
Modbat: A model-based API tester for

event-driven systems

C. Artho A. Biere M. Hagiya R. Potter

R. Ramler Y. Tanabe F. Weitl M. Yamamoto

Software testing executes a system under test by

giving it a series of inputs and comparing the out-

puts to expected values. Model-based testing gen-

erates test executions from an abstract model that

describes the system behavior.

Existing model-based approaches are not well-

suited for event-driven or input/output-driven sys-

tems. In particular, there is a need to support non-

blocking I/O operations, or operations throwing ex-

ceptions when communication is disrupted.

We present a new tool called “Modbat”, which is

specialized for testing the application programming

interface of systems where these issues are common.

1 Introduction

Software testing executes parts of a system un-

der test (SUT). Various techniques have been de-

veloped to automate testing. In particular, model-

based testing has emerged as a fast-developing field,

where test cases are derived from an abstract model

rather than implemented directly as code. A spe-

cial model-based testing tool executes the SUT

Cyrille Artho, 産業技術総合研究所, AIST

Armin Biere, Johannes Kepler University

Masami Hagiya, 東京大学, The University of Tokyo

Richard Potter, 東京大学, The University of Tokyo

Rudolf Ramler, Softw. Competence Center Hagenberg

Yoshinori Tanabe, 国立情報学研究所, NII

Franz Weitl, 千葉大学, Chiba University

Mitsuharu Yamamoto, 千葉大学, Chiba University

Model SUTTool
input

outputbehavior

図 1 Model-based testing.

start

stop shutdown

reconfigure

init active end

図 2 FSM modeling component behavior.

based on input/output sequences generated accord-

ing to the model (see Fig. 1).

In previous work [1], we have shown that the no-

tation used in existing tools [2] [3] [4] [7] is not well-

suited to express the behavior of event-driven sys-

tems, which include databases, file systems, and

cloud computing middleware. In fact, the latter is

subject of an ongoing project co-funded by JSPS,

which motivated and influenced this work.∗

The systems mentioned above all depend on pos-

sibly unreliable hardware or communication links.

To adequately test these systems, more support is

needed to directly denote exceptions, and actions

that depend on system events [1].

Our tool called Modbat addresses these prob-

lems. In Modbat, system behavior is described

∗ クラウドコンピューティングミドルウェアのソフトウェ
アモデル検査手法, JSPS kaken-hi 23240003.



using finite-state machines (see Fig. 2), which can

be refined using a domain-specific language (DSL)

provided by Modbat. Modbat generates event se-

quences from that model, which call the application

programming interface (API) of the SUT. Results

can be checked using assertions, or stored in model

variables, to be used in subsequent calls.

2 Usage of Modbat

Modbat is specialized for API testing of program

libraries or frameworks. It is written in Scala [5]

and provides an embedded DSL [8] in which the

model is specified. Any SUT that compiles to Java

bytecode can be tested with Modbat. A tester uses

Modbat as follows (see Fig. 3):

1. The tester defines a model using a finite-state

machine that is expressed in our Scala-based

DSL. The model is compiled against a library

provided by Modbat. For example, a transi-

tion from Fig. 2 could be written as

"init" -> "active" :=

{ c = new Component; c.start }.
2. The tester runs Modbat against the compiled

model. Modbat explores the model using a

random search, executing the SUT in tandem.

The sequence of transitions executed between

the initial and final model states constitutes a

test run. After each test run, the model and

the SUT are reset to their initial state.

3. A failure is detected when a test run violates

a property. When a failure is found, Modbat

writes an error trace to a file, giving the nec-

essary information to analyze the error. For

debugging, a failed test can be replayed.

3 Conclusions and future work

Modbat is designed to test the API of state-

based, event-driven systems. It addresses the needs

of many projects including an ongoing project

where we want to study the reliability of cloud

M
od

ba
t

model

SUT

S
ca

la
 c

om
pi

le
r

Test model

Model library
Compiled

図 3 Architecture of Modbat.

computing middleware. Modbat uses a DSL based

on the Scala language to succinctly express various

event-driven properties.

Future work will examine the integration of tools

that generate test data [3] [4] with Modbat for gen-

erating an extended set of event sequences.

We also plan to implement the output of error

traces in a JUnit-compatible format, so we can

compare the results achieved with Modbat to the

findings of a previous study comparing manually

written tests to tool-based test case generation [6].

参考文献

[1] C. Artho. Separation of transitions, actions, and

exceptions in model-based testing. Post-proceedings

of 12th Int. Conf. on Computer Aided Systems The-

ory (Eurocast 2009), 5717:279–286, 2009.

[2] K. Claessen and J. Hughes. QuickCheck: a

lightweight tool for random testing of Haskell pro-

grams. SIGPLAN Not., 35(9):268–279, 2000.

[3] T. Kitamura, T. Do, H. Ohsaki, L. Fang, and

S. Yatabe. Test-case design by feature trees. In

Leveraging Applications of Formal Methods, Verifi-

cation and Validation (ISoLA 2012)., volume 7609

of LNCS, pages 458–473. Springer, 2012.

[4] R. Nils. Scalacheck, a powerful tool for automatic

unit testing, 2012.

[5] M. Odersky, L. Spoon, and B. Venners. Pro-

gramming in Scala: A Comprehensive Step-by-step

Guide. Artima Inc., USA, 2nd edition, 2010.

[6] R. Ramler, D. Winkler, and M. Schmidt. Random

test case generation and manual unit testing: Sub-

stitute or complement in retrofitting tests for legacy

code? In 36th Conf. on Software Engineering and

Advanced Applications, pages 286–293. IEEE Com-

puter Society, 2012.

[7] M. Utting and B. Legeard. Practical Model-Based

Testing: A Tools Approach. Morgan Kaufmann

Publishers, Inc., San Francisco, USA, 2006.

[8] D. Wampler and A. Payne. Programming Scala.

O’Reilly Series. O’Reilly Media, 2009.


