
Separation of Transitions, Actions, and Exceptions in
Model-based Testing

Cyrille Artho

Research Center for Information Security (RCIS), AIST, Tokyo, Japan

Abstract. Model-based testing generates test cases from a high-levelmodel.
Current models employ extensions to finite-state machines.This work proposes a
separation of transitions in the model and their corresponding actions in the target
implementation, and also includes special treatment of exceptional states.

1 Introduction

Software testing entails execution of a system under test (SUT) or parts thereof. A
series of stimuli (inputs) is fed to the SUT, which responds with a series of observable
events (outputs). The oldest form of testing consists of executing a system manually,
with a human administering the input and observing the output. In the last few decades,
various techniques have been developed to automate testing, and to impose some rigor
by systematic selection of test data and measurement of the effectiveness of tests [5,6].

For testing on a smaller scale, unit testing has become a widely accepted and used
way of testing relatively small, self-contained units in software [4]. Unit testing auto-
mates test execution and the verification of the test output.In this way, once a test is
written, it can be re-used throughout the life time of a system. The continuous use of
a test suite throughout a product cycle is calledregression testing.Unit tests automate
regression testing, provided the interface (input specification) or the output format of a
system does not change.

Despite its success, unit testing has the drawbacks that test creation often involves
writing large parts of low-level code. Furthermore, unit tests require maintenance when-
ever the interface or output of the SUT undergoes a change. Itis therefore desirable to
automate test creation, while providing a more abstract view of inputs and outputs. The
aspiration is to reduce the amount of low-level test code to be written, while also de-
coupling test behavior from the detailed format of data. In this way, the data format can
be updated while the test model can be (mostly) retained.

Model-based testing (MBT) is a technology that automates creation of test cases in
certain domains [3,8]. Test code is generated from the modelby specialized tools [8] or
by leveraging model transformation tools [3] from the domain of model-driven archi-
tecture (MDA) [7]. MDA represents an approach where problem-specific features (such
as the description of system behavior) are represented by a domain-specific language.
Standardized tools then transform the domain-specific language into the desired target
format, such that an executable system is obtained. In this paper, the domain-specific
language entails a description of the system behavior as a finite-state machine (FSM).
This description is then transformed into Java code.



Prior to this work, to our knowledge, openly available MBT tools for Java lacked
the flexibility of the approach that is presented here. This paper makes the following
contributions:

1. The existing test model used in ModelJUnit [8] is replacedwith a high-level model
that minimizes the amount of code to be written, while being more flexible.

2. Our new model separates two orthogonal concerns, model transitions and imple-
mentation actions, presenting a conceptually cleaner solution.

3. Exceptional behavior, a feature that is often used in modern programming lan-
guages, can be modeled naturally and expediently with our architecture.

The rest of this paper is organized as follows: Section 2 introduces a running example
that shows how the model handles different aspects of the problem. Problems with the
existing approach are detailed in Section 3. Our proposed architecture is described in
Section 4. Section 5 concludes and outlines future work.

2 Example

2.1 Elevator system

The example that is used throughout this paper describes thepossible state space of
an elevator that has two pairs of doors: one at the front, another one at the rear. The
elevator has been inspired by an elevator from Yoyogi station of the Oedo metro subway
line in Tokyo. The elevator ranges over five floors, from the street-level entrance on the
second floor, to the lower entrance on the first floor (reachable through a passage from
a different train station), to the underground floors of the actual metro station. While
the first and second basement level exist, they are not reachable by the elevator, and in
general inaccessible to subway commuters, even by stairs.1

The model has to reflect the range of permitted configurationsand operations that
change the system state. Figure 1 shows the state space of allpermitted elevator states.
Each state has its own label, while transitions are labeled with the action required to
reach the next state from the current state. This example does not include transitions
leading to error states; such an addition will be described later.

