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Abstract—Many software systems are evolving continuously. 

The changes are reflected in a sequence of revised products, 

including both version updates and related product variants 

that are created by the clone-and-own approach. Separate 

management and analysis of these product variants waste 

storage and hinders uncovering their commonalities and 

variations for maintenance. In this paper, we explore the 

project centralization approach to manage product variants. 

Our technique shares common code whenever possible while 

keeping the version space of each project separate. We present 

the key issues of project centralization and its algorithms. We 

perform several case studies, where project centralization is 

applied to real-world software projects, demonstrating the 

potential usefulness of our approach. 

 

Index Terms—Software evolution, software management, 

project centralization, multiple versions, program analysis. 

 

I. INTRODUCTION 

A software system continuously changes to increase its 

functionality, fix bugs, and adapt to new requirements over 

its life cycle [1]. Such changes are released as a sequence of 

updated revisions. Some related product variants are also 

created by coping and modifying existing ones (the 

clone-and-own approach), which is a common practice for 

developing new software products [2]. As many similar 

product variants are developed, management and analysis of 

these products effectively becomes very important.  

Managing each of these products separately wastes storage 

by code duplication and causes redundancies for analysis and 

verification. For example, if a function under test exists in 

multiple products with both the same implementation and 

runtime behavior, independently exercising the same test 

case for such a function for each product causes redundant 

executions [3]. If multiple variants of a software system 

interact in a distributed system, analysis and verification of 

these applications also create a challenge in representing 

these multiple versions for analysis tools and execution 

platforms like Java and C#, which are designed to handle 

only single version [4] . 

 
Manuscript received September 25, 2013; revised November 26, 2013. 

This work was supported in part by Global COE Secure-Life Electronics 

Program from the University of Tokyo, Japan. 

Lei Ma and Hiroyuki Sato are with the Department of Electrical 

Engineering, the University of Tokyo, Japan (e-mail: 

malei@satolab.itc.u-tokyo.ac.jp, schuko@satolab.itc.u-tokyo.ac.jp).  

Cyrille Artho is with the Research Institute for Secure Systems, AIST, 

Japan (e-mail: c.artho@aist.co.jp). 

In our previous work [4], we have proposed project 

centralization to resolve version conflicts of multiple product 

variants in a distributed system. It enables the analysis and 

verification of the system as a whole by existing tools like 

Java PathFinder [12]. Project centralization represents the 

code repositories of all product variants using a single 

centralized repository while preserving the behavior of each 

original. 

In this paper, we report our preliminary study to explore 

the usefulness of project centralization for managing multiple 

product variants to avoid code duplication while preserving 

the behavior of each product. We perform case studies on 

three real-world Java applications, containing 10 variants for 

each application with over two million lines of code in total, 

to demonstrate the feasibility of project centralization for 

managing similar product variants and to point out directions 

for future research. While our implementation supports Java 

bytecode, the concepts presented in this paper generalize to 

other managed programming languages and runtime 

platforms. 

The rest of this paper is organized as follows: Section II 

first illustrates the basic concepts of project centralization. 

Then, we summarize two project centralization algorithms 

published earlier [4]. Section III reports on our case studies 

where we apply our tool to real-world nontrivial projects. 

After discussing related work in Section IV, Section V 

concludes and presents future work. 

 

II. PROJECT CENTRALIZATION 

In this section, we present the concepts related to project 

centralization. We consider sharing common code on a class 

file level (without merging files). 

A. Concepts and Definitions 

A Java class is uniquely identified by its name and 

implementation. For a class cl, we use cl.name and cl.code to 
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Several strategies have been proposed to manage multiple 

variants of a software system during the past decades. Some 

advocates refactor them into Software Product Lines (SPL)

[5]-[7], and many others manages them in a revision control 

system [8]-[10]. A difficulty of refactoring multiple similar 

product variants into a SPL is to extract the commonality and 

variability that is usually represented as a feature model. 

However, this needs domain analysis to identify features and

establish the connections between a feature and its 

corresponding code, which proves to be difficult to automate 

and lacks accuracy [11], [2]. On the other hand, as a main 

challenge of software management using a revision control 

system, we must resolve version conflicts when merging

existing products [8]. A version control system usually 

adopts a text-based comparison to track changes so that 

different types of documents can be handled. However, the 

unawareness of underlying language structure hinders further 

analysis for the multiple product variants by existing tools.

Although some language structure-aware merging strategies

have been developed to handle different languages, these

techniques do not guarantee to preserve the behavior of each 

product [9], [10].



