arXiv:1110.1354v1 [cs.SE] 6 Oct 2011

Sources of Inter-package Conflicts in Debian

Cyrille Artho Kuniyasu Suzaki

Research Center for Information Security
AIST, Tsukuba, Japan

c.artho@aist.go. jp k.suzaki@aist.go. jp

Roberto Di Cosmo Stefano Zacchiroli

Laboratoire PPS
Université Paris Diderot — Paris 7, France

roberto@dicosmo.org zackQpps. jussieu.fr

Inter-package conflicts require the presence of two or maokgges in a particular configuration,

and thus tend to be harder to detect and localize than caowah(intra-package) defects. Hundreds
of such inter-package conflicts go undetected by the noresting and distribution process until

they are later reported by a user. The reason for this is tlvatt meta-data is not fine-grained

and accurate enough to cover all common types of conflictsask study of inter-package conflicts

in Debian has shown that with more detailed package meta-dateast one third of all package

conflicts could be prevented relatively easily, while aeotbne third could be found by targeted

testing of packages that share common resources or chidgsticte This paper reports the case study
and proposes ideas to detect inter-package conflicts iruthesf

1 Introduction

1.1 Package-based software distributions

Modern software distributions are organized into packagesoftware package is a self-contained unit
that can be installed or removed independently of other ggek, as long as dependencies are met. A
package manager controls such administrative tasks; aewhpa unmanaged installations, the bene-
fits of a package-based approach are the ability to autoafigtiostall, upgrade, and remove packages
without the need to remember installation locations or Wiiiles are affected by a change.

In real software, this ideal state is not easy to achieve tadaependencies between software pack-
ages, and interactions between software belonging toréiftepackages. Dependencies arise because
some packages provide lower-level functionality used st Interactions occur on shared resources,
such as files, and because packages may provide comporantsithbe combined into a larger system
(such as client and server packages communicating together

Dependencies restrict the ability to freely install, remoer upgrade packages. If a package
depends on another packagea package manager automatically requiteés be installed whem is
requested to be installed. Furthermore, packagannot be removed as long ass still in use. Finally,
upgrades of one package often require a simultaneous wpofaélated packages. In addition to this,
there is a notion o€onflicting packages: two packages may use the same resource or progidare
service in a way that is incompatible with each other, so only of these two packages may reside on a
system at any given time.

In package-based software distributions, so-catladkage meta-datdescribes dependencies and
relations between packages. Most Free Open Source SoffA@&S) systems are managed in that way.
Meta-data contains information about dependencies ofgugesk and conflicts between them. At the time

© C. Artho et al.
This work is licensed under the
Creative Commons Attributiobicense.

Submitted to:
Lococo 2011

http://arxiv.org/abs/1110.1354v1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Inter-package Conflicts in Debian

of writing, meta-data covers relations between packagesmackage level; dependencies and conflicts
are indicated by package, not by the actual resources agmapkavides or depends on. So-caledual
packagesare sometimes used as place-holders for actual resourcesvices provided by a package,
but they do not constitute an accurate, fine-grained degumipf those resources, which may be files,
network ports, or system services.

1.2 Inter-package conflicts

Inter-package conflicts occur if the combination of muttiplackages results in a defect that is absent
otherwise. Package meta-data may indicate such conflitiishvprevents conflicting combinations of
packages from being installed. However, inter-packagdlicsmay still arise in practice. The reasons
for such conflicts are manifold: Packages are not simply lasndf files, but include pre-installation
and post-installation scripts. These scripts are unogsttj Turing-complete programs running with full
system (root) access. It is therefore impossible in generedpture the full side effects of these scripts
with a formal description. The same problem arises of coassgell for executing the software provided
by these packages. Therefore, a complete logical analiypmoage behavior is not possible; however,
as this paper shows, steps can be taken towards coverimincgmes of common conflicts that are not
automatically verifiable with current tools.

Another problem arises from the fact that meta-data is gdexvimanually, by package maintainers.
It is therefore a challenge to keep such meta-data up to gateaecurate. This challenge becomes
especially daunting in the presence of a huge number of acdtywackages in distributions such as
Debian GNU/Linux, where the number of packages availabteeatly exceeds 30,000.7].

