
Why Do Software Packages Conflict?

Cyrille Artho, Kuniyasu Suzaki

Research Center for Information Security

AIST

Umezono 1-1-1, Tsukuba,

Ibaraki 305-8568, Japan

{c.artho,k.suzaki}@aist.go.jp

Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli

Univ Paris Diderot, Sorbonne Paris Cité

PPS, UMR 7126, CNRS, F-75205

Paris, France

roberto@dicosmo.org, treinen@pps.jussieu.fr

zack@pps.univ-paris-diderot.fr

Abstract—Determining whether two or more packages can-
not be installed together is an important issue in the quality
assurance process of package-based distributions. Unfortu-
nately, the sheer number of different configurations to test
makes this task particularly challenging, and hundreds of
such incompatibilities go undetected by the normal testing and
distribution process until they are later reported by a user as
bugs that we call “conflict defects”.

We performed an extensive case study of conflict defects
extracted from the bug tracking systems of Debian and Red
Hat. According to our results, conflict defects can be grouped
into five main categories. We show that with more detailed
package meta-data, about 30 % of all conflict defects could
be prevented relatively easily, while another 30 % could be
found by targeted testing of packages that share common
resources or characteristics. These results allow us to make
precise suggestions on how to prevent and detect conflict defects
in the future.

I. INTRODUCTION

A. Package-based Software Distributions

Modern software distributions are organized into pack-

ages. A software package is a self-contained unit that can

be installed or removed independently of other packages,

as long as dependencies are met. A package manager

controls such administrative tasks; compared to unmanaged

installations, the benefits of a package-based approach are

the ability to automatically install, upgrade, and remove

packages without the need to remember installation locations

or which files are affected by a change.

In real software, this ideal state is not easy to achieve, due

to dependencies between software packages, and interactions

between software belonging to different packages. Depen-

dencies arise because some packages provide functionality

used by others. Interactions occur on shared resources, such

as files, and because packages may provide components that

can be combined into a larger system (such as client and

server packages communicating together).

Dependencies restrict the ability to freely install, remove,

or upgrade packages. If a package a depends on another

package b, a package manager automatically requires b to

be installed when a is requested to be installed. Furthermore,

package b cannot be removed as long as a is still in use. Fi-

nally, upgrades of one package often require a simultaneous

upgrade of related packages. In addition to this, there is a

notion of conflicting packages: two packages may use the

same resource or provide the same service in a way that is

incompatible, so only one of these two packages may reside

on a system at any given time.

In package-based software distributions, so-called pack-

age meta-data describes dependencies and relations between

packages. Most Free and Open Source Software (FOSS)

systems are managed in that way. Meta-data contains in-

formation about dependencies of packages, and conflicts

between them. At the time of writing, meta-data covers

relations among packages at the package level; dependencies

and conflicts are indicated by package, not by the actual

resources a package provides or depends on. Different

packaging mechanisms have different ways of giving more

fine-grained information on packages. Features (as used by

the Red Hat package manager) may represent individual

libraries. So-called virtual packages are sometimes used as

placeholders for actual resources or services provided by a

package.

Unlike fully fledged packages, such placeholders do not

include any actual installation of programs. Both mecha-

nisms leverage the package dependency system, representing

resource dependencies as package dependencies. However,

neither mechanism constitutes a generic way of describing

resources, such as files, network ports, or system services,

in an accurate and fine-grained way. There is no formal

definition linking virtual packages to actual resources (or

vice versa); definitions are made by package maintainers

instead of automated tools.

An abridged example of the meta-data of the Debian

package for the mutt mail user agent is given in Figure 1.

This package depends on a long list of library packages only

partially shown in the figure. It also has a recommendation

(that is a weak form of dependency) on a virtual package

mail-transport-agent. That package in turn is pro-

vided by several other packages like for instance exim4

or sendmail, and it provides itself two virtual packages,

imap-client and mail-reader. In addition to that,

Package: mutt

A r c h i t e c t u r e: amd64

Version: 1.5.21-5

Replaces: mutt-utf8

P rovid es: imap-client, mail-reader

Depends: libc6 (>= 2.3.4),

libcomerr2 (>= 1.01), ...

Recommends: mail-transport-agent, ...

C o n f l i c t s: mutt-utf8

Figure 1. Excerpt of Debian meta-data.

it conflicts and replaces a package named mutt-utf8,

which was useful in the past but is now obsolete (since

superseded by mutt) and which has been removed from the

Debian archives. However, one has to assure smooth upgrade

from situations where that old package is still installed.

This smooth upgrade is achieved through a combination of

Conflicts and Replaces as shown in the example.

B. Conflict Defects

Conflict defects occur if the combination of multiple

packages results in a defect that is absent otherwise. Package

meta-data—and in particular explicit conflict declarations—

may indicate such defects, which prevents conflicting combi-

nations of packages from being installed. However, conflict

defects may still arise in practice. The reasons for such

defects are manifold: packages are not just bundles of

files, but include pre-installation and post-installation scripts.

These scripts are unrestricted, Turing-complete programs

running with full system (root/administrator) access. It is

impossible in general to capture the full side effects of these

scripts with a formal description. Actual conflict defects

might simply go unnoticed through a testing phase or might

be impossible to describe properly. The same problem arises

when executing the software provided by these packages.

