Separ ation of Transitions, Actions, and Exceptionsin
M odel-based Testing

Cyrille Artho

Research Center for Information Security (RCIS), AIST, yimklapan

Abstract. Model-based testing generates test cases from a high-evdél.
Current models employ extensions to finite-state machift@s.work proposes a
separation of transitions in the model and their corresjgnalctions in the target
implementation, and also includes special treatment céti@nal states.

1 Introduction

Software testing entails execution of a system under td3T ®r parts thereof. A

series of stimuli (inputs) is fed to the SUT, which respondb a series of observable
events (outputs). The oldest form of testing consists otetieg a system manually,
with a human administering the input and observing the dutpuhe last few decades,
various techniques have been developed to automate testiddo impose some rigor
by systematic selection of test data and measurement offdatieeness of tests [5,6].

For testing on a smaller scale, unit testing has become dynddeepted and used
way of testing relatively small, self-contained units irfta@re [4]. Unit testing auto-
mates test execution and the verification of the test outpuhis way, once a test is
written, it can be re-used throughout the life time of a syst&éhe continuous use of
a test suite throughout a product cycle is callegression testindJnit tests automate
regression testing, provided the interface (input spextifia) or the output format of a
system does not change.

Despite its success, unit testing has the drawbacks thatresgtion often involves
writing large parts of low-level code. Furthermore, ungtterequire maintenance when-
ever the interface or output of the SUT undergoes a changetherefore desirable to
automate test creation, while providing a more abstraet eiegnputs and outputs. The
aspiration is to reduce the amount of low-level test codeetovhitten, while also de-
coupling test behavior from the detailed format of datahis tvay, the data format can
be updated while the test model can be (mostly) retained.

Model-based testing (MBT) is a technology that automateat@wn of test cases in
certain domains [3,8]. Test code is generated from the mndspecialized tools [8] or
by leveraging model transformation tools [3] from the domai model-driven archi-
tecture (MDA) [7]. MDA represents an approach where probgracific features (such
as the description of system behavior) are represented bynaid-specific language.
Standardized tools then transform the domain-specificlagg into the desired target
format, such that an executable system is obtained. In #pemp the domain-specific
language entails a description of the system behavior aste-ftate machine (FSM).
This description is then transformed into Java code.

Prior to this work, to our knowledge, openly available MBDlofor Java lacked
the flexibility of the approach that is presented here. Thiggy makes the following
contributions:

1. The existing test model used in ModelJUnit [8] is replaaétl a high-level model
that minimizes the amount of code to be written, while beirggarflexible.

2. Our new model separates two orthogonal concerns, madditions and imple-
mentation actions, presenting a conceptually cleanetisalu

3. Exceptional behavior, a feature that is often used in mogeogramming lan-
guages, can be modeled naturally and expediently with ainitacture.

The rest of this paper is organized as follows: Section Ddhices a running example
that shows how the model handles different aspects of thalgmo Problems with the

existing approach are detailed in Section 3. Our proposghitacture is described in

Section 4. Section 5 concludes and outlines future work.

2 Example

2.1 Elevator system

The example that is used throughout this paper describegab&ble state space of
an elevator that has two pairs of doors: one at the front,lemmaine at the rear. The
elevator has been inspired by an elevator from Yoyogi statfdthe Oedo metro subway
line in Tokyo. The elevator ranges over five floors, from theestlevel entrance on the
second floor, to the lower entrance on the first floor (rea@htiivtbugh a passage from
a different train station), to the underground floors of tbhual metro station. While
the first and second basement level exist, they are not rblechg the elevator, and in
general inaccessible to subway commuters, even by stairs.