As a consequence of this, bug reports referring to conflieteéen packages are becoming frequent.
This paper investigates the sources of the conflicts arslttsianswer the following questions:

e What are the reasons why inter-package conflicts arise?
e Are there common categories of inter-package conflicts?

e Can these problems be addressed by using existing tools,tlbelie a need to augment existing
tools, or create new ones?

¢ Is the package meta-data currently being used, accurateufficlent? |Is there a need to automat-
ically verify such meta-data for accuracy, or is there a readgse additional meta-data for a more
accurate notion of package conflicts? In other words, are oroall possible package conflicts
covered by meta-data?

This paper is organized as follows: Sectibdescribes related work. Secti@ishows a case study on
inter-package conflicts in Debian, with a detailed evabratf different kinds of package conflicts. Sec-
tion 4 discusses the results and proposes possible strategresifedying problems found, and Sectn
concludes and outlines future work.

2 Related Work
2.1 Software packaging

Software packages are a well-known example of the companedels that have originated from the
field of component-based software engineering (CBSE) §]. Packages fit very well within com-
mon component definitions, but the raise in their populafisyarted with the advent of FOSS package

C. Artho et al. 3

managers such as the FreeBSD porting systsih APT [9], Yum, etc.—has highlighted very specific
challenges related to their deploymef}.[Some of those challenges are being addressed relying on
package meta-data and their formalization.

Seminal work by Mancinelli et. ab] has shown how to encode the installability problem forwafe
packages as a SAT problem, established the (NP-Hard) cgitypté the problem, and shown applica-
tions of the encoding to improve the quality of package répaes by avoiding non installable packages.
Based on the same formalization, various quality metrics lieen established, such as strong depen-
dency and sensitivityl]] (to evaluate the “importance” of a package in a given repogj and strong
conflicts 5] (to pinpoint packages which might hinder the installatiminseveral other packages). In
the same vein, package meta-data have also been used tct pudatie (non) installability of software
packagesd]. The abundance of studies that rely on package meta-dsttfie® the importance of the
correctness of those meta-data.

On the other hand, studies on package meta-data corretikeeiss one, seem to be scarce. At the
same time, a few testing can be found in the realm of Qualityufance (QA) of FOSS distributions to
discoversymptomshat might then lead, a human, to discover errors in packagja-ohata. To name one,
the “file overwrite” [L6] initiative by Treinen helps in discovering undeclared fticts among packages
in the Debian distribution.

2.2 Alternatives to globally managed software packaging

As an alternative to globally managed software packagdsatiesorganized in a fine-grained hierarchy;,
self-contained packages including all sub-componentsetimes calledundles are sometimes used.
Such bundles include the application and all libraries fiatels on, linked statically'[[]. This con-
trasts to FOSS distributions where libraries are sharediganerally required to be shipped as separate
packages—see for instancd,[‘convenience copies of code”—in order to ease the depérof (secu-
rity) upgrades. In a system using bundled software, alliegibns using the library in question need to
be updated separately. This usually entails a longer peélioicig which a system is vulnerable, because
some software bundles may be provided by third parties.

An advantage of self-contained software bundles is the eftsting and deployment, as system-
specific configurations and libraries have only limited ircigan the software bundle. However, statically
linking all libraries used by a bundle requires much diskcgpdf many applications include the same
statically-linked libraries, these libraries are dupiéchwithin the same system. Deduplication addresses
this problem {, 14]. Memory and storage deduplication merge same-contenskshon block level,
and reduce the consumptions of physical memory. By shadegtical chunks of storage, logical-level
redundancies caused by static linking are resolved on theiqdi level.

3 Evaluation of Inter-package Conflicts

3.1 Methodology

The evaluation of existing inter-package conflicts in Dabies carried out on a snapshot of the Ultimate
Debian Database (UDD).[)]. This database contains key data of all active (open) butgatime, such
as bug ID, title, and the package involved. The snapshot usedtaken on January 23 2011, and
contained 79936 bugs.

