



Abstract—Many software systems are evolving continuously.

The changes are reflected in a sequence of revised products,

including both version updates and related product variants

that are created by the clone-and-own approach. Separate

management and analysis of these product variants waste

storage and hinders uncovering their commonalities and

variations for maintenance. In this paper, we explore the

project centralization approach to manage product variants.

Our technique shares common code whenever possible while

keeping the version space of each project separate. We present

the key issues of project centralization and its algorithms. We

perform several case studies, where project centralization is

applied to real-world software projects, demonstrating the

potential usefulness of our approach.

Index Terms—Software evolution, software management,

project centralization, multiple versions, program analysis.

I. INTRODUCTION

A software system continuously changes to increase its

functionality, fix bugs, and adapt to new requirements over

its life cycle [1]. Such changes are released as a sequence of

updated revisions. Some related product variants are also

created by coping and modifying existing ones (the

clone-and-own approach), which is a common practice for

developing new software products [2]. As many similar

product variants are developed, management and analysis of

these products effectively becomes very important.

Managing each of these products separately wastes storage

by code duplication and causes redundancies for analysis and

verification. For example, if a function under test exists in

multiple products with both the same implementation and

runtime behavior, independently exercising the same test

case for such a function for each product causes redundant

executions [3]. If multiple variants of a software system

interact in a distributed system, analysis and verification of

these applications also create a challenge in representing

these multiple versions for analysis tools and execution

platforms like Java and C#, which are designed to handle

only single version [4] .

Manuscript received September 25, 2013; revised November 26, 2013.

This work was supported in part by Global COE Secure-Life Electronics

Program from the University of Tokyo, Japan.

Lei Ma and Hiroyuki Sato are with the Department of Electrical

Engineering, the University of Tokyo, Japan (e-mail:

malei@satolab.itc.u-tokyo.ac.jp, schuko@satolab.itc.u-tokyo.ac.jp).

Cyrille Artho is with the Research Institute for Secure Systems, AIST,

Japan (e-mail: c.artho@aist.co.jp).

In our previous work [4], we have proposed project

centralization to resolve version conflicts of multiple product

variants in a distributed system. It enables the analysis and

verification of the system as a whole by existing tools like

Java PathFinder [12]. Project centralization represents the

code repositories of all product variants using a single

centralized repository while preserving the behavior of each

original.

In this paper, we report our preliminary study to explore

the usefulness of project centralization for managing multiple

product variants to avoid code duplication while preserving

the behavior of each product. We perform case studies on

three real-world Java applications, containing 10 variants for

each application with over two million lines of code in total,

to demonstrate the feasibility of project centralization for

managing similar product variants and to point out directions

for future research. While our implementation supports Java

bytecode, the concepts presented in this paper generalize to

other managed programming languages and runtime

platforms.

The rest of this paper is organized as follows: Section II

first illustrates the basic concepts of project centralization.

Then, we summarize two project centralization algorithms

published earlier [4]. Section III reports on our case studies

where we apply our tool to real-world nontrivial projects.

After discussing related work in Section IV, Section V

concludes and presents future work.

II. PROJECT CENTRALIZATION

In this section, we present the concepts related to project

centralization. We consider sharing common code on a class

file level (without merging files).

A. Concepts and Definitions

A Java class is uniquely identified by its name and

implementation. For a class cl, we use cl.name and cl.code to

Lei Ma, Cyrille Artho, and Hiroyuki Sato

Managing Product Variants by Project Centralization

Lecture Notes on Software Engineering, Vol. 2, No. 2, May 2014

195DOI: 10.7763/LNSE.2014.V2.122

Several strategies have been proposed to manage multiple

variants of a software system during the past decades. Some

advocates refactor them into Software Product Lines (SPL)

[5]-[7], and many others manages them in a revision control

system [8]-[10]. A difficulty of refactoring multiple similar

product variants into a SPL is to extract the commonality and

variability that is usually represented as a feature model.

However, this needs domain analysis to identify features and

establish the connections between a feature and its

corresponding code, which proves to be difficult to automate

and lacks accuracy [11], [2]. On the other hand, as a main

challenge of software management using a revision control

system, we must resolve version conflicts when merging

existing products [8]. A version control system usually

adopts a text-based comparison to track changes so that

different types of documents can be handled. However, the

unawareness of underlying language structure hinders further

analysis for the multiple product variants by existing tools.