  

denote its name and implementation, respectively. Given two 

classes cl1 and cl2, we say they are equivalent, denoted by 

cl1=cl2, if they form a Type-1 clone pair [13], where cl1.name 

and cl2.name are identical, and cl1.code and cl2.code are also 

identical except for variations in whitespace, layout and 

comments.  

A project is a set of classes, where no two classes in a 

project share the same name. Let p be a project. We denote 

the number classes of p by #p. We write NAME(p) as the set 

of all class names in p. A project presents an abstract view of 

the class repository of a software product.  

Definition 1. Let cln1 and cln2 be two class names. Project 

renaming substitution p[cln1/cln2] is defined as a project, 

where cln1 is substituted for cln2 in p. A renaming 

substitution for p is a normal substitution if cl1NAME(p) 

and cl2NAME(p). 

Definition 2. Let p1 and p2 be two projects. The behaviors 

of p1 and p2 are equivalent, denoted by p1 = p2, if they can be 

renamed to an identical project by normal renaming 

substitutions.  

Definition 3. Project centralization of a project set P 

transforms P into a single project pcentra such that pP. 

p pcentra . p = p. We denote all the centralized results of P 

that satisfy such a condition by CENTRA(P). 

Project centralization represents multiple projects by one 

centralized project, entailing each original project preserves 

its behavior after centralization. Let cl1 and cl2 be two classes 

in a project p. Class cl1 depends on cl2, denoted by cl2  cl1, 

if cl1.code references cl2.name. If class cl1 and cl2 have a 

dependency relation cl1  cl2 and cl1 is renamed, all 

references of cl1 in cl2 must also be renamed to preserve the 

behavior. Let p1 and p2 be two projects. The behaviors of p1 

and p2 are equivalent if they can be renamed to an identical 

project by normal renaming substitutions.  

We use the A.D. value to measure the average complexity 

of the reference dependencies for all projects in a project set. 

Definition 4. Let P be a project set. The Average 

Dependency (A.D.) of P is defined as: 

 

A.D. =
#{(cl1,cl2 ) | cl1,cl2 ÎpÙ cl1 ® cl2}pÎPå

#P
      (1) 

 

Let P be a set of projects. To perform project centralization 

correctly, we classify the classes of a project p P into the 

following categories: 

 Unique class. A unique class of a project p P has a 

unique name in p, which does not occur in the other 

projects. 

 Conflict class. The name of a conflict class in p P also 

exists in another project pP but with a different 

implementation. 

 Shared class. A shared class of p shares both its name and 

implementation with some class in another project.  

Consider the general scenario of centralizing projects from 

a project set P. There may exist multiple solutions that satisfy 

Definition 3. If no conflict classes exist in any project of P, 

the project centralization can directly take the union of all 

projects in P as the centralized result. If some project in P 

contains a conflict class, it needs to be separated while trying 

to retain shared classes as much as possible. 

B. Example 

Fig. 1 shows an example for centralizing three projects. 

The edges in a project represent the class dependencies. For 

example, the edge from class A to B in Project1 shows that 

they have the dependency relation A B. Project1 and 

Project2 share most of the classes except for C where 

different versions are used. Compared with Project2, Project3 

has a different version of Main and a new class Unique. In 

this example, class A and B are shared classes in all projects. 

The cases for classes C and Main are more complex: the class 

C is a conflict class in Project1, but it is both a shared and 

conflict class in Project2 and Project3. Similarly, class Main 

in Project3 is a conflict class, and it is both a shared and 

conflict class in Project1 and Project2. 
 

 
Fig. 1. Project centralization example. 

 

C. Simple Algorithm and Its Limitations 

The main issue of project centralization is to properly 

separate the class versions for each project. This entails 

renaming the conflict classes and all their references to 

separate their versions. However, such renaming may cause 

shared classes not to be shareable anymore, as their internal 

references to other classes are renamed differently across 

projects. Consider the example in Fig. 1 before centralization. 

Project1 and Project2 can share class B before project 

centralization. They have to rename their class C to a 

different name to resolve version conflict, though. After that 

step, B cannot be shared anymore as it references C. 

Therefore, it is necessary to rename the conflict classes and 

propagate their renaming effect in each project. 

Given a project set of n size, our simple algorithm [4] 

renames all the conflict classes of the first n -1 projects and 

propagates the renaming effect by traversing class 

dependency relations of each project. It does not distinguish 

between a conflict class and a class that is both shared and 
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conflict. It renames the class as long as it is a conflict class 

and the centralized result depends on the order of the projects. 

For example, when centralizing projects Fig. 1 in the order of 

Project2, Project1, and Project3, the simple algorithm cannot 

share classes B and C in the centralized result. However, a 

better solution after centralization is shown in Fig. 1, where 

classes B and C are both shared by Project2 and Project3.  