This database is too large to be analyzed manually, so thet®el of bugs was first narrowed down

by a keyword search. We chose three keywords to search farakly “conflict”, “overwrite”. The first

4 Inter-package Conflicts in Debian

Keyword Matches Refined matches

break 575 161
conflict 252 85
overwrite 102 44

Table 1: Number of matches per keyword in Debian database.

two words are generic descriptions of inter-package casfdad often appear in the forna breaksb”
or “a conflicts with ‘b”. The last keyword describes one of the most common intekgge problems,
where one package overwrite a resource needed by anothergeac

Table 1 gives an overview of all the matches in the search. A total2¥ Bugs match the initial
search; some of the matches contain more than one keyworttheredore are duplicates. Our aim is not
to get an exact number of how many inter-package conflict®thee in total; rather, we want to know
what types of conflicts occur more often than others, raddtivthe total number.

We therefore narrow down the search to eliminate bug reploatsdescribe problems that relate to
one package alone, rather than a conflict between two pask&ge example, “overwrite” could appear
in a bug report on a text editor in a bug report related to oviéing text (or a file, on saving). In fact,
an initial manual evaluation showed that about half of aly lbeports found in the initial search were
not related to inter-package conflicts. The search is refioéaclude only bug reports out of the initial
selection, where the title contains the name of anotherggaek This may filter out more bug reports
than necessary (decreasing recall, in search terms), keésthe results much more precise. To avoid
excluding too many packages, (version) numbers of packagenot included in this filter, even if the
package name itself contains a version number. A manuakatemved that this filter was actually a
good approximation of a manual selection of true inter-pgekconflicts.

As shown in Tablel, the refined selection contains 290 matches, 241 of whictdistenct bug
reports. Further manual post-processing of that list rese@nother 51 items, where the title indicates
clearly that those are not inter-package conflicts. Thigded 90 bug reports where, judging from the
title of the report, a possible inter-package conflict isorggd.

A subset of these bug reports was evaluated in a first sanopiente up with a categorization of bug
reports that would not be too coarse (giving only a few rouigkses of bugs) and not be overly precise
either (putting most bugs into a category of their own). Aftet, all bug reports are classified according
to these criteria, or eliminated as not being inter-packagdlicts, although the title would suggest so
(in the list of 190 reports).

3.2 Results

The 190 cases of which the bug report titles suggested andatkage conflict, were analyzed manually.
This requires the full information available on each bugiclihs not contained in the summary database
(UDD) used in the first step. The 190 bug reports in questiorevdewnloaded from the web page
athttp://www.debian.org/Bugs/. 51 bug reports out of 190 contain no inter-package confiat,
rather a conflict that is not reproducible, or a conflict withisingle package which is either misclassified
or contains a misleading title. This leaves 139 genuinag-ppéekage conflicts, which are classified into
five broad categories:

1. Conflicts on files and similar shared resources (such aiseadewr C library function names).
Whenever a conflict occurs directly on a file (or device), theflict is caught at installation time

http://www.debian.org/Bugs/

C. Artho et al. 5

by apt-get, the package manager for Debian. This handling is safe, iséatisfactory: if a
list of files used was provided beforehand, then an enhanaekbge manager could prevent an
installation attempt that is bound to fail. On the other hatter types of conflicts, such as name
clashes in libraries, may not be detected until an apptinas used at run-time.

2. Conflicts on shared data, configuration information, eritiformation flow between programs.
Configuration information is often found ifetc, while shared data may be located elsewhere.
Information flow refers to function calls or communicatioia pipes or a network. There are two
basic cases where conflicts occur on data or communicatigrAr(installation action of a pack-
age changes the configuration such that either the syntaxoffigguration file is broken (made
unreadable for the parser used by another tool), or the demameate a conflict. (2) A change
in the data format between versions of an application, whecluires updating other components;
the lack of an appropriate newer version of other component$e lack of a declaration of such,
causes a conflict. In both cases (1) and (2), the conflict omtpimes evident at run-time.

3. Uncommon, previously untested combinations of packagasse a conflict. In some cases, a
packagea using another packademakes a previously undetected faultirvident; it is possible
that other use cases fbrcould produce the same problem, so the failure can (at leakebry)
be reproduced usinfg alone. In other cases, the combinationacdndb is necessary for those
packages to fail, and either package would work fine withieeiconflicting package being present.
Nine cases fit this description, where the reason of a cowfiigkd not be attributed to cases listed
above.

