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Abstract—We propose Guided Random Testing (GRT), which
uses static and dynamic analysis to include information on
program types, data, and dependencies in various stages of
automated test generation. Static analysis extracts knowledge
from the system under test. Test coverage is further improved
through state fuzzing and continuous coverage analysis. We
evaluated GRT on 32 real-world projects and found that GRT
outperforms major peer techniques in terms of code coverage
(by 13 %) and mutation score (by 9 %). On the four studied
benchmarks of Defects4], which contain 224 real faults, GRT
also shows better fault detection capability than peer techniques,
finding 147 faults (66 %). Furthermore, in an in-depth evaluation
on the latest versions of ten popular real-world projects, GRT
successfully detects over 20 unknown defects that were confirmed
by developers.

Keywords—Automatic test generation, random testing, static
analysis, dynamic analysis

I. INTRODUCTION

A unit test for an object-oriented program consists of a
sequence of method calls. Manually crafting test sequences
is labor-intensive. Random testing automatically generates test
sequences to execute different paths in a method under test
(MUT) [25]. To optimize coverage of test cases, feedback-
directed random testing (FRT) [42], [44] uses information
generated in earlier iterations of test generation to direct latter
iterations. Techniques adopting FRT, such as Eclat [42] and
Randoop [44], incrementally build more and longer test se-
quences by randomly selecting an MUT and reusing previously
generated method sequences (that return objects) as input to
execute the MUT until a time limit is hit.

While having greatly improved random testing, FRT still
suffers low code coverage in many cases [23], [55], [65], [66].
With the advancement of other testing techniques (e. g., search-
based testing [16]), random testing and FRT seem to become
less competitive [5], [50], [32], [19]. We show that combined
static and dynamic analysis can guide random testing and
significantly improve its effectiveness.

In this paper, we propose Guided Random Testing (GRT).
GRT extracts both static and dynamic information from the
software under test (SUT) and uses it to guide random testing.
GRT works in two phases: (1) A static analysis over the
classes under test (CUT) extracts knowledge, such as possible
constants during execution, method side effects, and their
dependencies. Based on these analysis results, GRT creates
comprehensive pools of initial constant values and determines
the properties of methods that form the basis of method
sequence generation. (2) At run-time, the static information is
intelligently combined with dynamic feedback, such as exact
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type information and test coverage information, to support
demand-driven object construction and to guide testing to those
MUTs with low coverage.

We implemented the proposed approach of GRT as a test
generation tool based on the random testing framework of Ran-
doop [44]. GRT is fully automatic and does not require input
specifications or existing test cases. We perform a thorough
evaluation of GRT on a large set of benchmarks containing 32
popular real-world applications. The experiments demonstrate
the effectiveness of GRT with respect to code coverage, muta-
tion score, and the ability to detect real, known and unknown
defects in open source projects. Furthermore, GRT obtained
the highest overall score in a contest of automatic test tools,
competing with six other well-known testing tools [50], [36].
In summary, this paper makes the following contributions:

1) We propose GRT, a fully automatic testing technique
using six collaborating components that extract and use
static and run-time information to guide test generation.

2) We evaluate GRT on 32 real-world programs in terms of
code coverage and mutation score, comparing it with ma-
jor peer techniques (i. e., Randoop [44] and EvoSuite [19])
by using multiple time budgets and scenarios.

3) We investigate the defect detection ability of our proposed
technique on real bugs in Defects4J [31], [32].

4) We perform an in-depth investigation of the usefulness
of GRT in detecting new, previously unknown bugs on
ten widely used open source projects. GRT successfully
found 23 unknown (and now confirmed) bugs.

This paper is organized as follows: Section II provides
relevant background information and presents an overview of
GRT. Section III describes each of GRT’s components in detail.
Section IV shows the evaluation results. Section V compares
GRT with related work and Section VI concludes and discusses
future work.

II. BACKGROUND AND OVERVIEW
A. Random Testing

The general process of software testing consists of three
major steps: creating test inputs, executing tests, and checking
test outputs. Test automation techniques aim at automating one
or more of these steps.

A software under test is often called an SUT for short.
Similarly, class and method under test are abbreviated to CUT
and MUT, respectively. Testing an MUT with method signa-
ture m(Tin, v1, Ting V2, - -y Tin,, Un) : Tout requires creating
objects with types of Ty, ..., T, as the inputs of m, and



TABLE 1.

OVERVIEW OF GRT PROGRAM ANALYSIS COMPONENTS, AND THEIR USAGE FOR TESTING GUIDANCE.