2.2 Test cases using JUnit

A simple property that has to hold for the given elevator example is that a if it moves
down a number of floors, it will be back at the starting position after having moved up
again the same number of floors. If the doors open and close in between, the property
still has to hold. A few unit tests verifying this property are shown in Figure 2. As can

1 Construction of the Toei Oedo line started in 1991, when mostof Tokyo city and its metro
network were already built. This made it necessary to construct the Oedo line more than 40 m
below ground, requiring the elevator to skip a couple of levels before arriving at the ticket gate
on the third underground floor. On that floor, the rear doors open. This design makes it more
convenient to use the elevator, as people to not have to back out of the elevator through the
same door they entered in, but they can instead use the opposite door in front of them.

2



b3r

l2f

b2 b3b3b3l1l2

cl
os

e

b1

up up up up

down down down down

cl
os

e

op
en

op
en

cl
os

e

op
en

l1f

Fig. 1. Example of an elevator with two doors, which are only allowedto open on certain floors.
On levels 1 and 2 (statesl1 andl2), the front doors are allowed to open, changing the configuration
to statel1 f and l2 f , respectively. On the first and second basement floor (b1 andb2), the doors
must remain closed. On the third basement floor, the rear doors are allowed to open, which is
reflected by transitionb3→ b3r .

be easily seen, much of the test code is simple and repetitive. Yet, only a small part of
the possible state space is covered.2 While better coverage can be achieved in principle,
it is unlikely to happen in practice, as too much code has to bewritten. Model-based
testing aims to replace the manual work required to generatea high coverage of the
possible state space, while keeping the task of modeling thesystem simple.

@Test void test1() {
pos = l2;
down();
up();
assert(pos == l2);

}

@Test void test2() {
pos = l2;
down();
open();
close();
up();
assert(pos == l2);

}

@Test void test3() {
pos = l2;
down();
down();
down();
down();
open();
close();
up();
up();
up();
up();
assert(pos == l2);

}

Fig. 2. Code example of unit tests using JUnit.

2 For instance, the possibility of moving to the bottom floor without opening the doors is not
tested; opening and closing the doors twice before moving onis not tested; and opening the
doors on the first floor before moving to the bottom floor is not tested either.

3



3 MBT Using ModelJUnit

3.1 Tool architecture

ModelJUnit is an openly available test case generation tool[8], using an extended finite
state machine (EFSM) as input. An EFSM is a Java implementation of a finite-state ma-
chine, including two extensions: First, a custom state comparison function can provide
a more refined or more abstract behavior than a pure FSM. Second, transitions of an
EFSM include their mapping to concrete actions of the systemunder test (SUT).

ModelJUnit searches the graph of an EFSM at run-time. As new transitions are
explored, corresponding actions in the SUT are executed. Results are verified by using
JUnit assertions [4]. Specification of the entire model as a Java program allows one
artifact to describe all system states, transitions, and corresponding actions of the SUT.
However, states and transitions have to be encoded in Java. Each transition requires
two methods: aguard specifying when a transition is enabled, and anaction method
specifying the successor state and the corresponding action of the SUT. In ModelJUnit,
each transition/action pair requires about six lines of repetitive yet error-prone code.

3.2 Elevator system described in ModelJUnit

As described above, ModelJUnit explores a specifically structured Java program. The
program has to contain an initialization method, a number ofguard conditions, and
actions that update the model state and execute test actions. The tasks of exploring the
model, measuring and reporting model coverage, are then done by ModelJUnit. Figure 3
shows an excerpt of a finite-state machine encoded for ModelJUnit. As can be seen, the
specification of the state space and the initial state is rather simple, but parts relating to
the SUT (lines 2 and 8) are interleaved with model code. This interleaving of model and
implementation code continues throughout each guard method (lines 12–14) and action
method (lines 16–19). Out of these seven lines, only one line, the call todown(),
corresponds to a concrete test action. The remainder of the code is quite repetitive and
can be fully expressed by the graphical finite-state machinefrom Figure 1.