4. Package evolution issues. When a software distributiolves, packages may be renamed or split
up into multiple packages, or several packages may be martgeone. This may require updating
meta-data in other packages for the distribution to remamsistent. Furthermore, version changes
with a package may also require meta-data changes due tiblpassompatibilities mentioned
above. Unfortunately, meta-data changes are not automeateldare primarily the responsibility
of the maintainer of a given package. This causes a potdatiateta-data to be outdated and not
reflect a correct state anymore.

5. The last category represents cases where two packagesanectly classified as conflicting,
although there is no conflict, at least not for the currensieer of these packages.

Table 2 and Figurel show an overview of the classification into these five cafegorLarger cat-
egories were split up into smaller groups to get a more daetgiicture. While human error in the
classification is possible, the results are overall quiarcior larger categories. Some trends are evident:

1. Resource conflicts are common, representing more tharhideof all conflicts. 22 out of 48
such conflicts are on files and caught by the package managestaltation time; other similar
conflicts may not be caught until a package is actually used.

2. Conflicts on configuration, and to a lesser degree, thedbohshared data, are equally com-
mon. 17 cases were found where syntactic problems causeatdl&ichetween packages; the most
common reason is the automatic modification of configurdiies by installation scripts. These
installation scripts are likely tested for common configiaras, but may not behave as expected
for less common settings. Unintended semantic changesniigooation files occurred 14 times
during installation, and 4 times after installation, setis also a significant problem. It is com-
pounded by the fact that many files have to be customized bydbe before a package can be
used, and the formatting of a configuration file may see sehé@mges that are correctly dealt with
by the packaged software itself, but not by the installagonpts that manage the package.

Inter-package Conflicts in Debian

Classification of inter-package conflicts

File name/
access 35%

File format/API/

configuration 34% Spurious

conflict 6%

Package
evolution 10%

Rare combination 16%

Figure 1: Overview of sources of inter-package conflicts.

C. Artho et al. 7

of conflicts Conflict type
48 access to files and similar shared resources
package provides same file as other package
package installers modify or delete file used by other pgeka
file missing that is supposed to be provided by other package
packages modify/disable same shared resource or package
file permission conflict on shared file
file/directory name conflict (for names including versiamber etc.)
clashing C library symbols/function names/device names
package removal script corrupts system
47 file/APl/data/configuration format
17 update/installation breaks configuration or file format
14 package breaks on uncommon or user-defined configurseiting
4 package use (post-install) overwrites/breaks configanrdiles
9 API change between different package version breaks paekage
3 kernel package not compatible with given version of otteaakage
22 rare (previously untested) combination of packages
13 defect in one package made visible by installation/usehar package
9 uncommon combination of packages makes one or more packbgays fails
14 package evolution (split/merge/change) or faulty nuetta results in conflict
9 incorrect/outdated dependency meta-data (requirefiish
5 package renaming/split‘merge results in incorrect mlata-of other package
8 spurious “conflicts” declaration prevents compatibleaaes from being used

N

P OPWWNAN

Table 2: Overview of all package conflicts found in the Delbag database.

3. Other problems between packages that are usually natletstogether represent one out of six
inter-package conflicts. The huge number of available ppekanakes it impossible to test all
combinations (or even just all pairwise possible combare) of packages together, so a conflict
often goes undetected until reported by a user.

4. Conflicts on meta-data level, often caused by packageitamo) contribute about 10 %.

5. Incorrect (or outdated) information on conflicting pagis sometimes occurs as well, which does
not create a package conflict per se, but instead preventsaekages from being used together.

4 Discussion

The previous section has given a categorization of intekgge conflicts based on empirical data. We
now propose possible solutions that can potentially cowaresor all instances of each class of conflicts.

1. Conflicts on files are not directly covered by existing nad#a, although they may be implied
by package-level conflicts. Work is in progress to systecadyi test package installations against
overwriting files provided by another packadé]. As an alternative to thidile diversionsenable
a package to install files at a different location; work is ingress to automate this.

