maintaining execution paths; that

shared count amounts to 17 lines in the old version and 29

lines in the analyzer using the trace server.

In addition to the analyzers described, more examples

are designed that collect and print various types of events

and features of the program during execution (method calls

with arguments, location where the object is created, etc.).

These augmented reports improve the understanding of the

counterexample traces, and also give examples on how reports

generated the trace server can be augmented with specific data.

The distribution of the trace server contains an example where

any string written to the console is also logged; this augments

the execution trace with information that appeared on screen

during program execution [3].

B. Experiments

For measuring the performance of the Trace Server, we

have used the examples from the JPF distribution. To run

all experiments, the Oracle Java Virtual Machine, version



Table II
EXPERIMENTAL RESULTS.

Program
Size Instr. Execution time [sec]

(LOC) executed JPF inMem. neo4j remote

Crossing 121 50,490 1.6 2.5 22.6 3.5

DiningPhil 26 81,752 3.1 5.0 64.0 7.0

oldclassic 47 3,466 1.0 1.1 5.2 1.4

Prod./Cons. 53 120,373 5.5 9.3 563.4 11.2

TreeMap 32 183,728 2.0 4.0 71.0 6.9

1.6.0_21 is used, running on Windows XP Professional on a

Pentium D820 processor with 2GB of RAM available. Table II

summarizes the results.

For all programs, events about executed instructions are

stored, with default information, and events that are required

to maintain the structure of the graph in the database. The

inMemory solution that stores data in memory gives the best

performance with a slowdown of 1.05 – 1.97 times. In this

case, data is not stored persistently; persistency can be achieve

by sending data to a remote server. Sending data to a remote

computer results in an overhead of 1.38 – 3.38 times. Neo4j

requires much time to generate parts of the graph and to

execute transactions, making it an order of magnitude slower

than other solutions (a slowdown between 5.05 and 104 times).

If neo4j is combined with remote storage, its performance is

acceptable, at least in our examples, where the remote server

was not saturated with incoming data.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the Trace Server, a solution for storing,

querying and processing the data describing the execution of a

program begin verified. The work is implemented as an exten-

sion of Java PathFinder model checking tool and is publicly

available as a supplement to the core tool [3]. Data can be

stored in memory or in a database, or can be sent to a remote

server; data access is independent of the underlying storage.

Queries to the trace database can be made during execution or

post mortem, by one or multiple analysis algorithms. Support

for report generation facilitates the development of new types

of property verification. Reports can be extended with arbitrary

data. The Trace Server is implemented as a modular system,

so it is flexible and extensible.

The modular architecture of the trace server allows us to

improve its components one at a time, for example, to address

possible scalability issues in the trace storage. Other possi-

bilities for improvement exist in the analysis and reporting

system. It is difficult to define a universal way of displaying

trace data. What is feasible is to show different levels of detail.

This could be achieved by a graphical interface. Furthermore,

Java is not necessarily an ideal language to implement queries

and reports; we are considering the use of a domain-specific

language for this purpose. Finally, given other front ends

(listeners collecting execution data on environments other than

JPF), the trace server could become a generic platform for run-

time verification, allowing verification algorithms to be written

for any platform that the trace server supports.
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