Component Static / dynamic

Description

Constant mining static

Impurity static + dynamic

and purity results.

Extract constants from SUT for both global usage (seed the main object pool) and for local usage as inputs for specific methods.
Perform static purity analysis for all MUTs. At run-time, fuzz selected input from the object pool based on a Gaussian distribution

Elephant brain dynamic Manage method sequences (to create inputs) in the object pool with the exact types obtained at run-time.
Detective static + dynamic Analyze the method input and return type dependency statically, and construct missing input data on demand at run-time.
Orienteering dynamic Favor method sequences that require lower cost to execute, which accelerates testing for other components.
Bloodhound dynamic Guide method selection and sequence generation by coverage information at run-time.
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Fig. 1.

the execution of m returns an object with type T,,:. The
returned object can be further used as input to test another
method that requires an argument of type 7,,;. A method
sequence in testing consists of a sequence of statements

mSeq = {s1,82...,8n}, Where each s; € mSeq is either
an assignment statement v,,; = v;, or method invocation
statement vy = M(Vipy,---,Vin, ) that invokes m with

inputs vin,,. .., Vi, and assigns the output to variable v,y;.

In the context of testing object-oriented programs, test
inputs are either primitive values or objects with particular
states. To construct useful object states, object-oriented testing
often starts with a set of primitive values, and uses them
as arguments for specific constructors or methods. In this
way, the object states are not directly specified as a set of
(primitive) values, but created through the combination of
initial values and the execution of method sequences. Objects
obtained from a method sequence can be used as input for other
methods. When using such an approach, method sequences are
conceptually equivalent to input objects.

It is usually impossible to exhaustively enumerate all pos-
sible initial values and combinations of method calls. Various
methods, such as systematic white-box testing and search-
based testing, are proposed to select or create a relatively small
number of initial values and method sequences. One of the
early ideas is random testing [25], which feeds the SUT with
randomly generated inputs. It is easy to use, straightforward to
automate, and scalable. Random testing has been found effec-
tive in detecting program errors [15], [12], [41], [44]. However,
randomness without additional guidance is not optimal in
practical settings, where testing resources are often limited.
A number of techniques have been proposed to improve the
effectiveness of random testing using extra information, such
as run-time feedback, to control the test generation process,
while allowing certain degrees of randomness [44], or to study
method sequence patterns from manually written test cases to
guide random test generation [65].

The workflow overview of guided random testing (GRT), which combines information from static analysis with run-time guidance.

B. Guided Random Testing

GRT leverages knowledge extracted from the software
under test to guide each step of run-time test generation. As
shown in Fig. 1, the overall process of GRT begins with
extracting constant values from classes under test through
a lightweight static analysis. The extracted constant values
are used throughout the entire process as “seeds” to create
complex object states. Furthermore, a static purity analysis (see
Section III-B) categorizes all MUTs into pure and impure
methods. The result of the purity analysis is used to generate
unseen object states efficiently. The third static analysis focuses
on dependencies between parameter types of methods (input
types) and return types of methods (output types). The purpose
is to identify the types of objects that are essential for testing
MUTs. Since exact types may be determined only at run-
time, GRT also performs dynamic analysis to capture type
dependencies.

GRT’s run-time phase is executed in two or more iterations.
In each iteration, run-time information is collected to guide
subsequent iterations. The first step of each iteration is select-
ing a method to be tested from all MUTs in the method pool.
GRT guides the method selection using code coverage informa-
tion obtained during the test execution of previous iterations.
For the execution of the selected MUT, GRT chooses method
inputs from two object pools. Method inputs are maintained
in the form of generated method sequences. The main object
pool contains method sequences that have been successfully
executed in previous iterations, while the secondary object
pool contains method sequences generated on demand. When
selecting input objects, GRT takes the cost of creating each
object (i.e., the cost of executing the corresponding method
sequence) into account. Costs are extracted from executions
in previous iterations. After the necessary inputs have been
selected, GRT combines MUTs with their inputs to generate
new method sequences. These method sequences are executed
to test the SUT. The execution completes the current iteration
of the run-time phase. GRT continues with further iterations
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Fig. 2.  GRT component interaction and mutual enhancement.

until certain stop criteria (e. g., test coverage) are met or the
test time budget is exhausted.

GRT consists of six collaborative components, each of
which is briefly described in Table I. We use the component
names shown in Table I for brevity. The components closely
work together as they extract useful static and dynamic infor-
mation at specific points and then pass it to other components
to facilitate their tasks. The overall effectiveness of GRT results
not only from the individual components, but also from their
orchestration.