 

 
Fig. 2. P-graph representation of a project set. 

 

D. Graph Based Approach 

In this section, we summarize our optimized project 

centralization solution [4] based on a graph representation for 

all projects. We define the P-graph representation for a 

project set and discuss the optimized project centralization 

algorithm. In the rest of this section, we fix P as an arbitrary 

project set for centralization. 

For a class name cln in P, we use a partition of projects to 

represent the version relations of classes that share that name. 

A project partition of cln is a set of projects such that two 

projects occur in the same subset of the partition if they share 

the same version of the class named cln.  

Definition 5. Let cln be a class name in P. A partition 

structure of cln is the pair of cln and a partition of cln. Let PS 

be a partition structure, we denote its name and partition by 

PS.name and PS.partition, respectively. 

Definition 6. A P-graph <N, E> of P consists a set of 

partition structures as a set of nodes, and an edge set E to 

represent the dependency of these constraint structures, 

which satisfies: 1) For each class name cln in P, there exists 

exactly one partition structure node nN with n.name = cln. 2) 

For two nodes m, n N, the existence of an edge e from m to 

n, denoted by (m, n), entails that the classes named m.name 

and n.name have a dependency relation in some project pP, 

and p occurs in both Pm.name and Pn.name. Each edge e 

E is associated with a set of projects, denoted by e.set, that 

satisfy such a condition. 

Let G=<N, E> be a P-graph. Each node n N is a partition 

structure <n.name, n.partition> that represents all the version 

relations of the class named n.name in P. For each edge e E, 

its set e.set contains at least one project. 

Fig. 2 shows the corresponding initialized P-graphs of 

project set in Fig. 1. The larger node is the partition structure 

node, in which its name and partition of the class are shown. 

For example, the node named A with its partition indicates 

that its name A exists in three projects P1, P2, and P3. They all 

occur in the same subset, meaning that all these projects have 

the same version of class named A. The label of an edge in a 

P-graph shows those projects, in which two partition 

structure nodes connected by that edge have a dependency 

relation. For example, the edge from node B to Main 

indicates that the classes named B and Main have a 

dependency relation in both P1, P2, but not in P3. 
 

TABLE I: OVERVIEW OF ARGOUML PRODUCT VARIANTS 

Pr. DrJava LOC Size (KB) #Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Release 20130901-r5756 

Release 20120818-r5686 

Release 20110822-r5448 

Release 20100913-r5387 

Release 20100816-r5366 

Release 20100711-r5314 

Release 20100507-r5246 

Release 20100415-r5220 

Release 20090821-r5004 

Release 20090803-r4975 

89793 

89786 

89736 

88401 

88275 

87556 

87258 

85622 

81239 

81044 

11895 

11895 

11886 

11659 

11655 

11572 

11499 

11506 

9798 

9711 

3936 

3925 

3925 

3877 

3877 

3837 

3824 

3792 

3251 

3242 

Pr. ArgoUML LOC Size (KB) #Class 

1 

2 

3 

4 

5 

 

6 

 

7 

 

8 

 

9 

10 

 

All optional feature enabled 

All optional feature disabled 

Only Logging disabled 

Only Cognitive disabled 

Only Sequence Diagram 

disabled 

Only Use Case Diagram 

disabled 

Only Deployment Diagram 

disabled 

Only Collaboration Diagram 

disabled 

Only state Diagram disabled 

Only Activity Diagram 

disabled 

120348 

82924 

118190 

104209 

114969 

 

117636 

 

117201 

 

118769 

 

116431 

118066 

 

5147 

3669 

5018 

4431 

5033 

 

5032 

 

5024 

 

5086 

 

5008 

5036 

 

1915 

1494 

1915 

1678 

1881 

 

1874 

 

1882 

 

1896 

 

1880 

1897 

 

Pr. HealthWatcher LOC Size (KB) #Class 

1 

2 

3 

4 

5 

6 

 

7 

8 

 

9 

 

10 

Base–no extensions applied 

Command pattern applied 

State pattern applied 

Observer pattern applied 

Adapter pattern applied 

Abstract Factory pattern 

applied V1 

Adapter pattern applied 

Abstract Factory pattern 

applied V2 

Evolution–new functionality 

added 

Exception Handling applied 

5228 

5646 

6112 

6222 

6379 

6417 

 

6441 

6468 

 

7709 

 

7591 

261 

273 

302 

309 

314 

318 

 

319 

321 

 

389 

 

389 

90 

94 

106 

108 

110 

114 

 

118 

122 

 

134 

 

137 

 

Correct project centralization requires separating the 

version space of each project by renaming. Renaming a class 

also entails renaming all references to it accordingly. We use 

conflict edges to capture the effect that different versions of a 

class are not separate due to the version separation of another 

class that this class depends on. 