The model has to reflect the range of permitted configuratimalsoperations that
change the system state. Figure 1 shows the state spaceefraitted elevator states.
Each state has its own label, while transitions are labeld thve action required to
reach the next state from the current state. This examplg dokeinclude transitions
leading to error states; such an addition will be describést|

2.2 Test casesusing JUnit

A simple property that has to hold for the given elevator eglenis that a if it moves
down a number of floors, it will be back at the starting positidter having moved up
again the same number of floors. If the doors open and closetinelen, the property
still has to hold. A few unit tests verifying this propertyesshown in Figure 2. As can

1 Construction of the Toei Oedo line started in 1991, when mbdiokyo city and its metro
network were already built. This made it necessary to cansthe Oedo line more than 40 m
below ground, requiring the elevator to skip a couple oflebefore arriving at the ticket gate
on the third underground floor. On that floor, the rear dooenof his design makes it more
convenient to use the elevator, as people to not have to haokf dhe elevator through the
same door they entered in, but they can instead use the tgplosir in front of them.

Fig. 1. Example of an elevator with two doors, which are only allow@dpen on certain floors.
Onlevels 1 and 2 (statésandly,), the front doors are allowed to open, changing the conftgura
to statel; ¢+ andl,¢, respectively. On the first and second basement flopafidb,), the doors
must remain closed. On the third basement floor, the rearsdm@r allowed to open, which is
reflected by transitiobs — bs;.

be easily seen, much of the test code is simple and repetitateonly a small part of
the possible state space is covefatthile better coverage can be achieved in principle,
it is unlikely to happen in practice, as too much code has twiiéen. Model-based
testing aims to replace the manual work required to generdigh coverage of the
possible state space, while keeping the task of modelingytstem simple.

@est void testl() { @est void test3() {

pos = 12; pos = 12;
down() ; down() ;
up(); down() ;
assert(pos == 12); down();

} down();

open();

@est void test2() { cl ose();
pos = 12 up();
down() ; up();
open(); up();
cl ose(); up();
up(); assert(pos == 12);
assert(pos == 12); }

}

Fig. 2. Code example of unit tests using JUnit.

2 For instance, the possibility of moving to the bottom flootheut opening the doors is not
tested; opening and closing the doors twice before movings ot tested; and opening the
doors on the first floor before moving to the bottom floor is esteéd either.

3 MBT Using ModelJUnit

3.1 Tool architecture

ModelJUnit is an openly available test case generation&golising an extended finite
state machine (EFSM) as input. An EFSM is a Java implememtafia finite-state ma-
chine, including two extensions: First, a custom state ammspn function can provide
a more refined or more abstract behavior than a pure FSM. 8etramsitions of an
EFSM include their mapping to concrete actions of the systeder test (SUT).
ModelJUnit searches the graph of an EFSM at run-time. As mansitions are
explored, corresponding actions in the SUT are executesll®eare verified by using
JUnit assertions [4]. Specification of the entire model agwa program allows one
artifact to describe all system states, transitions, amesponding actions of the SUT.
However, states and transitions have to be encoded in Jaeh. tEansition requires
two methods: ayuard specifying when a transition is enabled, andaation method
specifying the successor state and the correspondingaifttbe SUT. In ModelJUnit,
each transition/action pair requires about six lines oétigipe yet error-prone code.

3.2 Elevator system described in ModelJUnit

As described above, ModelJUnit explores a specificallycstined Java program. The
program has to contain an initialization method, a numbeguard conditions, and
actions that update the model state and execute test aclioasasks of exploring the
model, measuring and reporting model coverage, are themlgiolodelJUnit. Figure 3
shows an excerpt of a finite-state machine encoded for MOdélJAs can be seen, the
specification of the state space and the initial state ieraimple, but parts relating to
the SUT (lines 2 and 8) are interleaved with model code. Terieaving of model and
implementation code continues throughout each guard rdétines 12—14) and action
method (lines 16-19). Out of these seven lines, only one time call todown(),
corresponds to a concrete test action. The remainder ofithe is quite repetitive and
can be fully expressed by the graphical finite-state madinam Figure 1.