Therefore, a complete logical analysis of package behavior

is not possible. Nonetheless, as this paper shows, steps can

be taken towards covering certain types of common conflict

defects that are not automatically verifiable with current

tools.

Another problem arises from the fact that a significant

part of package meta-data is provided manually, by package

maintainers. It is therefore a challenge to keep such meta-

data up to date and accurate. This challenge becomes espe-

cially daunting in the presence of a huge number of software

packages in distributions such as Debian, where the number

of packages available currently exceeds 30,000 [14].

As a consequence of this, bug reports referring to conflict

defects between packages are becoming frequent. This paper

investigates the origin of such defects and tries to answer the

following questions:

1) What are the main reasons why conflict defects arise?

2) Are there common categories of conflict defects?

3) Can these problems be addressed by using existing

tools, or is there a need to improve them, or create

new ones?

4) Is package meta-data currently being used, accurate

and sufficient? Is there a need to automatically verify

such meta-data for accuracy, or is there a need to

use additional meta-data for a more accurate notion

of package conflicts? In other words, are most or all

possible conflict defects covered by meta-data?

This paper is organized as follows: Section II describes

related work. Section III shows two case studies on conflict

defects in Debian and Red Hat, with a detailed evaluation

of different kinds of conflict defects. Section IV discusses

the results and proposes possible strategies for remedying

problems found, and Section V concludes and outlines future

work.

II. RELATED WORK

A. Software Packaging

Software packages are a well-known example of the

component models that have originated from the field of

component-based software engineering (CBSE) [19], [3].

Packages fit within common component definitions, but

the raise in their popularity—started with the advent of

FOSS package managers such as the FreeBSD porting

system [17], APT [10], Yum, etc.—has highlighted very

specific challenges related to their deployment [6]. Some

of those challenges are being addressed relying on package

meta-data and their formalization.

Seminal work [9] has shown how to encode the instal-

lability problem for software packages as a SAT problem,

established the (NP-Hard) complexity of the problem, and

shown applications of the encoding to improve the quality of

package repositories by avoiding non-installable packages.

Based on the same formalization, various quality metrics

have been established, such as strong dependency and sen-

sitivity [1] (to evaluate the “importance” of a package in

a given repository) and strong conflicts [5] (to pinpoint

packages which might hinder the installation of several other

packages). In the same vein, package meta-data has also

been used to predict future (non-)installability of software

packages [2]. The abundance of studies that rely on package

meta-data testifies the importance of the correctness of meta-

data.

On the other hand, studies on package meta-data correct-

ness like this one, seem to be scarce. At the same time,

a few testing tools can be found in the realm of Quality

Assurance (QA) of FOSS distributions to discover symptoms

that might then lead, a human, to discover errors in package

meta-data. To name one, the “file overwrite” [20] initiative

helps in discovering undeclared conflicts among packages in

the Debian distribution.

2

B. Alternatives to Globally Managed Software Packaging

As an alternative to globally managed software packages

that are organized in a fine-grained hierarchy, self-contained

packages including all sub-components, sometimes called

bundles, are sometimes used. Such bundles include the ap-

plication and all libraries it depends on, linked statically [12].

This contrasts to FOSS distributions where libraries are

shared, and generally required to be shipped as separate

packages—see for instance [8], “convenience copies of

code”—in order to ease the deployment of (security) up-

grades. In a system using bundled software, all applications

using the library in question need to be updated separately.

This usually entails a longer period during which a system is

vulnerable, because some software bundles may be provided

by third parties.

An advantage of self-contained software bundles is the

ease of testing and deployment, as system-specific con-

figurations and libraries have only limited impact on the

software bundle. However, statically linking all libraries used

by a bundle requires much disk space. If many applications

include the same statically-linked libraries, these libraries are

duplicated within the same system. Deduplication addresses

this problem [4], [18]. Memory and storage deduplication

merge same-contents chunks on block level, and reduce

the consumption of physical memory. By sharing identical

chunks of storage, logical-level redundancies caused by

static linking are resolved on the physical level.

III. EVALUATION OF CONFLICT DEFECTS

A. Repositories Used in the Case Study

The evaluation of existing conflict defects was carried out

on two publicly accessible bug repositories: The Debian bug

repository [13] and Red Hat’s bugzilla [16]. These represent

the two of the most widely used FOSS distributions for

the past 10 years. Red Hat’s repository also contains bugs

related to Fedora, a community distribution on which Red

Hat Enterprise Linux is based.

To get a summary of the Debian bug repository, a snapshot

of the Ultimate Debian Database (UDD) [11] was taken.

This database contains key data of all open bugs at that

time, such as bug ID, title, and the affected package. The

snapshot, taken on January 23rd 2011, contains 79,936 bugs.

For Red Hat, no such summary snapshot is available; how-

ever, bugzilla offers a web-based search that returns all data

in XML format. Like in the Debian case study, the search

returns matches on all open bugs. The searches on Red Hat’s

database were carried out on February 4th, 2011. While the

exact total number of open bugs at that time is not known

(because a search with no filter is not possible), the highest

number (bug ID) returned by the search, roughly matches

Debian’s; furthermore, the number of search results is also

comparable. This leads us to believe that the samples in both

case studies are taken from repositories of comparable size.