This case study shows that while the majority of such cosflicicurs at file level, filpermissions
(and ownership) rather than just file names, and possiblelifigetory renaming actions during

Ihttp://wiki.debian.org/Summer0fCode2011/DeclarativeDiversions, retrieved June 2011

http://wiki.debian.org/SummerOfCode2011/DeclarativeDiversions

Inter-package Conflicts in Debian

package upgrades, should also be considered. Finallyragwef similar resources such as net-
work ports and C function names would further augment thigyabf such tools to detect conflicts
proactively.

More detailed meta-data will require much more space thastieg (rather compact) package
meta-data. We propose that such extra meta-data is gethenadeused only by developers and
package maintainers. As it covers possible conflicts prgeygt at development time, extra meta-
data does not have to be included in the final distribution. tiilek that most or all of such
resource-related meta-data can be extracted automgatfoath test runs, therefore requiring no
extra effort from package maintainers.

. Conflicts on configuration files, file formats and API vensiare also common, and clearly demon-
strate the need of systematic testing against such conflictae light of testing against overwrit-
ing files [L6], inter-package tests should also be automatically ruimageonflicts on shared data.
This is much more difficult to automate, and only feasible gackages that include automatic
regression tests.

The problem is that regression tests are used by developdrpackage maintainers, but not by
end users who install and use these packages. Because, okgisssion tests are currently not
covered by package meta-data. This makes them inaccessibbdelay’s package management
tools, and pretty much precludes the automated discovesudi intricate conflicts. However,

at a lower level, many source-level distributions have aKentest” or “make check” build target

that automatically performs such tests. In the future, snfdrmation could be provided in pack-

age meta-data, for package maintainers. Furthermore, asia level, certain problems may be
found just by executing a program and checking whether itsmevalue indicates an error, or by
attempting to start and stop a system service cleanly.

. The fact that rare combinations of packages may causéepnehbs not surprising, given the large

number of packages available. An exhaustive testing ofaggelkcombinations is not feasible, but
heuristic-based testing of sets of packages may be. A pessiiproach may be to install larger

subsets of packages, and to narrow down the set of confliptiegages by a systematic search
such as delta debugging .

. Package evolution often brings with it an invalidationpaickage meta-data. The fact that about
one tenth of inter-package conflicts occurred directly duevalid meta-data after larger package
modifications (such as splitting a package into two pacKag®ws that meta-data needs to be
verified for consistency and accuracy. Especially whenrmgéveituation with “known good” meta-
data (before the modification), automatic verification & tlew meta-data is feasible if packages
can be tested automatically.

As with other issues described above, meta-data does net tw requirements of packages in
enough detail. For example, take a packagbat is split up intoa’ anda’, because some parts
of a are not used by many packages. If a packagepended o in the old configuration, it is
possible that it will depend od, a”, or both packages in the new configuration. If some of the
resources provided by these packages are loaded dynanbgdil(at run-time), then verification
of the actual software is required to determine the correat dependency.

. Spurious (or outdated) declarations of inter-packagwlicts can be responded to, by automated
testing of packages that supposedly conflict. As mentioede work is in progress to detect
file-level conflicts, but other types of conflicts require maletailed meta-data, or mechanisms to
better support the automatic testing of the execution ostivare that packages provide.

C. Artho et al. 9

5 Conclusions and Future Work

Conflicts between software packages occur due to a variggasbns. Conflicts on shared resources and
configuration files are particularly common. The underlyimgblem is that package behavior at instal-
lation, use, and de-installation time is unrestricted, soraplete formal description of package behavior
cannot be achieved. However, steps can be taken towardsgieg the expressiveness and accuracy of
package meta-data, by adding meta-data that is intendgrhédrge developers and maintainers.

In our case study, we categorize a large number of intergapgelconflicts, and propose possible
solutions to common categories of conflicts. Our study ussesgle snapshot of bugs between packages
reported in Debian GNU/Linux. Future work includes studyiime evolution of packages, and bugs
reported, in more depth by investigating multiple snapstmter time. Furthermore, other software
distributions such as Fedora may also be considered.

