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Abstract

Software product line (SPL) engineering manages families of soft-
ware products that share common features. However, cost-effective
test case generation for an SPL is challenging. Applying existing
test case generation techniques to each product variant separately
may test common code in a redundant way. Moreover, it is difficult
to share the test results among multiple product variants.

In this paper, we propose the use of centralization, which com-
bines multiple product variants from the same SPL and generates
test cases for the entire system. By taking into account all vari-
ants, our technique generally avoids generating redundant test cases
for common software components. Our case study on three SPLs
shows that compared with testing each variant independently, our
technique is more efficient and achieves higher test coverage.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing Tools, Diagnostics, Tracing

General Terms  Software reliability and quality assurance, empir-
ical studies

Keywords Software Product Lines, automatic test generation,

random testing

1. Introduction

Software product line (SPL) engineering manages a set of reusable

program assets. It systematically generates families of products [14].

To assure quality, a variety of software testing techniques have been
proposed to test SPLs [2, 7, 12, 15, 17].

Random testing is easy to use, effective, scalable and can be
fully automated [13]. To test object-oriented programs, random
testing randomly constructs object instances as the receiver and in-
put arguments of the method under test (MUT) to exercise different
paths in the MUT [4]. However, in the context of SPLs, separately
performing random testing on each software product of the same
SPL causes redundancies: Features shared by different products are
tested repeatedly, without increasing test coverage. Furthermore, it
is difficult to reuse test results among different product variants.
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Project centralization [10, 11] merges multiple variants of a
single software product by sharing common code, preserving the
behavior of each variant through code transformation. We propose
to use project centralization to test SPLs, because it eliminates code
redundancies by integrating multiple variants. However, existing
project centralization techniques [10, 11] work on a class level.
On that level of granularity, multiple variants are only shared if
their classes are identical. To test SPLs, more fine-grained project
centralization that can share common methods is required.

In this paper, we introduce method-level project centralization,
which unifies and shares methods. As methods are defined in their
respective classes, the new technique merges the classes and han-
dles issues related to fields, methods, and inheritance. In general,
the technique shares common code whenever possible, while pre-
serving the behavior of each given product variants for unit testing.
We implement random test case generation using Randoop [13].
In our framework, Randoop takes the centralized SPL as input and
tests multiple product variants in one run. To evaluate our tech-
nique, we have conducted cases studies on 33 product variants gen-
erated from three SPLs. The results are quite promising: Compared
with testing each product separately, random testing on the central-
ized product achieves a higher test coverage. In most cases a high
coverage is achieved more quickly as well.

Although this paper focuses on testing multiple product variants
of SPLs, the concept and techniques presented in this paper do not
depend on domain knowledge of SPLs (such as a feature model).
They can generalize to other testing scenarios for multiple similar
product variants such as historical program versions from software
evolution and co-evolution, and similar code branches produced by
the clone-and-own approach.

2. Related Work

While much work on SPL testing and automatic test case genera-
tion has been done, work on fully automatic test case generation for
multiple product variants from SPLs is limited.

2.1 Software Product Line Testing

When testing SPLs, test cases can be developed separately for each
feature. Although it is desirable to run the prepared test cases on
each generated product, this is usually not feasible due to resource
limitations. Several approaches try to reduce the combinatorial
product test space by product sampling and in other ways, e. g.,
by reducing the test executions per product [3].

Product sampling selects a representative subset of products
from the valid product space of an SPL and only considers these
sampled products for testing. Appropriate sampling strategies aim
to fulfill given coverage criteria [2, 12, 15], with N-way combina-
torial sampling [12] being the most widely used approach.



Other work uses program analysis to reduce the test executions,
by running a test case only on a configuration that influences it [8,
15]. Kistner et al. [7] explore the execution strategies of a unit test
for all products of an SPL without generating each product in a
brute-force way. They encode the variability of an SPL either in
the testing tool (a white-box interpreter) or in a meta-product that
represents all products (combined with black-box testing using a
model checker) to simulate test execution on all products.

Compared with these techniques, we use code transformation
to combine multiple products from an SPL, improving testing effi-
ciency by reducing redundancy in test executions. We need only a
set of products as input for testing without requiring provided test
cases or domain knowledge on an SPL, such as a feature model.

Other work on sharing the results of test executions exists. Xu
et al. [17] use a test suite augmentation technique to test multiple
products and investigate the influence of the order in which prod-
ucts are tested. In our approach, no specific product testing order
is required, and we use code transformation on the products (rather
than the test cases) to share tests among all products.