Although some language structure-aware merging strategies

have been developed to handle different languages, these

techniques do not guarantee to preserve the behavior of each

product [9], [10].

denote its name and implementation, respectively. Given two

classes cl1 and cl2, we say they are equivalent, denoted by

cl1=cl2, if they form a Type-1 clone pair [13], where cl1.name

and cl2.name are identical, and cl1.code and cl2.code are also

identical except for variations in whitespace, layout and

comments.

A project is a set of classes, where no two classes in a

project share the same name. Let p be a project. We denote

the number classes of p by #p. We write NAME(p) as the set

of all class names in p. A project presents an abstract view of

the class repository of a software product.

Definition 1. Let cln1 and cln2 be two class names. Project

renaming substitution p[cln1/cln2] is defined as a project,

where cln1 is substituted for cln2 in p. A renaming

substitution for p is a normal substitution if cl1NAME(p)

and cl2NAME(p).

Definition 2. Let p1 and p2 be two projects. The behaviors

of p1 and p2 are equivalent, denoted by p1 = p2, if they can be

renamed to an identical project by normal renaming

substitutions.

Definition 3. Project centralization of a project set P

transforms P into a single project pcentra such that pP.

p pcentra . p = p. We denote all the centralized results of P

that satisfy such a condition by CENTRA(P).

Project centralization represents multiple projects by one

centralized project, entailing each original project preserves

its behavior after centralization. Let cl1 and cl2 be two classes

in a project p. Class cl1 depends on cl2, denoted by cl2  cl1,

if cl1.code references cl2.name. If class cl1 and cl2 have a

dependency relation cl1  cl2 and cl1 is renamed, all

references of cl1 in cl2 must also be renamed to preserve the

behavior. Let p1 and p2 be two projects. The behaviors of p1

and p2 are equivalent if they can be renamed to an identical

project by normal renaming substitutions.

We use the A.D. value to measure the average complexity

of the reference dependencies for all projects in a project set.

Definition 4. Let P be a project set. The Average

Dependency (A.D.) of P is defined as:

A.D. =
#{(cl1,cl2) | cl1,cl2 ÎpÙ cl1 ® cl2}pÎPå

#P
 (1)

Let P be a set of projects. To perform project centralization

correctly, we classify the classes of a project p P into the

following categories:

 Unique class. A unique class of a project p P has a

unique name in p, which does not occur in the other

projects.

 Conflict class. The name of a conflict class in p P also

exists in another project pP but with a different

implementation.

 Shared class. A shared class of p shares both its name and

implementation with some class in another project.

Consider the general scenario of centralizing projects from

a project set P. There may exist multiple solutions that satisfy

Definition 3. If no conflict classes exist in any project of P,

the project centralization can directly take the union of all

projects in P as the centralized result. If some project in P

contains a conflict class, it needs to be separated while trying

to retain shared classes as much as possible.

B. Example

Fig. 1 shows an example for centralizing three projects.

The edges in a project represent the class dependencies. For

example, the edge from class A to B in Project1 shows that

they have the dependency relation A B. Project1 and

Project2 share most of the classes except for C where

different versions are used. Compared with Project2, Project3

has a different version of Main and a new class Unique. In

this example, class A and B are shared classes in all projects.

The cases for classes C and Main are more complex: the class

C is a conflict class in Project1, but it is both a shared and

conflict class in Project2 and Project3. Similarly, class Main

in Project3 is a conflict class, and it is both a shared and

conflict class in Project1 and Project2.

Fig. 1. Project centralization example.

C. Simple Algorithm and Its Limitations

The main issue of project centralization is to properly

separate the class versions for each project. This entails

renaming the conflict classes and all their references to

separate their versions. However, such renaming may cause

shared classes not to be shareable anymore, as their internal

references to other classes are renamed differently across

projects. Consider the example in Fig. 1 before centralization.

Project1 and Project2 can share class B before project

centralization. They have to rename their class C to a

different name to resolve version conflict, though. After that

step, B cannot be shared anymore as it references C.

Therefore, it is necessary to rename the conflict classes and

propagate their renaming effect in each project.

Given a project set of n size, our simple algorithm [4]

renames all the conflict classes of the first n -1 projects and

propagates the renaming effect by traversing class

dependency relations of each project. It does not distinguish

between a conflict class and a class that is both shared and

Lecture Notes on Software Engineering, Vol. 2, No. 2, May 2014

196

conflict. It renames the class as long as it is a conflict class

and the centralized result depends on the order of the projects.