Table I
NUMBER OF MATCHES PER KEYWORD IN DEBIAN BUG DATABASE.

Keyword Matches Refined matches

break 575 161
conflict 252 85
overwrite 102 44

total 929 290

Table II
NUMBER OF MATCHES PER KEYWORD IN RED HAT BUG DATABASE.

Keyword Matches Refined matches

break 166 111
conflict 119 106
overwrite 19 9

total 304 226

B. Methodology

1) Automated Search: As the bug database is too large to

be analyzed manually, the selection of bugs is first narrowed

down by a keyword search. We chose three keywords to

search for: “break”, “conflict”, “overwrite”. The first two

words are generic descriptions of conflict defects and often

appear in the form “a breaks b” or “a conflicts with “b”.

The last keyword describes one of the most common inter-

package problems, where one package overwrite a resource

needed by another package.

Tables I and II give an overview of all the matches in

the search. A total of 929 bugs match the initial search

on the Debian repository, and 304 bugs match on Red

Hat’s bugzilla. Some of the matches contain more than one

keyword and are therefore duplicates. Our aim is not to get

an exact number of how many conflict defects there are in

total. Rather, we want to know what types of conflicts occur

more often than others, relative to the total number.

We then narrow the search to eliminate bug reports that

describe problems that relate to one package alone, rather

than a conflict between two packages. For example, “over-

write” could appear in a bug report related to overwriting

text in a text editor. Indeed, an initial manual evaluation

on Debian shows that about half of all bug reports found

in the initial search are not related to conflict defects. To

make the results more accurate, the search is refined to

include only bug reports out of the initial selection, where

the title contains the name of another package. This may

filter out more bug reports than necessary (decreasing recall,

in search terms), but makes the results much more precise.

To avoid excluding too many packages, (version) numbers of

packages are not included in this filter, even if the package

name itself contains a version number. A manual check

shows that this filter is good approximation of a manual

selection of true conflict defects.

As shown in Table I, the refined selection on Debian

contains 290 matches. Some of these matches contain mul-

tiple keywords in the title; 241 of them are distinct bug

3

Table III
BUGS EVALUATED IN DETAIL.

Debian Red Hat

Bugs after initial search 929 304
Having package name in title 290 226
Manual filtering of title contents 190 226
Bugs that are not conflict defects 51 43

Actual conflict defects 139 183

reports. On Red Hat, all 226 refined matches are distinct

bug reports. On Debian, further manual post-processing of

that list removes another 51 items, where the title indicates

clearly that those are not conflict defects. This leaves 190

bug reports where, judging from the title of the report, a

possible conflict defect is reported.

At this early stage, checking the bug description filters

out a much smaller number of bugs on the Red Hat case

study. We think that this is partly because more professional

developers and proportionally fewer volunteers contribute to

Red Hat’s bug database. This may lead to the language on

Red Hat’s database being more uniform, making a keyword

search more precise. Another reason is that a particular

category of bugs, a conflict between 32-bit and 64-bit

packages (see below), occurs often in Red Hat; this improves

search precision. The second stage of the the evaluation on

Red Hat’s bugzilla is performed on the remaining 226 bugs.

Table III summarizes the search and selection stages:

An initial keyword search yields a large number of bugs;

these matches are refined by keeping bug reports where the

title includes a package name, hinting at the existence of a

conflict defect. In the case of Debian, the number of bugs

is further reduced by a manual analysis of the bug title. For

Red Hat, the full bug text is analyzed in all remaining cases,

because the remaining number was smaller after accounting

for conflicts between 32-bit and 64-bit packages.

2) Manual Evaluation: The final stage of analysis is done

manually, requiring the full information on each bug. In

the initial web-based searches, these detailed results are

not returned. Both the Debian summary database (UDD)

and Red Hat’s search return only summary data. The bug

IDs returned in the summary link it to the detailed bug

description.

The actual bug reports are obtained by downloading

them from the web page representing the corresponding

bug repository [13], [16]. Manual study and categorization

of the bugs rules out a number of possible candidates as

being problems related to a single package rather than a

combination of packages, as shown in Table III. Bugs that

are not counted include the following:

• bugs that are clearly not reproducible,

• bugs of which the description is unclear,

• bug reports which are later retracted as incorrect, and,

• in Red Hat, two bugs where access to details is denied

to the public.

This leaves 139 and 183 genuine conflict defects, respec-

tively. A subset of these bug reports is evaluated in a first

sample, to come up with a categorization of bug reports that

would not be too coarse (giving only a few rough classes

of bugs) and not be overly fine-grained either (putting most

bugs into a category of their own). After that, all bug reports

are classified according to these criteria, or eliminated as not

being conflict defects. The categorization is refined during

the process, to merge similar categories where one category

has few elements. This is similar to a clustering algorithm,

except that the measure of similarity between categories is

subjective, as the semantics of natural language cannot be

easily quantified with today’s technology.

3) Possible Sources of Bias: Our study was designed

without any personal bias towards existing software distri-

butions or packages. The packages in question mentioned in

the bug reports are not developed by us. Nonetheless, our

study contains sources of possible bias.