Mutual enhancements between different components are
summarized in Fig. 2. An arrow from one component to
another signifies that the former enhances the latter; a double
arrow (shown in blue) shows mutual benefits. Constant mining
improves the diversity of the initial object pool by using
constants extracted by static analysis. Impurity boosts the effect
of constant mining through input fuzzing to create objects with
more diverse states. Elephant brain further diversifies the input
object types by using dynamic type information to find objects
that cannot be generated using static type information alone.
Detective constructs necessary objects that cannot be created
from the original fixed MUT pool on demand. Orienteering
accelerates the overall testing speed of GRT and makes the
effect of the other components more apparent. Finally, Blood-
hound intelligently selects MUTs that are not well covered.
Upon covering more code of an MUT, more program states
are reached, which potentially creates more diverse objects
to cover even more code. The next section presents each
component in detail.

III. PROGRAM ANALYSIS TECHNIQUES OF GRT
A. Constant Mining: Automatic Constant Extraction

Primitive types (booleans, numbers, characters, and strings)
are the basis of creating complex objects. However, values
chosen purely at random often fail to satisfy branch conditions.
Consider the example from class PatternOptionBuilder
in Fig. 3: Branches of method getValueClass are not
covered by Randoop [42], as Randoop does not start with the
required predefined primitive values, and is unable to derive
the right values that satisfy these branch conditions at run-time.
Although manual constant selection is helpful in covering such
branches (e.g., as an option in Randoop), it requires much
human effort.

To obtain relevant input values without incurring too much
overhead, we perform a lightweight static analysis, called
constant mining. Our key observation is that many useful
constant values are used as instruction operands. Constant
mining extracts constants from the classes under test and

performs constant propagation and constant folding [40] to
compute input values as candidates for the initial value pool.

Practical software usually contains a large number of
constants, and a constant may only be related to specific
branches. Simply selecting the extracted constants as inputs (at
random) for all MUTs is of little help to cover specific
branches. In addition, putting irrelevant constants in the value
pool can increase the overhead for test sequence generation
and decrease the overall performance. Therefore, we use the
extracted constants on two levels: on a global level (among all
classes) and on a local level (a constant is only used for the
class containing it).

For global usage, we prioritize the extracted constants by
weighting them according to their frequency. The weight is
computed based on a modified version of term frequency-
inverse document frequency (TF-IDF), which is often used to
measure the importance of a term in a set of documents [37].
In the context of constant mining, we treat each class of the
SUT as a document and each extracted constant as a term
resulting in the weight

|D|+1
|ID|+1—|de D:ted

tf-idf, (¢, D) = tf(t, D) * log

Here, tf(¢, D) represents the frequency of a constant ¢
occurring in a set of classes D. |D| is the total number of
classes in the SUT, and |d € D : t € d| is the number of classes
that contain the constant ¢. The formula favors a constant if
it is used more frequently and in more classes. Each constant
has the chance to be picked, although the selection probability
is lower for a constant with smaller weight.

Some constants are used locally as they may be only
relevant to methods of a class that contains the constants. In
this case, we register each extracted constant for the classes
containing it, and select the constants by a predefined probabil-
ity (noted as pconst) as inputs for MUTs of the corresponding
class. To obtain even more relevant values, we also use state
fuzzing (see Section III-B).

B. Impurity: Purity-Based Object State Fuzzing

In order to generate sequences with a broad variety of
object states, we randomly alter (or fuzz) the states of existing
input objects and pass the fuzzed results to the MUT. We
handle primitive numbers based on a Gaussian distribution and
non-primitive objects based on method purity analysis.

1) Primitive Value Fuzzing: Primitive inputs are either ex-
tracted by constant mining or from method sequence execution
results at run-time. To cover a wider range of inputs, we
use a heuristic: given values are already close to satisfying
some of the branch conditions. When a primitive number
c is selected as an input, we adopt a Gaussian distribution
to probabilistically fuzz its value and use the altered result
as input. Specifically, we use the original value of ¢ and a
predefined constant as the mean value i and standard deviation
o, respectively. We use a Gaussian distribution because it
creates new values following our heuristic in that it gives
higher probabilities to generate values closer to u (68.3 % of
fuzzed values probabilistically lie in [ — o, 1+ o]), while still
generating values distant from px.



To fuzz a string value, we randomly choose a string
operation among inserting a character, removing a character,
replacing a character, and taking a substring of the given string.