For example, when centralizing projects Fig. 1 in the order of

Project2, Project1, and Project3, the simple algorithm cannot

share classes B and C in the centralized result. However, a

better solution after centralization is shown in Fig. 1, where

classes B and C are both shared by Project2 and Project3.

Fig. 2. P-graph representation of a project set.

D. Graph Based Approach

In this section, we summarize our optimized project

centralization solution [4] based on a graph representation for

all projects. We define the P-graph representation for a

project set and discuss the optimized project centralization

algorithm. In the rest of this section, we fix P as an arbitrary

project set for centralization.

For a class name cln in P, we use a partition of projects to

represent the version relations of classes that share that name.

A project partition of cln is a set of projects such that two

projects occur in the same subset of the partition if they share

the same version of the class named cln.

Definition 5. Let cln be a class name in P. A partition

structure of cln is the pair of cln and a partition of cln. Let PS

be a partition structure, we denote its name and partition by

PS.name and PS.partition, respectively.

Definition 6. A P-graph <N, E> of P consists a set of

partition structures as a set of nodes, and an edge set E to

represent the dependency of these constraint structures,

which satisfies: 1) For each class name cln in P, there exists

exactly one partition structure node nN with n.name = cln. 2)

For two nodes m, n N, the existence of an edge e from m to

n, denoted by (m, n), entails that the classes named m.name

and n.name have a dependency relation in some project pP,

and p occurs in both Pm.name and Pn.name. Each edge e

E is associated with a set of projects, denoted by e.set, that

satisfy such a condition.

Let G=<N, E> be a P-graph. Each node n N is a partition

structure <n.name, n.partition> that represents all the version

relations of the class named n.name in P. For each edge e E,

its set e.set contains at least one project.

Fig. 2 shows the corresponding initialized P-graphs of

project set in Fig. 1. The larger node is the partition structure

node, in which its name and partition of the class are shown.

For example, the node named A with its partition indicates

that its name A exists in three projects P1, P2, and P3. They all

occur in the same subset, meaning that all these projects have

the same version of class named A. The label of an edge in a

P-graph shows those projects, in which two partition

structure nodes connected by that edge have a dependency

relation. For example, the edge from node B to Main

indicates that the classes named B and Main have a

dependency relation in both P1, P2, but not in P3.

TABLE I: OVERVIEW OF ARGOUML PRODUCT VARIANTS

Pr. DrJava LOC Size (KB) #Class

1

2

3

4

5

6

7

8

9

10

Release 20130901-r5756

Release 20120818-r5686

Release 20110822-r5448

Release 20100913-r5387

Release 20100816-r5366

Release 20100711-r5314

Release 20100507-r5246

Release 20100415-r5220

Release 20090821-r5004

Release 20090803-r4975

89793

89786

89736

88401

88275

87556

87258

85622

81239

81044

11895

11895

11886

11659

11655

11572

11499

11506

9798

9711

3936

3925

3925

3877

3877

3837

3824

3792

3251

3242

Pr. ArgoUML LOC Size (KB) #Class

1

2

3

4

5

6

7

8

9

10

All optional feature enabled

All optional feature disabled

Only Logging disabled

Only Cognitive disabled

Only Sequence Diagram

disabled

Only Use Case Diagram

disabled

Only Deployment Diagram

disabled

Only Collaboration Diagram

disabled

Only state Diagram disabled

Only Activity Diagram

disabled

120348

82924

118190

104209

114969

117636

117201

118769

116431

118066

5147

3669

5018

4431

5033

5032

5024

5086

5008

5036

1915

1494

1915

1678

1881

1874

1882

1896

1880

1897

Pr. HealthWatcher LOC Size (KB) #Class

1

2

3

4

5

6

7

8

9

10

Base–no extensions applied

Command pattern applied

State pattern applied

Observer pattern applied

Adapter pattern applied

Abstract Factory pattern

applied V1

Adapter pattern applied

Abstract Factory pattern

applied V2

Evolution–new functionality

added

Exception Handling applied

5228

5646

6112

6222

6379

6417

6441

6468

7709

7591

261

273

302

309

314

318

319

321

389

389

90

94

106

108

110

114

118

122

134

137

Correct project centralization requires separating the

version space of each project by renaming. Renaming a class

also entails renaming all references to it accordingly. We use

conflict edges to capture the effect that different versions of a

class are not separate due to the version separation of another

class that this class depends on.