2.2 Randomized Test Case Generation

The critical step in random test case generation for object-oriented
programs is to prepare the input objects with desirable object states.
Most recent random techniques create the required input objects by
method sequence construction [5, 13, 18].

Randoop [13] randomly creates a new method sequence by
concatenating previously generated sequences as inputs. OCAT [5]
adopts object-capture and replay techniques, where object states
are captured from sample test executions, and then used as input
for further testing. Palus [18] leverages a trained sequence model
from combined static analysis (for method relevance) and dynamic
analysis (for method invocation order) to guide test case generation.

However, these techniques are designed for a single software
product; they do not share the test results among multiple products.

3. Our Approach

Program centralization merges multiple instances of the same ap-
plication so that they can be executed as a single entity [16]. Project
centralization extends this technique and transforms multiple prod-
ucts into a single project, preserving the original behavior of each
product. Using project centralization, we can generate test cases for
all product variants simultaneously. However, our previous central-
ization [10, 11] only shares a class among multiple products if it has
the same implementation throughout. For SPL unit testing, a more
fine-grained centralization is required to increase code sharing.

3.1 Method-Level Project Centralization

A project represents the code of a product variant, which has a
unique project identifier and a set of classes. Each class has a
unique name, a set of fields and methods, along with a set of
annotations, and attributes (super classes, interfaces, etc.) [9].

Method-level project centralization transforms a set of projects,
P = {p1,...,pn}, into a single project peentr such that each
method and its implementation from every p; € P is preserved
in Peentr- Methods from different projects are generally different
from each other, since they are defined in their respective declaring
classes. To share as many methods as possible, we adapt our class-
level project centralization [10, 11] to individual methods.

When merging classes from different projects, techniques of
class-level project centralization are first applied, representing all
classes with the same name as a separate set. For each such a set of
classes C' = {cl1, ..., cli}, where each cl; € C occurs in P and
all of them have the same name, the method-level project central-
ization merges its classes that satisfy the following conditions:

Randoop run-time phase
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Figure 1. Centralization-based test case generation.

1. The classes are consistent in their class attributes (class ver-
sions, super classes, interfaces, etc.).

2. All fields with the same name are consistent. A field cl.f of
class cl is consistent with another field cl’.f’ of class cl’, if
cl.f and cl’. f' have the same type, annotations, and attributes.

3. All methods with the same name and descriptor are consistent.'

Method consistency of normal method is similar to that of
fields, except that the method bodies may differ.
However, the static initializer <clinit> of each class in C'
needs special treatment, as it is executed only once, at class load
time, even if the initialization of multiple variants of a class is
to be simulated. Static initializers can be considered consistent
if their code is identical, or if their method body instructions are
totally ordered with respect to the subset relation.

Before actually merging any classes, we rename the classes
that do not satisfy the above conditions, marking them as distinct
classes from different products. We also update any references to
these classes accordingly.

Method-level centralization operates on the set of consistent
classes with the same name, C' = {cl1, ..., clx }, and merges their
common code. The first three steps are: (1) create a centralized class
with the same name and attributes as a class cl; € C, (2) use the
union of all fields of the classes in C' to synthesize the set of fields
of the centralized class, (3) create a proxy method that forwards
method calls to the right implementation.

A proxy method is created as follows: For all methods M =

{ma,...,m;} that occur in C' and have the same name and de-
scriptor, we first partition M into a set of distinct methods MP =
{mp, ..., mp,}according the the method body (implementation)

of the methods in M. All methods in M with the same method
body are mapped to the same element in MP. A transformation
map keeps track of project identities by associating each method in
MP with the project identities of all matching methods in M.
Then, we create a new proxy method, which has the same at-
tributes as all the methods in M except for the method body. We re-
name the representative method from each partition to a new unique
name to distinguish the different variants. We add both proxy meth-
ods and the renamed methods into the centralized class. We also
keep the project identities for each representative method to re-
member which projects it represents. In the method body of the
proxy method, we use a switch statement that checks the project
identity against the transformation map, and forwards a method
invocation from the proxy method to the corresponding renamed
method. This allows testing different versions of a method (with
both same name and descriptor) by only providing its correspond-
ing project identity and the proxy method. The proxy method accu-
rately forwards the call to the method matching the given project.