Our first step is based on filtering the title (or summary) of

each bug report against given keywords and package names.

We are aware that this initial filter may be too strict in

some cases, and filter out some reports that indeed pertain to

conflict defects. As mentioned earlier, though, the objective

of our study is to know the relative characteristics of bug

reports concerning conflict defects, so the overall prevalence

of conflict defects within all bug reports is not the focus.

Our second step is a manual evaluation, which is by defini-

tion imperfect because it is done by a human. We have made

our best efforts to classify the data consistently into distinct

categories, but we are aware that these categories are not

formally defined and therefore not completely unambiguous.

However, as shown in Sections III-D and IV, the overall

trends found by our study are quite clear, and do not depend

on each single classification being accurate.

C. Repository Characteristics

With respect to the recentness and lifetimes of bug re-

ports, the repositories are similar but also show interesting

differences. Figure 2 shows a histogram of the frequency of

bug reports per year, for the final 190 and 226 cases.1 The

number of bugs is shown by the year in which they were

submitted, and the year in which they were last modified.

This information is taken from the detailed description, and

it is not directly available for the entire repository. However,

we think that our sample illustrates an overall trend.

Both repositories contain open bug reports going back

several years, with most of the bug reports being very recent

(from the last two years). Debian has a markedly higher

number of bug reports going back more than a few years,

while older bugs are almost absent in Red Hat’s repository.

Furthermore, all bug reports in Red Hat’s database are

1The choice of this sample arose from the need to download the detailed
bug reports for these cases.

4

 0

 50

 100

 150

 200

 1998

 1999

 2000

 2001

 2002

 2003

 2004

 2005

 2006

 2007

 2008

 2009

 2010

 2011

Frequency of bug reports by year

Debian (submitted)
Debian (last modified)

RedHat (submitted)
RedHat (last modified)

Figure 2. Characteristics of both bug repositories.

modified frequently, and most of them have been modified

in the last 12 months.

For the year of the case study itself (2011), the dotted box

in Figure 2 shows the projected number of bugs in that year,

based on an extrapolation of the number of bugs during the

days of 2011 before the snapshot was taken. This estimate,

116 and 257 bugs, respectively, shows that the exponential

growth of open bugs towards recent years continues. This

is due to a “half-life” of bug reports, which indicates a

probability for any bug to be closed at a given time. For the

time of the last update, such an extrapolation cannot be done

well, because updates of older bugs cause the timestamps of

these bugs to move within the histogram.

This overview may suggest that Red Hat frequently fixes

old bugs, or at least updates them. It turns out that the latter

is indeed the case, via automated updates of bugs concerning

packages that are no longer supported. However, it does not

seem to be the case that Red Hat fixes old bugs at a higher

rate than Debian. Rather, old bug reports are often obsoleted:

If a bug report relates to software that is no longer in today’s

Red Hat distributions, they are first updated with an end-of-

life warning, and later closed automatically. This process

contains a standardized message and is probably at least

partially automated.

Debian has no practice of automatically closing bug

reports related to outdated or obsolete packages, with the

notable exception of bugs belonging to packages that get

removed from the Debian archive.

D. Categorization of Conflict Defects

As described above and shown by Table III, 190 (Debian)

and 226 (Red Hat) bug candidates are subject to manual

classification. The manual evaluation categorizes bugs into a

hierarchy of categories. The categories for both repositories

are identical, except for one specific type of bug that does

not occur in Debian.

On Red Hat’s bug repository, a large number of bug

reports refers to conflicts between 32-bit and 64-bit versions

of the same package. These packages can be installed in par-

allel but doing so may lead to a corrupt system, as described

below. These cases can be counted by matching the bug

description against one of the following keywords/phrases:

“multiarch conflict”, “multilib conflict”, or “i386/x64”. 57

bugs on Red Hat’s side fit into this category.

Several CPUs are nowadays able to run programs that use

different register and pointer sizes; a common example is a

64-bit capable x86 CPU that can also run 32-bit executables

in legacy mode. To properly run an executable in legacy

mode, all the shared libraries it needs must also be available

as 32-bit libraries. Distributions have therefore deployed

support to install—side by side and under different paths, to

avoid file conflicts—32-bit and 64-bit versions of the same

library packages on the same machine.

As it happens, not all files that from a library pack-

age are objects that need to be differentiated according

to their mode; for instance, documentation files and other

architecture-independent data can be shared across different

modes of the same library package. To resolve conflicts on

files that are common to both versions, a possible solution is

to move these files into a separate architecture-independent

package depended upon by architecture-dependent libraries.

This is the solution chosen by Red Hat-based distributions,

and it requires adapting all library packages across the whole

distribution. An alternative solution (chosen by Debian-

based distributions) is to amend the packaging system to

allow sharing of identical files across different modes of the

same package.

The different solutions chosen and the different state in

adoption of multi-arch explain the differences among the

occurrences of multi-arch bugs in Red Hat and Debian. As

this is a transient adaptation phase, we elide this category

for the remainder of this section.