Definition 7. Let G=<N, E> be a P-graph of P and e E be

an edge, where e = (m, n) with m, n N. The edge e is a

conflict edge if there exists two projects p1, p2  e.set so that

p1 and p2 occur in the same subset in n.partition but not in

m.partition.

A conflict edge captures cases where classes must be

renamed to separate their version space. This ensures that

project centralization preserves the behavior of each project.

For example, the dashed edge in Fig. 2 is a conflict edge

because P1 and P2 exist in the same subset of B.partition but

not in C.partition. Let e = (m, n) be a conflict edge with m, n

N. The conflict can be resolved by refining n.partition.

After a conflict is resolved, it may introduce more conflict

edges. A correct separation of the version space of each

project ensures that no unresolved conflicts remain.

Our optimized algorithm [4] adopts the P-graph

representation for projects. It takes a project set as input and

outputs a centralized project that satisfies Def. 3. The

Lecture Notes on Software Engineering, Vol. 2, No. 2, May 2014

197

algorithm first initializes the P-graph of P by collecting class

names, creates a constraint structure node for each of them,

and adds their corresponding dependency edges. Then, the

conflict edges are resolved in a topological order of the

P-graph by refining partitions. The algorithm iteratively

resolves all these conflict edges. For example, Fig. 2 gives a

resolved P-graph result with no conflict edges. After

resolving all conflict edges, the last step performs normal

renaming substitution according to the obtained P-graph so

that two projects that occur in the same subsets of a partition

share that class. After performing such a normal substitution

according to Fig. 2, we can obtain the same project

centralization results in Fig. 1.

III. EMPIRICAL STUDY

In this section, we present the case studies we have

conducted to investigate the feasibility of managing product

variants by project centralization. We have implemented the

project centralization solutions in a tool that performs

bytecode transformation using the ASM bytecode library

[14]. It takes a project set as input and outputs the centralized

projects. In the rest of this section, we first define the

evaluation criteria for measurement. Then, we explain our

case studies and discuss the results in detail.

A. Evaluation Criteria

We identify three criteria to evaluate the effectiveness in

sharing code and the run time of a centralization algorithm.

Criterion 1. Effectiveness of sharing common code is

defined as Sharing Factor (S.F.), which is the ratio of, shared

classes to output classes:

S.F. =
#ClassShared

#OutputClass
 (2)

A class in the output is counted as shared if at least two

projects share it after centralization. Consider the project

centralization results in Fig. 1. Classes A, B, C are shared by

multiple projects in the output classes, but classes Unique and

Main are not. S.F. ranges from 0 to 1; the larger its value, the

more classes are shared. The trivial renaming approach

renames all classes of each project and shares no classes; its

value of S.F. is therefore 0.

Criterion 2. The effectiveness of saving storage is defined

as the ratio of storage usage after centralization to the one

before centralization.

This measure shows the storage that can be saved by

project centralization. It also indicates the possible runtime

memory that can be saved when simulating an application by

process centralization [4], where a class is only necessary to

be loaded to the JVM once by centralization.

Criterion 3. Performance is the execution time of project

centralization algorithm and total time that includes

additional time to write transformed results to disk, but not

including the prepossessing and initializing time to build

internal data structure from class files from disk.

All experiments were measured on an Intel Core i7 Mac

2.4 GHz with 8 GB of RAM, running MAC OSX 10.8.3 and

Oracle’s Java VM, version 1.7.0 21.

B. Case Studies and Results

The overview of product variants in our case studies is

summarized in Table I, which contains both version variants

and product variants from a SPL. Column one lists the

product number and column two gives brief descriptions of

product variants for each software system by enabling and

disabling some features. Column three shows the lines of

source code (without comments and whitespaces) for each

product. Column four and five list the product size and

number of classes (*.class files), respectively.

DrJava [15] in our first case study is a lightweight

development environment for writing Java programs. We use

its most recent ten version variants released in the last four

years. In the second and third case studies, we use the product

variants generated from existing software product line

ArgoUML-SPL [16], [17] and Health-Watcher [18], [19],

respectively. ArgoUML-SPL is the software product line for

the UML modeling tool ArgoUML, and HealthWatcher is a

cloud computing application that manages health records and

complaints.

