
Efficient Model Checking of Applications with I/O

Cyrille Artho1, Boris Zweimüller2, Armin Biere3, and Shinichi Honiden1

1 National Institute of Informatics, Tokyo, Japan
2 Computer Systems Institute, ETH Zürich, Switzerland

3 Johannes Kepler University, Linz, Austria

Abstract. Most non-trivial applications use input/output (I/O), such as network
communication. When model checking such an application, a simple state space
exploration scheme is not applicable, as the process being model checked would
replay I/O operations when revisiting a given state. Thus a software model checker
requires a faithful model, or it has to encapsulate such operations in a cache layer
that is capable of hiding redundant operations from external processes.

1 Introduction

Model checking explores the entire behavior of a system under test (SUT) by investi-
gating each reachable system state [3] for different threadschedules. Recently, model
checking has been applied directly to software. However, conventional software model
checking techniques are not applicable to networked programs. The problem is that
state space exploration involves backtracking. After backtracking, the model checker
will execute certain parts of the program (and thus certain I/O operations) again. How-
ever, external processes, which are not under the control ofthe model checking engine,
cannot be kept in synchronization with backtracking, causing direct communication
between the SUT and external processes to fail.

2 Model checking distributed programs

State space exploration of a multi-threaded program analyzes all possible interleavings
between threads. Alternative schedules are explored by storing the current program
state and executing copies of said program state under different schedules. When model
checking a SUT that is part of a distributed system using multiple processes, external
processes are not backtracked during model checking. Thus,two problems arise:

1. The SUT will resend data after backtracking. This will interfere with the correct
functionality of an external process.

2. After backtracking, the SUT will expect external input again. However, an external
process does not resend previously transmitted data.

One possible solution to this problem is to lift the power of amodel checker from pro-
cess level to operating system (OS) level. This way, any I/O operation is under control
of the model checker [4]. However, this approach suffers from scalability problems, as
the combination of multiple processes yields a very large state space.



Similar scalability problems arise if one transforms several processes into a single
process by a technique calledcentralization [5]. With a TCP/IP model, networked ap-
plications can be model checked, but the approach does not scale to large systems [1].

Our approach differs in that it only executes a single process inside the model
checker, and runs all the other applications externally. Inter-process communication
is supported by intercepting any network traffic in a specialcache layer. This cache
layer represents the state of communication between the SUTand external processes at
different points in time. After backtracking to an earlier program state, data previously
received by the SUT is replayed by the cache when requested again. Data previously
sent by the SUT is not sent again over the network; instead, itis compared to the data
contained in the cache. The underlying assumption is that communication between pro-
cesses has to be independent of the thread schedule. Therefore, the order in which I/O
operations occur must be consistent for all possible threadinterleavings. If this were
not the case, behavior of the communication resource would be undefined. Whenever
communication proceeds beyond previously cached information, the new data is both
physically transmitted over the network and also added to the cache. The only exception
to this is closing a connection. The cache simulates the effect of closing communication
but allows connections remain physically open for subsequent backtracking.

Initial experiments using the JNuke model checker [2] have shown the scalability
and viability of our approach. It covers systems where the response sent to a client does
not depend on the input of other clients. This includes web servers, time servers, and
other services where clients cannot interact, but precludes systems such as chat servers.
Our initial implementation was not flexible enough to handlecertain interleavings be-
tween several clients; ongoing work aims at creating a cachemodel that can handle such
communication patterns.

3 Conclusions and Future Work

Simple backtracking is not applicable to model checking distributed programs because
external applications are not under control of the model checker. In order to solve this
problem, I/O operations are intercepted by a special backtracking-aware cache layer.
Implementations of services where clients do not interact can then be model checked.
Future work includes a necessary relaxation regarding the order of I/O operations in
order to make the approach applicable to a wider range of programs.

References

1. C. Artho and P. Garoche. Accurate centralization for applying model checking on networked
applications. InProc. ASE 2006, Tokyo, Japan, 2006.

2. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B.Zweimüller. JNuke: Efficient
Dynamic Analysis for Java. InProc. CAV ’04, Boston, USA, 2004. Springer.

3. E. Clarke, O. Grumberg, and D. Peled.Model checking. MIT Press, 1999.
4. Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya, and K. Kato. Model checking of multi-

process applications using SBUML and GDB. InProc. Workshop on Dependable Software:
Tools and Methods, pages 215–220, Yokohama, Japan, 2005.

5. S. Stoller and Y. Liu. Transformations for model checkingdistributed Java programs. InProc.
SPIN 2001, volume 2057 ofLNCS, pages 192–199. Springer, 2001.