The remaining bugs are classified into five categories:

1) Unavailability or Inaccessibility of Shared Resources:

Shared resources are often files, but also include other

unique system resources such as network ports or C library

function names. Whenever a conflict occurs directly on a

file, the conflict is caught at installation time by the package

manager (see Figure 3 for an example). This handling is safe,

but unsatisfactory: if a list of files used were provided be-

forehand, then an enhanced package manager could prevent

an installation attempt that is bound to fail. On the other

hand, other conflicts, such as name clashes in libraries, may

not be detected until an application is used at run-time.

To summarize, bugs in this category are caused by the

unavailability or inaccessibility of shared resources (e.g. due

to mutual exclusion of the resource and ownership by

“others”).

2) Conflicts on Shared Data, Configuration Information,

or the Information Flow Between Programs: Configuration

5

Unpacking gcc-avr (from .../gcc-avr_1%3a4.3.0-1_amd64.deb) ...

dpkg: error processing /var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb

(--unpack):

trying to overwrite ‘/usr/lib64/libiberty.a’, which is also in package binutils

dpkg-deb: subprocess paste killed by signal (Broken pipe)

Errors were encountered while processing:

/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb

E: Sub-process /usr/bin/dpkg returned an error code (1)

Figure 3. File conflict found when trying to install a package.

Red Hat Bugzilla - Bug 593402

Package: Spacewalk

Version: 1.0

Severity: medium

Cobbler-web breaks /rpc/api over http (which breaks taskomatic)
This is caused by the fact that both the cobbler web.conf and zz-
spacewalk-server.conf contain a <VirtualHost> section. The
cobbler web.conf specifies one for port 80 (<VirtualHost

*:80> while the zz-spacewalk-server.conf defines one for the
default (it’s just <VirtualHost>).
As the VirtualHost for port 80 (as defined in the cobbler web.conf)
has preference over the default VirtualHost (as defined in zz-
spacewalk-server.conf) the rewrite engine doesn’t get enabled for
port 80. This results in breakage of the spacewalk rewrite rules
which are mentioned in zz-spacewalk-www.conf.

Figure 4. Report on conflicting configuration data.

information is often found in /etc, while shared data may

be located elsewhere. Information flow refers to function

calls or communication via pipes or a network. There are two

basic cases where conflicts occur on data or communication:

1) An installation action of a package changes the config-

uration such that either the syntax of a configuration

file is broken (made unreadable for the parser used by

another tool), or its semantics changes in an incom-

patible way with respect to previous expectations.

2) A change in the data format between versions of

an application, which requires updating other com-

ponents; the lack of an appropriate newer version of

other components, or the lack of a declaration of such,

causes a conflict.

In both cases 1 and 2, the conflict usually only becomes

evident at run-time. Sometimes, the problem can be avoided

by having an installation script leave a configuration file

unchanged if it has been modified by a user. Figure 4 shows

a typical case of a semantic conflict in configuration entries

generated by two different packages.

Bugs in this category are caused by incorrect data in

shared resources or interfaces.

3) Interactions between Packages: In some cases, a pack-

age a using another package b makes a previously undetected

fault in b evident; it is possible that other use cases for b

could produce the same problem, so the failure can (at least

in theory) be reproduced using b alone. In other cases, the

Red Hat Bugzilla - Bug 606243

Package: canorus

Version: 0.7.6

Severity: medium

Installation of canorus breaks operation of prelink
Description of problem:
If canorus is installed prelink fails.
I get daily cron mails with the following content:
/etc/cron.daily/prelink:

/etc/cron.daily/prelink: line 47: 32734

Aborted /usr/sbin/prelink -av $PRELINK_OPTS

>> /var/log/prelink/prelink.log 2>&1

Figure 5. Report of a conflict arising from the interaction between
packages.

combination of a and b is necessary for those packages

to fail, and either package would work fine without the

conflicting package being present (see Figure 5).

The bugs have in common that they are observed as a

conflict arising from the interaction between packages.

4) Package Evolution Issues: When a software distribu-

tion evolves, packages may be renamed or split up into

multiple packages, or several packages may be merged into

one. This may require updating meta-data in other pack-

ages for the distribution to remain consistent. Furthermore,

version changes with a package may also require meta-data

changes due to possible incompatibilities mentioned above.

Unfortunately, meta-data changes are not automated, and

are primarily the responsibility of the maintainer of a given

package. This causes a potential for meta-data to be outdated

and not reflect a correct state anymore. The bug shown in

Figure 6, for example, was due to an attempt to imple-

ment a transition from package ttf-telugu-fonts to

fonts-telu; in this case, the maintainer used incorrect

package relations.

Problems in this category arise due to incorrect or out-

dated meta-data.

5) Spurious Conflicts: The last category represents cases

where two packages are incorrectly classified as conflicting,

although there is no conflict, at least not for the current

version of these packages. An example report of a spurious

conflict is shown in Figure 7.

6

Table IV
OVERVIEW OF ALL CONFLICT DEFECTS FOUND IN THE TWO BUG DATABASES.

Number of conflicts Conflict type
Debian Red Hat

0 57 32-bit/64-bit binary conflict

43 38 access to/names of files and similar shared resources
22 22 package provides same file as other package
8 6 package (de-)installers modifies file or file permission, or deletes file used by other package
3 5 file/directory name conflict (for names including version number etc.)