Experimental results, where project centralization

algorithms are applied to all the selected products of a

software project, are summarized in Table II. For each input

project set, we give its total number of classes (*.class files),

storage usage, and average dependency in columns three,

four and five, respectively. We compare the simple algorithm

and optimized algorithm in the number output classes, S.F.,

storage saving ratio, and algorithm execution time and total

time. We show these results in columns OUTPUT #Class,

S.F., Storage, Alg.Time and Total Time, respectively.

According to the input metrics, DrJava and ArgoUML are

both large-size projects, and HealthWatcher is smaller.

Although the number of input classes for DrJava is twice as

large as in ArgoUML, the average dependency for classes in

DrJava is much larger.

In all experimental settings, the optimized algorithm

performs better by outputting fewer classes, sharing more

common code and saving more storage. Compared with the

simple algorithm, the optimized algorithm shares 21.9%,

22.9% , and 35.2% more classes as indicated by the column

S.F. The optimized algorithm also saves 22.0%, 12.9% and

29.2% more storage indicated by column Storage. However,

the algorithm execution time and total time of the simple

algorithm is faster. As the optimized algorithm needs to

resolve conflict edges iteratively in the P-graph, the

execution time strongly depends on the average dependency

between input project sets. Its execution time becomes slow

when the number of input classes and average dependency in

the input project set are large, like for DrJava. From these

case studies, we find that our optimized project centralization

solution is efficient enough to handle large project sets, and

effective in sharing common code and saving storage. The

centralized project preserves the behavior of all original

projects, which can be directly analyzed and verified to

reveal defect of original projects.

C. Threat to Validity

The main threat to our work is that we only performed case

studies on three open source projects and selected ten

variants for each project. However, the selected projects are

Lecture Notes on Software Engineering, Vol. 2, No. 2, May 2014

198

real-world non-trivial projects and have been also be used in

case studies by many other researchers. Another threat is that

our approach makes project centralization on the file level

without merging class files. It cannot share the classes that

are slightly different. This threat can be diminished by

applying the same methodology of project centralization to a

finer level such as the method and attribute levels. We leave

such a refinement as future work.

TABLE II: EXPERIMENTAL RESULTS OF PROJECT CENTRALIZATION

Project Algorithm INPUT OUTPUT

#Class

S.F. (%) Storage

(%)

Alg. Time

(ms)

Total Time

(ms)
#Class Size (KB) A.D.

DrJava Simple 37486 113076 17199 29194 6.7 82.2 6920 10949

Optimized 22247 28.6 60.2 37166 40063

ArgoUML Simple 18312 48484 3121 6399 27.7 43.0 2273 3286

Optimized 4485 50.6 30.1 6959 7706

HealthWatcher Simple 1133 3195 373 771 10.9 82.1 1128 1242

Optimized 448 46.1 53.8 1513 1585

IV. RELATED WORK

Hnetynka et al. [20] originally discussed the version

conflict problem in component-based systems written in Java.

They adopt the renaming approach by augmenting the class

name of each variant with a version identifier during dynamic

class loading, which does not share common code.

Managing the product variants by revision control tools is

commonly used in practice. A difficult issue is to represent

multiple simultaneous changes of a single product. Software

merging is a widely used technique similar to project

centralization, which merges multiple product variants into

single one. However, Mens [8] points out that current

software merging techniques give no guarantees about the

behavior of merged code. On the other hand, project

centralization preserves the behavior of each project so that

program analysis techniques can be directly applied to the

centralized project as shown in our previous work [4].

Managing product variants to refactor them into a SPL is

another technique related to project centralization [11].

However, such techniques require manual analysis based on

requirement to identify features and establish traces between

features and their location in the code. Existing approaches

are mostly work on the model level [2], [11], [7]. Our project

centralization focuses on sharing common code of existing

products to reduce maintenance cost and remove version

conflicts for program analysis.

V. CONCLUSION AND FUTURE WORK

In this paper, we explore the usefulness of project

centralization for managing similar product variants. We first

present the basic concepts and definitions of project

centralization. Then, we discuss a simple solution and an

optimized one. We conduct empirical evaluations of our

approaches on three real-world large software systems. The

result demonstrates the effectiveness of our technique in

managing similar product variant by avoiding redundant

code. Based on this exploratory work, our future work will

refine project centralization to method level and compare its

effectiveness with the current approaches in sharing common

code of multiple product variants.