4 Proposed Architecture

4.1 Separation of the FSM from system actions

We propose a separation of the behavioral model and thegrogode. The state space
of our model is described by a conventional FSM, using the™@e format from
graphviz [1]. This format is concise, human-readable, amperted by visualization
and editing tools. A transition can be specified in a single bf text of formpre ->
post [label = "action"].Alabelcorrespondsto an actioninthe SUT. The
same action may be executed in different transitions.

Most methods of a SUT require arguments that cannot be emstt trivially from
a high-level model such as an FSM. Instead, actions are atelédo a bridge class

3 The same effect would be achieved in an existing ModelJUwitleh by either duplicating
code or by writing complex transition guards and post-statelitions.

1 public class Elevator FSM i npl enents Fsnivbdel {
private El evatorController elevator;

enum State { 12, I2f, 11, I1f, bl, b2, b3, b3r }
5 private State state;

public void reset(bool ean testing) {
el evator = new El evatorController();
state = State.|2;

0 }
publ i c bool ean ActionL2L1Guard() {
return state == State.| 2;
}
15
public @\ction void actionL2L1() {
el evat or. down();
state = State.l1;
}
20 }

Fig. 3. Part of the elevator model for ModelJUnit.

written in Java. The bridge class implements test actiodgascribes how parameters
are constructed and verified.

4.2 Elevator model using our architecture

Figure 4 shows how our model splits the concerns into twosp@iie FSM, encoded in
the dot format, and the bridge class calldvatorimplwhich contains the application-
specific test code. Note that the entire state space of thelrisotbnveniently managed
in the FSM, so our Java code contains no guard or state vasiabl the same time, any
implementation-specific code is removed from the FSM.

4.3 Mode annotations

Libraries may contain redundant interfaces (“convenigne¢éhods”) as shorthands. It
is desirable to test all of these methods, yet the FSM woulduigered by the inclusion
of the full set of redundant methods. We chose to use annotatif FSM transitions to
describe cases where a single FSM transition covers a setiofis. Annotated transi-
tions are internally expanded to the full set of methods teetfoe test model is explored.
Thereby, interface variants are tested by selecting a randwoiant each time the tran-
sition is executed. A set of methods that only read data witishanging the system
state can also be represented by one FSM action and an donoltathis way, the fact
that no access method actually modifies the system stateedasted against.

di graph El evator {

init ->12; bl ->11 [label = "up"];

12 ->117] label = "down"]; 11 ->12 [label = "up"];

11 -> bl [label = "down"]; |2 ->12f [|abel = "open"];
bl -> b2 [label = "down"]; |2f ->12 [label = "close"];
b2 -> b3 [label = "down"]; 1 ->11f [| abel = "open"];
b3 -> b2 [label = "up"]; |1f -> 11 [label = "close"];
b2 -> bl [label = "up"]; b3 -> b3r [label = "open"];

b3r -> b3 [label = "close"]; }

public class Elevatorlnpl {
private El evatorController elevator;

public void init() {
el evator = new El evatorController();

}

public void down() {
el evat or. down();

}
}

Fig.4. The FSM of the elevator model in dot format (top) and a parhefliridge to its imple-
mentation in Java (bottom).

Fig.5. Extended model of the elevator. Assume there is a forth basefavel, which is only
allowed to be accessed by authorized personnel. Authimizeg granted when a key is inserted
when in basement level B4). If the “down” action is executed without authorizatiom, excep-
tion should be thrown, as indicated by sthtal.

4.4 Exceptional behavior

Finally, a given action may cause an exception, dependintherstate of the SUT.
Exception annotations specify states where an exceptexpiscted to occur. As an ex-
ample, take an extension of the elevator from the ticket lgat (b3) to the tracksiy,).
Customers are required to use the ticket gate for the mettbey are not authorized to
access levdd, directly through the elevator. Assume that, for mainteeatite elevator
extends tdoy. If a key is inserted iz, the elevator changes to an authorized state, from
which access to the lowest level is given. Otherwise, argngtt to reacho, should be
indicated by an exception, leading to a “bad” sthféigure 5 shows the extended FSM.