10 5 clashing library symbols/function names/device names

48 34 file/API/data/configuration format/resource management
20 12 update/installation script breaks configuration, file format, or resource management
14 8 package breaks on uncommon or user-defined configuration/setting
4 6 package use (post-install) overwrites/breaks configuration files

10 8 API/file format change between different package version breaks other package

21 41 rare (previously untested) combination of packages
13 22 defect in one package made visible by failure of other package/functionality
8 19 uncommon combination of packages makes one or more packages always fail

19 12 package evolution (split/merge/change) or faulty meta-data results in conflict
10 6 incorrect/outdated dependency meta-data (requires/conflicts)
9 6 package renaming/split/merge results in incorrect meta-data of other package

8 1 spurious conflict declaration prevents compatible packages from being used

139 183 (126) total (in parentheses: total excluding 32/64-bit binary conflicts)

Debian bug number: #662988

Package: ttf-telugu-fonts

Version: 2:1.0

Severity: serious

Hi, ttf-telugu-fonts is not installable in sid: (...)
The problem is that ttf-telugu-fonts depends on fonts-telu which
in turn breaks: ttf-telugu-fonts. This probably should be ttf-telugu-
fonts (<<2:1.0).

Figure 6. Report of incorrect meta-data.

Debian bug number: #559161

Package: libopenmpi-dev

Version: 1.3.3-2

Severity: serious

The libopal-dev and libopenmpi-dev packages were marked as
conflicting to resolve bug #404003; the problem was file ’/usr/lib/li-
bopal.so’ contained in both packages.
Since at least lenny this library was renamed to ’/usr/lib/libopen-
pal.so’ in libopenmpi-dev package, so the conflict does not exist
any longer.
There are no other conflicting files in these packages, so the
conflicts tag should be removed.

Figure 7. Report of a spurious conflict.

E. Summary

Table IV and Figure 8 show an overview of the classifica-

tion into these five categories. Larger categories are split up

into smaller groups to get a more detailed picture. Conflicts

between binaries for different architectures (on Red Hat)

are excluded in Figure 8b. While human error in individual

classifications is possible, the results are overall quite clear

for larger categories. Some trends are evident:

1) Resource conflicts represent about 30 % of all conflicts

(43 and 38 cases in total). About half of these conflicts

are on files and caught by the package manager at

installation time; other similar conflicts may not be

caught until a package is actually used.

2) Conflicts on configuration, and to a lesser degree,

the format of shared data, are equally common. In

many cases, syntactic problems cause a conflict be-

tween packages; the most common reason is the

automatic modification of configuration files by in-

stallation scripts (20 cases in Debian, 12 in Red Hat).

These installation scripts are likely tested for common

configurations, but may not behave as expected for less

common settings. While syntactic problems are preva-

lent, unintended semantic changes are also a signifi-

cant problem, both during and after installation. This is

compounded by the fact that many configuration files

have to be customized by the user before a package

can be used. When editing a file, the formatting of

a configuration file may see subtle changes that are

correctly dealt with by the packaged software itself,

but not by the installation scripts that manage the

package.

3) Other problems between packages that are usually not

installed together represent another significant share.

The huge number of available packages makes it

impossible to test all combinations (or even just all

pairwise possible combinations) of packages together,

so a conflict often goes undetected until reported by

a user. In Red Hat, the number is fairly large be-

cause many problems are reported for specific laptop

hardware configurations where kernel modules (driver

packages) did not behave well. It seems that the use

of Debian in such cases is less common, accounting

for a lower percentage of such bug reports.

7

File/resource name/

access 31 %

File format/API/

configuration 35 %

Rare combination 15 %

Package evolution/

meta−data 14 %

Spurious

conflict 6 %

(a) Debian

File/resource name/

access 30 %

File format/API/

configuration 27 %

Rare combination 33 %

Package evolution/

meta−data 10 %

Spurious

conflict 1 %

(b) Red Hat

Figure 8. Categorization of conflict defects in our case study.

4) Conflicts on meta-data level, often caused by package

evolution, contribute about 10 %.

5) Incorrect (or outdated) information on conflicting

packages sometimes occurs as well, which does not

create a conflict defect per se, but instead prevents

two packages from being used together even if this is

possible in principle.

IV. DISCUSSION

A. Addressing Each Type of Conflict Defect

The previous section has given a categorization of conflict

defects based on empirical data. We now propose possible

solutions that can potentially cover some or all instances of

each class of conflicts.

1) Conflicts on Files and Similar Shared Resources: Con-

flicts on shared resources are not directly covered by existing

meta-data, although they may be implied by package-level

conflicts. Work is in progress to systematically test package

installations against overwriting files provided by another

package [20], at least in Debian. As an alternative to this,

file diversions enable a package to install files at a different

location; work is in progress to automate this.2

This case study shows that while the majority of such

conflicts occurs at file level, file permissions (and owner-

ship) rather than just file names, and possible file/directory

renaming actions during package upgrades, should also be

considered. Finally, coverage of similar resources such as

network ports and function or library names would further

augment the ability of such tools to detect conflicts proac-

tively.

More detailed meta-data will require much more space

than existing (rather compact) package meta-data. We pro-

pose that some extra meta-data is generated and used only

by developers and package maintainers. As it covers possible

2http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions,
retrieved June 2011

conflicts proactively, at development time, not all fine-

grained meta-data needs be included in the final distribution.