REFERENCES

[1] M. M. Lehman and J. F. Ramil, “Software evolution in the age of

component-based software engineering,” in Proc. IEE Softw., vol. 147,

Dec. 2000, pp. 249–255.

[2] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: a

framework and experience,” in Proc. 17th Int. Softw. Product Line

Conf., 2013, pp. 101–110.

[3] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.

Harrold, “Test-suite augmentation for evolving software,” in Proc.

23rd IEEE/ACM Int. Conf. on Autom. Softw. Eng., 2008, pp. 218–227.

[4] L. Ma, C. Artho, and H. Sato, “Improving automatic centralization by

version separation,” IPSJ Trans. on Programming, 2013.

[5] D. Faust and C. Verhoef, “Software product line migration and

deployment,” J. of Softw. Practice and Experience, vol. 33, pp.

933–955, 2003.

[6] T. Mende, R. Koschke, and F. Beckwermert, “An evaluation of code

similarity identification for the grow-and-prune model,” J. Softw.

Maint. Evol., vol. 21, no. 2, pp. 143–169, 2009.

[7] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse

engineering feature models,” in Proc. 33rd Int. Conf. on Softw. Eng.,

2011, pp. 461–470.

[8] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans.

Softw. Eng., no. 5, pp. 449–462, 2002.

[9] S. Apel, O. Lessenich, and C. Lengauer, “Structured merge with

auto-tuning: balancing precision and performance,” in Proc. 27th

IEEE/ACM Int. Conf. on Autom. Softw. Eng., 2012, pp. 120–129.

[10] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,

“Semistructured merge: rethinking merge in revision control systems,”

in Proc. 19th ACM SIGSOFT symp. and the 13th Euro. Conf. on

Foundations of Softw. Eng., 2011, pp. 190–200.

[11] J. Rubin and M. Chechik, “A framework for managing cloned product

variants,” in Proc. 35th 2013 Int. Conf. on Softw. Eng., 2013, pp.

1233–1236.

[12] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model

Checking Programs,” Autom. Softw. Eng., vol. 10, pp. 203–232, 2003.

[13] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach,”

Sci. Comput. Program., vol. 74, pp. 470–495, 2009.

[14] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A code manipulation

tool to implement adaptable systems,” Adaptable and Extensible

Component Systems, 2002

[15] DrJava Project. [Online]. Available: http://www.drjava.org/

[16] M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software

product lines: a case study using conditional compilation,” in Proc.

15th Euro. Conf. on Softw. Maint. and Reeng., 2011, pp. 191–200.

[17] ArgoUML-SPL. (Sep. 16, 2013). [Online]. Available:

http://argouml-spl.tigris.org/

[18] E. Cavalcante, A. Almeida, T. Batista, N. Cacho, F. Lopes, F. C.

Delicato, T. Sena, and P. F. Pires, “Exploiting software product lines to

Lecture Notes on Software Engineering, Vol. 2, No. 2, May 2014

199

develop cloud computing applications,” in Proc. 16th Int. Softw.

Product Line Conf., vol. 2, 2012, pp. 179–187.

[19] Health Wactcher. (Sep. 19, 2013). [Online]. Available:

http://www.comp.lancs.ac.uk/~greenwop/tao/java.htm

[20] P. Hnetynka and P. Tuma, “Fighting class name clashes in Java

component systems,” Modular Programming Languages, vol. 2789, pp.

106–109, 2003.

Lei Ma is a Ph.D. candidate at Department of Electrical

Engineering, the University of Tokyo. He received his

B.S. from Shanghai Jiao Tong University in the

Department of Computer Science in 2009, and M.S.

from the University of Tokyo in Department of

Electrical Engineering and Information System. His

interests cover various topics related to programming

languages, type system, and software management.

Cyrille Artho is a senior researcher at AIST, Japan. In

his Master's thesis, he compared different approaches

for finding faults in multi-threaded programs. Later in

his Ph.D. thesis, he continued his search for such

defects, earning his Doctorate at ETH Zurich in 2005.

After graduation he worked at NII, Tokyo, for two

years, and then moved to AIST.

Hiroyuki Sato is an associate professor in the

University of Tokyo. He received his B.Sc., M.Sc. and

Ph.D. from the University Tokyo in 1985, 1987, 1990,

respectively. He is majoring in Computer Science and

Information Security.

Lecture Notes on Software Engineering, Vol. 2, No. 2, May 2014

200