4 Proposed Architecture

4.1 Separation of the FSM from system actions

We propose a separation of the behavioral model and the program code. The state space
of our model is described by a conventional FSM, using the “dot” file format from
graphviz [1]. This format is concise, human-readable, and supported by visualization
and editing tools. A transition can be specified in a single line of text of formpre ->
post [ label = "action" ]. A label corresponds to an action in the SUT. The
same action may be executed in different transitions.3

Most methods of a SUT require arguments that cannot be constructed trivially from
a high-level model such as an FSM. Instead, actions are delegated to a bridge class

3 The same effect would be achieved in an existing ModelJUnit model by either duplicating
code or by writing complex transition guards and post-stateconditions.

4



1 public class ElevatorFSM implements FsmModel {
private ElevatorController elevator;

enum State { l2, l2f, l1, l1f, b1, b2, b3, b3r }
5 private State state;

public void reset(boolean testing) {
elevator = new ElevatorController();
state = State.l2;

10 }

public boolean ActionL2L1Guard() {
return state == State.l2;

}
15

public @Action void actionL2L1() {
elevator.down();
state = State.l1;

}
20 }

Fig. 3. Part of the elevator model for ModelJUnit.

written in Java. The bridge class implements test actions and describes how parameters
are constructed and verified.

4.2 Elevator model using our architecture

Figure 4 shows how our model splits the concerns into two parts: The FSM, encoded in
the dot format, and the bridge class calledElevatorImpl,which contains the application-
specific test code. Note that the entire state space of the model is conveniently managed
in the FSM, so our Java code contains no guard or state variables. At the same time, any
implementation-specific code is removed from the FSM.

4.3 Model annotations

Libraries may contain redundant interfaces (“conveniencemethods”) as shorthands. It
is desirable to test all of these methods, yet the FSM would becluttered by the inclusion
of the full set of redundant methods. We chose to use annotations of FSM transitions to
describe cases where a single FSM transition covers a set of actions. Annotated transi-
tions are internally expanded to the full set of methods before the test model is explored.
Thereby, interface variants are tested by selecting a random variant each time the tran-
sition is executed. A set of methods that only read data without changing the system
state can also be represented by one FSM action and an annotation. In this way, the fact
that no access method actually modifies the system state can be tested against.

5



digraph Elevator {
init -> l2;
l2 -> l1 [ label = "down" ];
l1 -> b1 [ label = "down" ];
b1 -> b2 [ label = "down" ];
b2 -> b3 [ label = "down" ];
b3 -> b2 [ label = "up" ];
b2 -> b1 [ label = "up" ];

b1 -> l1 [ label = "up" ];
l1 -> l2 [ label = "up" ];
l2 -> l2f [ label = "open" ];
l2f -> l2 [ label = "close" ];
l1 -> l1f [ label = "open" ];
l1f -> l1 [ label = "close" ];
b3 -> b3r [ label = "open" ];
b3r -> b3 [ label = "close" ]; }

public class ElevatorImpl {
private ElevatorController elevator;

public void init() {
elevator = new ElevatorController();

}

public void down() {
elevator.down();

}
}

Fig. 4. The FSM of the elevator model in dot format (top) and a part of the bridge to its imple-
mentation in Java (bottom).

down

l2 l1 b3b3b2

l2f l1f

b3

b3r

up

down

up

down

b4r

b4

cl
os

e

op
en

auth

bad

b1

up up

down down

op
en

cl
os

e

op
en

cl
os

e

cl
os

e

op
en

rmkey

down

key

up

Fig. 5. Extended model of the elevator. Assume there is a forth basement level, which is only
allowed to be accessed by authorized personnel. Authorization is granted when a key is inserted
when in basement level 3 (b3). If the “down” action is executed without authorization, an excep-
tion should be thrown, as indicated by statebad.