We think that most or all of such resource-related meta-

data can be extracted automatically by static analysis or run-

time analysis. Automation would eliminate extra effort from

package maintainers.

This proposition distinguishes itself from existing mech-

anisms such as features or virtual packages in that extra

meta-data is directly linked to underlying resources, in a for-

mally defined way. This makes it possible to generate such

meta-data automatically if dependencies on the underlying

resources are known.

2) Conflicts on Shared Data: Conflicts on configuration

files, file formats and API versions are also common, and

clearly demonstrate the need for systematic testing against

such conflicts. In the light of testing against overwriting

files [20], inter-package tests should also be automatically

run against conflicts on shared data. This is much more

difficult to automate, and only feasible for packages that

include automated regression tests.

The problem is that regression tests are primarily used

by developers, and less often by package maintainers, not

to mention end users. Because of this, combined with the

fact that a unit test failure does not automatically imply

that a package is unusable, regression tests are currently not

covered by package meta-data. This makes them inaccessible

to today’s package management tools, and precludes the

automated discovery of such intricate conflicts. However,

at a lower level, many source-level distributions have a

“make test” or “make check” build target that automatically

performs such tests. In the future, such information could

be provided in package meta-data, for package maintainers.

Furthermore, on a basic level, certain problems may be

found just by executing a program and checking whether

its return value indicates an error, or by attempting to start

and stop a system service cleanly.

8

http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions

3) Interactions between Uncommon Packages: The fact

that rare combinations of packages may cause problems is

not surprising, given the large number of available packages.

Exhaustive testing of package combinations is not feasible,

but heuristic-based testing of sets of packages may be.

A possible approach may be to install larger subsets of

packages, and to narrow down the set of conflicting packages

by a systematic search such as delta debugging [21].

4) Package Evolution: Package evolution often brings

with it an invalidation of package meta-data. About one

tenth of conflict defects in our study is caused directly due

to invalid meta-data after larger package modifications (such

as splitting a package into two packages). This shows that

meta-data needs to be verified for consistency and accuracy.

Especially when given a situation with “known good” meta-

data (before the modification), automatic verification of

the new meta-data is feasible if packages can be tested

automatically.

As with other issues described above, meta-data does not

cover the requirements of packages in enough detail. For

example, take a package a that is split up into a
′ and a

′′,

because some parts of a are not used by many packages.

If a package b depends on a in the old configuration, it

is possible that b depends on a
′, a′′, or both packages, in

the new configuration. If some of the resources provided

by these packages are loaded dynamically by b (at run-

time), then verification of the actual software is required

to determine the correct new dependency.

5) Spurious Conflicts: Spurious (or outdated) declara-

tions of conflict defects can be responded to, by automated

testing of packages that supposedly conflict. This would

detect cases where a conflict is resolved in a newer version

of a package.

B. Summary

To summarize, we think that a large number of common

conflict defects can be discovered more effectively through

the following means:

• Identification of potentially conflicting packages

through analysis of existing meta-data or package be-

havior. Such an analysis yields candidates for auto-

mated testing, covering bug categories 1–3. We expect

that such testing may partially use recent virtualization

technologies (e.g. [15], among many others). Virtual-

ization technology may provide both a “sandbox” for

executing tests and automated inspection of test execu-

tions, to determine the usage of shared resources such

as files or network ports. As of recently, distributions

seem indeed be interested in proceeding along this

direction [7].

• More detailed and accurate meta-data, generated or

verified by automated tools. This primarily covers bugs

related to the availability of shared resources, and the

correctness of meta-data itself (categories 1, 4, and 5).

Extended meta-data should cover files including file meta-

data in particular, and as a next step, other system resources

such as network ports, shared (global) configuration data,

and communication between components. Another aspect

currently omitted in meta-data is information about regres-

sion tests that already exist in many packages, but are

inaccessible on a package level because they are not declared

or available in a uniform way. An enhanced set of meta-

data for testers and distribution maintainers could cover such

testing-related information.

V. CONCLUSIONS AND FUTURE WORK

Conflicts between software packages occur due to a

variety of reasons. Conflict defects on shared resources and

configuration files are particularly common. The underlying

problem is that package behavior at installation, use, and

de-installation time is unrestricted, so a complete formal de-

scription of package behavior cannot be achieved. However,

steps can be taken towards increasing the expressiveness and

accuracy of package meta-data, by adding meta-data that is

intended for package developers and maintainers.

In our case study, we categorize a large number of

conflict defects, and propose possible solutions to common

categories of conflicts. Our study uses two snapshots of bugs

between packages reported in Debian GNU/Linux and Red

Hat Linux (including derivatives such as Fedora). We found

that on a broad level, over 80 % of all conflict defects are

made up by three categories: conflicts on resource access,

conflicts on (configuration or application) data, and interac-

tions between uncommon combinations of packages. Future

work includes studying the evolution of packages, and bugs

reported, over time by investigating multiple snapshots taken

over time.

As a conclusion from our case study, we found that

ongoing and future projects can reduce conflict defects

most efficiently by (a) identifying and testing combinations

of packages that may conflict, (b) generating and using

extra meta-data, and (c) checking the validity of (manually

provided) meta-data.