3.2 Integration with Randoop

Randoop [13] is a state-of-the-art random test case generation tool.
Given the program to test, Randoop first extracts all publicly vis-

' A method descriptor in Java bytecode includes both the return type and
the input parameter types of a method.



ible methods and puts them into a method pool, which contains
all methods under test (see Fig. 1). To test multiple product vari-
ants P = {p1,...,pn} simultaneously, we first perform project
centralization on P, and feed both the centralized project and the
transformation map into our modified version of Randoop.

Randoop starts by randomly selecting a method m(77 ... T%)
to test from its method pool. All input objects with type 77 ... T}
must also be prepared to test m. Randoop randomly selects the cor-
responding inputs from its object pool and concatenates previously
known input sequences to derive these objects, to test m. Upon
successful input construction, m is executed. Execution results of
each method call are analyzed against a few predefined contracts.
If the generated sequence is new and its execution does not cause
any failures, Randoop adds this successful sequence to the object
pool (see Fig. 1). Randoop continues to test more methods until a
time limit is hit.

We modify Randoop such that when a method m is selected
from the method pool, we randomly set the version, which is repre-
sented by the corresponding project identity. Using the transforma-
tion map, we select a version from those projects that contain m,
and execute the generated test sequence using the selected version.

When memorizing executed test sequences, we also memorize
the selected version of each successful method sequence, so that
we can generate these tests as JUnit test code for further analysis.
Instead of re-executing the same method sequence repeatedly, we
can change the version of each successful sequence in the object
pool when creating new sequences.

As the version of a method sequence can change according to
the random selection, it is possible to introduce extra method se-
quences and execution behavior that do not exist when testing each
project separately. For example, a method m (7" t) from a project
might use a method sequence (returns an object with type 1) that
can only be generated in another project. As long as it does not
matter how test data is prepared, such sequences produce correct
results. If methods heavily depend on product-specific precondi-
tions and invariants, though, a method call sequence with mixed
versions may sometimes produce false positives or false negatives.
We will investigate this issue further in future work.

After Randoop hits the time limit, we recover the code coverage
for each product by only analyzing the coverage of each method in
the centralized project according to the transformation map.

4. Case Study

To evaluate our work, we have implemented a tool and applied it to
33 products from three SPLs. Our implementation of method-level
project centralization is based on Java bytecode transformation
using the ASM library [1], and it is integrated with Randoop and
JaCoCo v0.6.4> which is used for code coverage analysis. In our
case study, we investigate two major research questions:

RQ1: Is project centralization effective in sharing the common
code among multiple products?

RQ2: Does testing using project centralization increase code cov-
erage, compared with testing each sampled product independently?

4.1 Evaluation Subject and Settings

We evaluate our tool on three SPL subjects that were developed
and used in previous studies based on FeatureHouse product gen-
eration (see Table. 1). All the selected SPLs are currently included
in the release of FeatureIDE v.2.7.0°.

Each of these selected subjects is accompanied by both a feature
model and source code. For example, GPL has 38 features and

2http://www.eclemma.org/jacoco/

3http://wwwiti.cs.uni-magdeburg.de/iti_db/research/
featureide/

Table 1. Case study subjects: Size and complexity metrics.

SPL desc. Classes | LOC | Features | Constraints | # Products | # Products

(*java) (total) | (pairwise)
Elevator 19 | 1,223 7 3 20 6
GameOfLife 39 (1,702 23 17 65 8
GPL 572,957 38 42 156 19

42 constraints in its feature model, which can generate 156 valid
products in total by selecting different feature configurations. As
pairwise feature coverage is widely used in SPLs as the product
sampling approach, we therefore sample valid products with 100 %
pairwise feature coverage by using SPLATool v0.3 [6].

To compare our approach with independent test case generation
for each product, we perform project centralization on the sampled
products to generate the centralized project for each SPL. We run
our modified Randoop tool chain on the centralized project, while
running the original Randoop on each of the sampled product sep-
arately.* We run each configuration for 1, 000 seconds, after which
no noticeable coverage improvement can be observed anymore.

4.2 Results

Table 2 summarizes the results of our experiments. Column two
gives the number of sampled products for each SPL. Columns three
and four give the total number of classes (*.class) and methods
in all sampled products, respectively. Columns five and six show
the corresponding number of public classes and public methods.
Column seven lists the total number of branches. Column eight
is the number of classes after performing centralization on all
sampled products, while columns nine and ten describe the project
size before and after centralization. Finally the average method
coverage and branch coverage for all sampled products by both
approaches are listed in the next four columns, followed by the
centralization transformation time and the total execution time of
each experiment (the non-centralized cases were run for the full
duration in each configuration).