6



4.4 Exceptional behavior

Finally, a given action may cause an exception, depending onthe state of the SUT.
Exception annotations specify states where an exception isexpected to occur. As an ex-
ample, take an extension of the elevator from the ticket gatelevel (b3) to the tracks (b4).
Customers are required to use the ticket gate for the metro, so they are not authorized to
access levelb4 directly through the elevator. Assume that, for maintenance, the elevator
extends tob4. If a key is inserted inb3, the elevator changes to an authorized state, from
which access to the lowest level is given. Otherwise, any attempt to reachb4 should be
indicated by an exception, leading to a “bad” state.4 Figure 5 shows the extended FSM.

The code necessary in Java to verify the presence or absence of an exception is quite
lengthy. In Java, so-calledchecked exceptionsare defined by methods that declare that
they may throw an exception [2]. Each call to such a method hasto be guarded against
possible exceptions by using atry/catch block. In our model, annotations of FSM
states specify which states correspond to an exceptional state. All transitions to that
state are expected to throw precisely that type of exception. Equivalent actions leading
to non-exceptional states may not throw any exception. As the two cases differ only
slightly, the code in Figure 6 can be easily generated automatically.

public void actionb3bad() {
boolean exceptionOccurred = false;
try {
impl.down();

}
catch (IllegalStateException e) {
exceptionOccurred = true;

}
assert(exceptionOccurred);

}

Fig. 6. Code that verifies the presence of an exception.

4.5 Tool architecture

For use with ModelJUnit, the FSM is expanded into its Java representation (see Fig-
ure 7). The generated code includestry/catch blocks for verification of the presence
or absence of exceptions. Transformation of the FSM can be automated either by lever-
aging existing model transformation tools [7] or by extending ModelJUnit with a parser
for the additional file formats. The former approach requires additional tools but is in-
dependent of the programming language and unit test library.

4 In the Tokyo Metro stations, this problem is usually solved by having a separate elevator from
the ticket gates down to the tracks below.

7



Test execution

delegates

Model exploration
EFSM

(Java)

Annotations
(text)

FSM

(Java)

T
ra

ns
fo

rm
at

io
n

Action model

M
od

el
JU

ni
t

(dot)

Fig. 7. Architecture of system to generate the ModelJUnit model.

5 Conclusions and Future Work

Current tools for model-based testing do not completely separate all features. Specif-
ically, different transitions in an abstract model may correspond to the same action in
the implementation. Separation of these two artifacts leads to a more concise model.
Inclusion of exceptional states in the model further increases the amount of code that
can be generated automatically, making the model more expressive and maintainable.

Future work includes exploring the possibility of tying state invariant code, rather
than just exceptions, to states in the model. This would be done in a way that is equiv-
alent to how actions are tied to transitions. Furthermore, in our architecture, the Mod-
elJUnit tool only serves to explore the graph of the model. The transformation step
shown in Figure 7 could therefore be subsumed by direct execution of the action model,
without going through ModelJUnit. Independence of ModelJUnit would have the added
benefit of being able to implement features that ModelJUnit does not support, such as
non-deterministic transitions.

References

1. E. Gansner and S. North. An open graph visualization system and its applications.Software
– Practice and Experience, 30:1203–1233, 1999.

2. J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification, Third Edition.
Addison-Wesley, 2005.

3. A. Javed, P. Strooper, and G. Watson. Automated generation of test cases using model-driven
architecture. InProc. 2nd Int. Workshop on Automation of Software Test (AST 2007), page 3,
Washington, USA, 2007. IEEE Computer Society.

4. J. Link and P. Fröhlich.Unit Testing in Java: How Tests Drive the Code. Morgan Kaufmann
Publishers, Inc., 2003.

5. G. Myers.Art of Software Testing. John Wiley & Sons, Inc., 1979.
6. D. Peled.Software Reliability Methods. Springer, 2001.
7. J. Poole. Model-driven architecture: Vision, standardsand emerging technologies. InWork-

shop on Metamodeling and Adaptive Object Models, Budapest, Hungary, 2001.
8. M. Utting and B. Legeard.Practical Model-Based Testing: A Tools Approach. Morgan Kauf-

mann Publishers, Inc., San Francisco, USA, 2006.

8