REFERENCES

[1] Pietro Abate, Jaap Boender, Roberto Di Cosmo & Stefano
Zacchiroli (2009): Strong Dependencies between Software
Components. In: ESEM 2009, IEEE, pp. 89–99.

[2] Pietro Abate & Roberto Di Cosmo (2011): Predicting up-
grade failures using dependency analysis. In: 27th Interna-
tional Conference on Data Engineering, IEEE, pp. 145–150.

[3] Alan W. Brown & Kurt C. Wallnau (1998): The Current State

of CBSE. IEEE Software 15, pp. 37–46.

[4] Christian Collberg, John H. Hartman, Sridivya Babu &
Sharath K. Udupa (2005): Slinky: Static linking reloaded. In:
Proc. USENIX 2005 Annual Technical Conference, USENIX,
Anaheim, USA, pp. 309–322.

9

[5] Roberto Di Cosmo & Jaap Boender (2010): Using strong
conflicts to detect quality issues in component-based complex
systems. In: 3rd India software engineering conference, ISEC
2010, ACM, pp. 163–172.

[6] Roberto Di Cosmo, Paulo Trezentos & Stefano Zacchiroli
(2008): Package Upgrades in FOSS Distributions: Details
and Challenges. In: International Workshop on Hot Topics
in Software Upgrades, HotSWUp ’08, ACM, New York, NY,
USA, pp. 7:1–7:5.

[7] Ian Jackson, Iustin Pop & Stefano Zacchiroli: autopkgtest -
automatic as-installed package testing. Debian Enhancement
Proposal 8: http://dep.debian.net/deps/dep8/.

[8] Ian Jackson & Christian Schwarz (2008): Debian Policy
Manual. http://www.debian.org/doc/debian-policy/.

[9] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme
Vouillon, Berke Durak, Xavier Leroy & Ralf Treinen (2006):
Managing the Complexity of Large Free and Open Source
Package-Based Software Distributions. In: ASE 2006, IEEE,
pp. 199–208.

[10] Gustavo Noronha Silva (2008): APT HOWTO.
http://www.debian.org/doc/manuals/apt-howto/.

[11] Lucas Nussbaum & Stefano Zacchiroli (2010): The Ulti-
mate Debian Database: Consolidating Bazaar Metadata for
Quality Assurance and Data Mining. In: 7th IEEE Working
Conference on Mining Software Repositories (MSR 2010),
Cape Town, South Africa.

[12] Leon Presser & John R. White (1972): Linkers and loaders.
Computing Surveys (CSUR) 4(3), pp. 149–167.

[13] The Debian Project: Debian bug tracking system.
http://debian.org/Bugs/. Retrieved March 2012.

[14] The Debian Project: Software packages in [Debian] “sid”.
http://packages.debian.org/sid/allpackages. Retrieved June
2011.

[15] Red Hat, Inc.: KVM. http://www.linux-kvm.org.

[16] Red Hat, Inc.: Red Hat Bugzilla Main Page.
http://bugzilla.redhat.com. Retrieved March 2012.

[17] Murray Stokely (2004): The FreeBSD Handbook, 3 edition.
FreeBSD Mall.

[18] Kuniyasu Suzaki, Toshiki Yagi, Kengo Iijima, Nguyen Anh
Quynh, Cyrille Artho & Yoshihito Watanebe (2010): Moving
from Logical Sharing of Guest OS to Physical Sharing of
Deduplication on Virtual Machine. In: Proc. 5th USENIX
Workshop on Hot Topics in Security (HotSec 2010), USENIX,
Washington D.C., USA.

[19] Clemens Szyperski (1998): Component Software. Beyond
Object-Oriented Programming. Addison-Wesley.

[20] Ralf Treinen (2011): EDOS-Debcheck: File Overwrite Errors.
http://edos.debian.net/file-overwrites/. Retrieved June 2011.

[21] Andreas Zeller & Ralf Hildebrandt (2002): Simplifying and
Isolating Failure-Inducing Input. Software Engineering 28(2),
pp. 183–200.

10

http://dep.debian.net/deps/dep8/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/apt-howto/
http://debian.org/Bugs/
http://packages.debian.org/sid/allpackages
http://www.linux-kvm.org
http://bugzilla.redhat.com
http://edos.debian.net/file-overwrites/

	Introduction
	Package-based Software Distributions
	Conflict Defects

	Related Work
	Software Packaging
	Alternatives to Globally Managed Software Packaging

	Evaluation of Conflict Defects
	Repositories Used in the Case Study
	Methodology
	Automated Search
	Manual Evaluation
	Possible Sources of Bias

	Repository Characteristics
	Categorization of Conflict Defects
	Unavailability or Inaccessibility of Shared Resources
	Conflicts on Shared Data, Configuration Information, or the Information Flow Between Programs
	Interactions between Packages
	Package Evolution Issues
	Spurious Conflicts

	Summary

	Discussion
	Addressing Each Type of Conflict Defect
	Conflicts on Files and Similar Shared Resources
	Conflicts on Shared Data
	Interactions between Uncommon Packages
	Package Evolution
	Spurious Conflicts

	Summary

	Conclusions and Future Work
	References