Definition 7. Let G=<N, E> be a P-graph of P and e E be 

an edge, where e = (m, n) with m, n N. The edge e is a 

conflict edge if there exists two projects p1, p2  e.set so that 

p1 and p2 occur in the same subset in n.partition but not in 

m.partition. 

A conflict edge captures cases where classes must be 

renamed to separate their version space. This ensures that 

project centralization preserves the behavior of each project. 

For example, the dashed edge in Fig. 2 is a conflict edge 

because P1 and P2 exist in the same subset of B.partition but 

not in C.partition. Let e = (m, n) be a conflict edge with m, n 

N. The conflict can be resolved by refining n.partition. 

After a conflict is resolved, it may introduce more conflict 

edges. A correct separation of the version space of each 

project ensures that no unresolved conflicts remain. 

Our optimized algorithm [4] adopts the P-graph 

representation for projects. It takes a project set as input and 

outputs a centralized project that satisfies Def. 3. The 
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algorithm first initializes the P-graph of P by collecting class 

names, creates a constraint structure node for each of them, 

and adds their corresponding dependency edges. Then, the 

conflict edges are resolved in a topological order of the 

P-graph by refining partitions. The algorithm iteratively 

resolves all these conflict edges. For example, Fig. 2 gives a 

resolved P-graph result with no conflict edges. After 

resolving all conflict edges, the last step performs normal 

renaming substitution according to the obtained P-graph so 

that two projects that occur in the same subsets of a partition 

share that class. After performing such a normal substitution 

according to Fig. 2, we can obtain the same project 

centralization results in Fig. 1. 

 

III. EMPIRICAL STUDY 

In this section, we present the case studies we have 

conducted to investigate the feasibility of managing product 

variants by project centralization. We have implemented the 

project centralization solutions in a tool that performs 

bytecode transformation using the ASM bytecode library 

[14]. It takes a project set as input and outputs the centralized 

projects. In the rest of this section, we first define the 

evaluation criteria for measurement. Then, we explain our 

case studies and discuss the results in detail. 

A. Evaluation Criteria 

We identify three criteria to evaluate the effectiveness in 

sharing code and the run time of a centralization algorithm.  

Criterion 1. Effectiveness of sharing common code is 

defined as Sharing Factor (S.F.), which is the ratio of, shared 

classes to output classes: 

 

S.F. =
#ClassShared

#OutputClass
                                (2) 

 

A class in the output is counted as shared if at least two 

projects share it after centralization. Consider the project 

centralization results in Fig. 1. Classes A, B, C are shared by 

multiple projects in the output classes, but classes Unique and 

Main are not. S.F. ranges from 0 to 1; the larger its value, the 

more classes are shared. The trivial renaming approach 

renames all classes of each project and shares no classes; its 

value of S.F. is therefore 0. 

Criterion 2. The effectiveness of saving storage is defined 

as the ratio of storage usage after centralization to the one 

before centralization. 

This measure shows the storage that can be saved by 

project centralization. It also indicates the possible runtime 

memory that can be saved when simulating an application by 

process centralization [4], where a class is only necessary to 

be loaded to the JVM once by centralization. 

Criterion 3. Performance is the execution time of project 

centralization algorithm and total time that includes 

additional time to write transformed results to disk, but not 

including the prepossessing and initializing time to build 

internal data structure from class files from disk. 

All experiments were measured on an Intel Core i7 Mac 

2.4 GHz with 8 GB of RAM, running MAC OSX 10.8.3 and 

Oracle’s Java VM, version 1.7.0 21. 

B. Case Studies and Results 

The overview of product variants in our case studies is 

summarized in Table I, which contains both version variants 

and product variants from a SPL. Column one lists the 

product number and column two gives brief descriptions of 

product variants for each software system by enabling and 

disabling some features. Column three shows the lines of 

source code (without comments and whitespaces) for each 

product. Column four and five list the product size and 

number of classes (*.class files), respectively.  

DrJava [15] in our first case study is a lightweight 

development environment for writing Java programs. We use 

its most recent ten version variants released in the last four 

years. In the second and third case studies, we use the product 

variants generated from existing software product line 

ArgoUML-SPL [16], [17] and Health-Watcher [18], [19], 

respectively. ArgoUML-SPL is the software product line for 

the UML modeling tool ArgoUML, and HealthWatcher is a 

cloud computing application that manages health records and 

complaints.  