In all three cases, centralization shares common code and needs
less storage. The centralized project takes 21.6 %, 21.3 %, and
20.3 % of the space required by original sampled products of Eleva-
tor, GameOfLife, and GPL. Centralization improves both method
and branch coverage, compared with independently testing each
project, even though we allot k times the test case generation time
to individual testing of k sampled products to have a similar num-
ber of test cases in each setting. Our centralization transformation is
also efficient and finishes in a few seconds (insignificant compared
with the test generation time) in our studied subjects.

4.3 Discussion

To understand the improvement of method coverage, we need to
review the test case generation procedure for each method. To test
a method, Randoop randomly selects input objects from the object
pool. If there is no object with a compatible type, Randoop skips
that method. Randoop adopts a fixed method pool. If a method
m requires an input object that is not returned by any method in
the method pool, m may never be tested. This often happens when
testing each sampled product independently.

After centralization, public methods from multiple sampled
products are put into the method pool, and all generated method se-
quences are shared among all products. This increases the chance to
cover more methods, by providing more diverse object types gener-
ated by multiple products. Therefore, even if independently testing
a product p cannot generate an object typed 7' to cover a method

4 Class GolView from GameOfLife is excluded for individual product test-
ing, because it constantly creates GUI frames that crash the local OS.



Table 2. Results of our experiments. All experiments were run on an Intel Core i7 Mac 2.4 GHz with 8§ GB of RAM, running Mac OS X
10.9.3 and Oracle’s Java VM (JVM), version 1.7.0_21 with a memory limit of 3 GB for the JVM.

Sampled #Sampled | #AIl [ #Public | # #el. | Size (KB) [ Avg. cov. non-centr. | Avg. cov. centr. | Transf. Exec. time (s)

pairwise prod. products [ cl. T m. [ cL [ m. | branch || centr. [ non-centr. | centr. [ m.[%] | br. [%] | m.[%] [ br. [%] | time (s) [ non-centr. | centr.

Elevator 6 90 694 T2 552 1,658 15 187.0 | 40.3 88.7 83.9 89.2 88.9 1.3 6,000 | 1,000

GameOfLife 8326 1,073 | 122 833 1,636 57 369.3 78.5 59.6 454 64.9 53.9 2.3 8,000 | 1,000

GPL 19 | 285 | 1,543 | 195 | 1,264 1,062 21 283.8 57.5 84.7 59.1 86.2 66.8 2.2 19,000 | 1,000
m(T t) in p, m(T t) may still be covered by using an object in- References

stance typed t from another product p’ in the centralization-based
testing. Mixing data from different products therefore increases the
availability of data types, for example, when public methods of a
given product are removed in other products. Although our initial
case studies have not found any adverse effects, we will investi-
gate such data reuse in greater depth in the future, on software that
depends on product-specific preconditions and invariants.

However, there exist a few cases where centralization decreases
coverage. Centralization increases the method testing space, by
introducing more methods and additional product version dimen-
sions. Our current strategy of both method and version selection
adopts a uniform distribution. However, the difficulty of covering
branches of different sampled products varies. A better selection
strategy to select methods based on coverage and sharing ratio is
likely to improve the effectiveness of our approach.

4.4 Threats to Validity

The representativeness of selected subjects is the primary external
threat to validity. We carefully select three SPLs from different
categories that have been widely used in previous studies. We also
use their recent implementation based on FeatureHouse.

Another external threat to validity is caused by the randomness
of Randoop. We fix and use the same random seed and run each
configuration long enough to diminish this threat.

The main threat to internal validity is caused by potential bugs
of our tool implementation. We decrease this threat by performing
unit testing and using the internal verification tool of ASM to check
the correctness of our code transformation.

5. Conclusion and Future Work

In this paper, we propose method-level project centralization and
its integration with random testing to test multiple product variants
from SPLs. Our technique shares common code whenever possible,
while preserving the behavior of each method for unit testing. The
evaluation on three SPLs shows the promising of our approach in
sharing common code and obtaining higher code coverage, com-
pared with testing each product independently.

Our work is a general testing technique to handle multiple prod-
ucts with different versions. These products could come from an
SPL, software evolution, or by the clone-and-own approach. Our
tool does not include a feature model. However, it would be inter-
esting to compare our technique with some feature-ware automatic
test generation techniques for SPLs and also automatic test genera-
tion techniques for multiple versions from software evolution (such
as regression testing). Other work includes investigating the impact
of using data from different products in a single test case. To eval-
uate this, we will conduct studies on the quality of generated test
cases, and the bug-finding ability of our approach.
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