As a conclusion from our initial case study, we found thataing and future projects can reduce
inter-package conflicts most efficiently by (a) identifyiagd testing combinations of packages that may
conflict, (b) generating and using extra meta-data, andhegking the validity of (manually provided)
meta-data. Such meta-data should cover files including fd@ardata in particular, and as a next step,
other system resources such as network ports, shared Ijgtaipdiguration data, and communication
between components. Another aspect currently omitted itaua&ta is information about regression
tests that already exist in many packages, but are inabtessi a package level because they are not
declared or available in a uniform way.

References

[1] Pietro Abate, Jaap Boender, Roberto Di Cosmo & StefaraHiaoli (2009):Strong Dependencies between
Software Componentin: ESEM 20091EEE, pp. 89-99.

[2] Pietro Abate & Roberto Di Cosmo (2011redicting upgrade failures using dependency analyisis 27th
International Conference on Data EngineerlirgeE, pp. 145—-150.

[3] Alan W. Brown & Kurt C. Wallnau (1998)The Current State of CBSEEEE Softwaréls, pp. 37—-46.

[4] Christian Collberg, John H. Hartman, Sridivya Babu & &ith K. Udupa (2005)Slinky: Static linking
reloaded In: Proc. USENIX 2005 Annual Technical ConferenfdSENIX, Anaheim, USA, pp. 309-322.

[5] Roberto Di Cosmo & Jaap Boender (201Q@)sing strong conflicts to detect quality issues in component
based complex systemnis: 3rd India software engineering conferen&EC '10, ACM, pp. 163-172.

[6] Roberto Di Cosmo, Paulo Trezentos & Stefano Zacchifio8): Package Upgrades in FOSS Distributions:
Details and Challengesin: International Workshop on Hot Topics in Software UpgraditstSWUp '08,
ACM, New York, NY, USA, pp. 7:1-7:5.

[7] lan Jackson & Christian Schwarz (2008): Debian Policy Manual
http://www.debian.org/doc/debian-policy/.

[8] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmopdés Vouillon, Berke Durak, Xavier Leroy & Ralf
Treinen (2006)Managing the Complexity of Large Free and Open Source PacBased Software Distri-
butions In: ASE 2006 IEEE, pp. 199-208.

[9] Gustavo Noronha Silva (2008XPT HOWTOhttp://www.debian.org/doc/manuals/apt-howto/.

[10] Lucas Nussbhaum & Stefano Zacchiroli (201The Ultimate Debian Database: Consolidating Bazaar Meta-
data for Quality Assurance and Data Minintn: 7th IEEE Working Conference on Mining Software Repos-
itories (MSR’2010)Cape Town, South Africa.

[11] L. Presser & J.R. White (1972)inkers and loadersComputing Surveys (CSURY3), pp. 149-167.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/manuals/apt-howto/

10 Inter-package Conflicts in Debian

[12] The Debian ProjectSoftware packagesin [Debian] “sidhttp://packages.debian.org/sid/allpackages.
Retrieved June 2011.

[13] Murray Stokely (2004)The FreeBSD HandbooR edition. FreeBSD Mall.

[14] Kuniyasu Suzaki, Toshiki Yagi, Kengo lijima, Nguyen AmQuynh, Cyrille Artho & Yoshihito Watanebe
(2010):Moving from Logical Sharing of Guest OS to Physical SharihDeduplication on Virtual Machine
In: Proc. 5th USENIX Workshop on Hot Topics in Security (HotS€4d @) USENIX, Washington D.C.,
USA.

[15] Clemens Szyperski (1998fomponent Software. Beyond Object-Oriented Programnfalglison-Wesley.

[16] Ralf Treinen (2011)EDOS-Debcheck: File Overwrite Errarsttp://edos.debian.net/file-overwrites/.
Retrieved June 2011.

[17] A. Zeller & R. Hildebrandt (2002)Simplifying and Isolating Failure-Inducing InpuSoftware Engineering
28(2), pp. 183-200.

http://packages.debian.org/sid/allpackages
http://edos.debian.net/file-overwrites/

	1 Introduction
	1.1 Package-based software distributions
	1.2 Inter-package conflicts

	2 Related Work
	2.1 Software packaging
	2.2 Alternatives to globally managed software packaging

	3 Evaluation of Inter-package Conflicts
	3.1 Methodology
	3.2 Results

	4 Discussion
	5 Conclusions and Future Work