Experimental results, where project centralization 

algorithms are applied to all the selected products of a 

software project, are summarized in Table II. For each input 

project set, we give its total number of classes (*.class files), 

storage usage, and average dependency in columns three, 

four and five, respectively. We compare the simple algorithm 

and optimized algorithm in the number output classes, S.F., 

storage saving ratio, and algorithm execution time and total 

time. We show these results in columns OUTPUT #Class, 

S.F., Storage, Alg.Time and Total Time, respectively. 

According to the input metrics, DrJava and ArgoUML are 

both large-size projects, and HealthWatcher is smaller. 

Although the number of input classes for DrJava is twice as 

large as in ArgoUML, the average dependency for classes in 

DrJava is much larger. 

In all experimental settings, the optimized algorithm 

performs better by outputting fewer classes, sharing more 

common code and saving more storage. Compared with the 

simple algorithm, the optimized algorithm shares 21.9%, 

22.9% , and 35.2% more classes as indicated by the column 

S.F. The optimized algorithm also saves 22.0%, 12.9% and 

29.2% more storage indicated by column Storage. However, 

the algorithm execution time and total time of the simple 

algorithm is faster. As the optimized algorithm needs to 

resolve conflict edges iteratively in the P-graph, the 

execution time strongly depends on the average dependency 

between input project sets. Its execution time becomes slow 

when the number of input classes and average dependency in 

the input project set are large, like for DrJava. From these 

case studies, we find that our optimized project centralization 

solution is efficient enough to handle large project sets, and 

effective in sharing common code and saving storage. The 

centralized project preserves the behavior of all original 

projects, which can be directly analyzed and verified to 

reveal defect of original projects. 

C. Threat to Validity 

The main threat to our work is that we only performed case 

studies on three open source projects and selected ten 

variants for each project. However, the selected projects are 
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real-world non-trivial projects and have been also be used in 

case studies by many other researchers. Another threat is that 

our approach makes project centralization on the file level 

without merging class files. It cannot share the classes that 

are slightly different. This threat can be diminished by 

applying the same methodology of project centralization to a 

finer level such as the method and attribute levels. We leave 

such a refinement as future work. 
 

TABLE II: EXPERIMENTAL RESULTS OF PROJECT CENTRALIZATION 

Project Algorithm INPUT OUTPUT 

#Class 

S.F. (%) Storage 

(%) 

Alg. Time 

(ms) 

Total Time 

(ms) 
#Class Size (KB) A.D. 

DrJava Simple 37486 113076 17199 29194 6.7 82.2 6920 10949 

Optimized 22247 28.6 60.2 37166 40063 

ArgoUML Simple 18312 48484 3121 6399 27.7 43.0 2273 3286 

Optimized 4485 50.6 30.1 6959 7706 

HealthWatcher Simple 1133 3195 373 771 10.9 82.1 1128 1242 

Optimized 448 46.1 53.8 1513 1585 

 

IV. RELATED WORK 

Hnetynka et al. [20] originally discussed the version 

conflict problem in component-based systems written in Java. 

They adopt the renaming approach by augmenting the class 

name of each variant with a version identifier during dynamic 

class loading, which does not share common code. 

Managing the product variants by revision control tools is 

commonly used in practice. A difficult issue is to represent 

multiple simultaneous changes of a single product. Software 

merging is a widely used technique similar to project 

centralization, which merges multiple product variants into 

single one. However, Mens [8] points out that current 

software merging techniques give no guarantees about the 

behavior of merged code. On the other hand, project 

centralization preserves the behavior of each project so that 

program analysis techniques can be directly applied to the 

centralized project as shown in our previous work [4].  

Managing product variants to refactor them into a SPL is 

another technique related to project centralization [11]. 

However, such techniques require manual analysis based on 

requirement to identify features and establish traces between 

features and their location in the code. Existing approaches 

are mostly work on the model level [2], [11], [7]. Our project 

centralization focuses on sharing common code of existing 

products to reduce maintenance cost and remove version 

conflicts for program analysis. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we explore the usefulness of project 

centralization for managing similar product variants. We first 

present the basic concepts and definitions of project 

centralization. Then, we discuss a simple solution and an 

optimized one. We conduct empirical evaluations of our 

approaches on three real-world large software systems. The 

result demonstrates the effectiveness of our technique in 

managing similar product variant by avoiding redundant 

code. Based on this exploratory work, our future work will 

refine project centralization to method level and compare its 

effectiveness with the current approaches in sharing common 

code of multiple product variants. 
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