The code necessary in Java to verify the presence or absesicexception is quite
lengthy. In Java, so-callechecked exceptiorsse defined by methods that declare that
they may throw an exception [2]. Each call to such a methoddhe guarded against
possible exceptions by usingta y/cat ch block. In our model, annotations of FSM
states specify which states correspond to an exceptioata. sAll transitions to that
state are expected to throw precisely that type of excepiiquoivalent actions leading
to non-exceptional states may not throw any exception. &stto cases differ only
slightly, the code in Figure 6 can be easily generated autioatisy.

public void actionb3bad() {
bool ean excepti onCccurred = fal se;

try {
i mpl . down();

catch (111 egal StateException e) {
exceptionCQccurred = true;

}

assert (excepti onCccurred);

}

Fig. 6. Code that verifies the presence of an exception.

4.5 Tool architecture

For use with ModelJUnit, the FSM is expanded into its Javaiasgntation (see Fig-
ure 7). The generated code includes//cat ch blocks for verification of the presence
or absence of exceptions. Transformation of the FSM can toereated either by lever-
aging existing model transformation tools [7] or by extergdModelJUnit with a parser
for the additional file formats. The former approach requadditional tools but is in-
dependent of the programming language and unit test library

4 In the Tokyo Metro stations, this problem is usually solvgdhaving a separate elevator from
the ticket gates down to the tracks below.

Model exploration

FSM c EFSM 2=
(dot) 2 (Java) [. S
g Test execution %
§ delegates 3
@ V =
Annotations E Action model
(text) (Java)

Fig. 7. Architecture of system to generate the ModelJUnit model.

5 Conclusionsand Future Work

Current tools for model-based testing do not completelyassp all features. Specif-
ically, different transitions in an abstract model may egspond to the same action in
the implementation. Separation of these two artifactsdeach more concise model.
Inclusion of exceptional states in the model further insesathe amount of code that
can be generated automatically, making the model more sgiweeand maintainable.

Future work includes exploring the possibility of tying tetanvariant code, rather
than just exceptions, to states in the model. This would e dio a way that is equiv-
alent to how actions are tied to transitions. Furthermareur architecture, the Mod-
elJUnit tool only serves to explore the graph of the modek Tlansformation step
shown in Figure 7 could therefore be subsumed by direct ¢ieraf the action model,
without going through ModelJUnit. Independence of Modeliiuould have the added
benefit of being able to implement features that ModelJUoésdnot support, such as
non-deterministic transitions.

References

1. E. Gansner and S. North. An open graph visualization systed its applicationsSoftware
— Practice and Experien¢c&0:1203-1233, 1999.

2. J. Gosling, B. Joy, G. Steele, and G. Brachiae Java Language Specification, Third Edition
Addison-Wesley, 2005.

3. A.Javed, P. Strooper, and G. Watson. Automated generafti@st cases using model-driven
architecture. IrProc. 2nd Int. Workshop on Automation of Software Test (ABVRpage 3,
Washington, USA, 2007. IEEE Computer Society.

4. J. Link and P. FréhlichUnit Testing in Java: How Tests Drive the Coddorgan Kaufmann

Publishers, Inc., 2003.

. G. Myers.Art of Software Testinglohn Wiley & Sons, Inc., 1979.

. D. Peled.Software Reliability MethodsSpringer, 2001.

7. J. Poole. Model-driven architecture: Vision, standanodd emerging technologies. Work-
shop on Metamodeling and Adaptive Object MogdBlsdapest, Hungary, 2001.

8. M. Utting and B. LegeardPractical Model-Based Testing: A Tools Approadhorgan Kauf-
mann Publishers, Inc., San Francisco, USA, 2006.

o U1