2) Purity-Analysis-Based Object State Fuzzing: To test a
method m, GRT selects the input objects of m from the
previously generated sequences stored in the object pool. To
obtain inputs with more diverse object states, we fuzz non-
primitive objects by identifying and using methods that have
side effects that alter the state of the receiver instance, method
arguments, or (global) static fields.

Method purity analysis [54] classifies MUTs into pure and
impure methods. Methods without side effects are pure, and
methods with side effects are impure. Only impure meth-
ods can change the state of an object [54]. While invoking
pure methods is useful to check object states, selecting such
methods often creates long and redundant sequences where
object states stay unchanged, slowing down overall growth of
coverage. Therefore, impure methods are favored over pure
methods in order to frequently mutate object states to satisfy
more branch conditions.

Given an input object o; of type T;, we perform
static purity analysis to gather all impure methods that
can change the state of an object (reference) of type 7;.
Among these impure methods, we randomly select a method
m(Ty 01,...,T;04y...,T, 0) at run-time, and invoke m on
o0; to fuzz the state of o; (each of the impure methods can be
selected multiple times to fuzz different input objects). Since
m may also require other input types, we first search and reuse
such objects from the method sequence of o;, and select the
remaining missing objects from the object pool. The fuzzed
object of o; is then passed as input to test the target method.
For example, when testing class List, impure methods such
as add (element) and remove (element) are used to
fuzz a List object [ for more states. Static [54], [58], [26]
and dynamic [59], [64] purity analysis techniques exist. We
adopt a static technique [26] to avoid additional overhead at
run-time.

C. Elephant Brain: Dynamic Input Sequence Management

Subtyping is pervasive in object-oriented programs. An
object reference obj of type T can be assigned to another
reference of its super type 1" such as 1" obj’ = obj, which
makes the usage of the object referenced by obj conform to
the interface of 7’. Such an assignment brings benefits of
simplifying the interface by allowing diverse implementations
through dynamic binding. However, it poses a challenge to test
case generation, since the exact (run-time) type of an object
may not be the same as its declared type. This limits many
existing automatic testing techniques that adopt a static type-
based method sequence management [12], [42], [44], [65].

In the example shown in Fig. 3, branch coverage in
method createval requires both suitable primitive values
and a class descriptor returned by getValueClass method.
However, static type management stores the object o returned
by getValueClass only as the type Object according to
its declaration. An instance of the type Object cannot be
used as the input for createval that requires the argument
of the type Class, unless it is aware that the dynamic type of
o is compatible with (or can be used as) the type Class and

1 package org.apache.commons.cli;
public class PatternOptionBuilder({
public static final Class STRING_VAL=String.class;
public static final Class OBJECT_VAL=Object.class;
5 public static final Class NUMBER_VALUE = Number.class;
// 6 more similar fields omitted.
public static Object getValueClass (char ch) {
switch (ch) {
case '@’ :return PatternOptionBuilder.OBJECT_VAL;
10 case ’:’:return PatternOptionBuilder.STRING_VAL;
case ’'%’:return PatternOptionBuilder.NUMBER_VALUE;
// 6 more case branches omitted.
}
return null;
15 } } // 2 more methods omitted.
public class TypeHandler {
// 1 method omitted.
public static Object createval(String s, Class c) {
if (PatternOptionBuilder.STRING_VAL == c)
20 return s;
else if (PatternOptionBuilder.OBJECT_VAL == c)
return createObject (s);
else if (PatternOptionBuilder.NUMBER_VALUE == c)
return createNumber (s);
25 // 6 more else if branches omitted.
else return null; } } // 7 more methods omitted.

Fig. 3. Two classes from Apache CLI. Branch coverage requires both domain
knowledge on constant values and accurate type management.

1 package org.apache.commons.compress.utils;
public final class IOUtils {
private IOUtils() { }
public static long copy(final InputStream input,
5 final OutputStream output) throws IOException {
return copy (input, output, 8024);
}
public static long skip (InputStream input, long n)

long available = n;
10 while (n > 0) {
long skipped = input.skip(n);
if (skipped == 0) break;
n —-= skipped;
}
15 return available - n; } } // 5 methods omitted.

Fig. 4. Methods in Compress require inputs outside the fixed method pool.

the type cast is performed on o to Class explicitly before
using it as the input of createval. Without the exact type
management, many branches (e. g., line 20, 24) in the method
createVal cannot be covered, although instances that are
able to cover these branches do exist.

GRT stores all successfully executed method sequences
in its object pools (see Fig. 1), which can return objects as
further inputs to test MUTs. To improve the effectiveness
of input object selection, we manage the objects using their
run-time types. This increases the type diversity of generated
objects (method sequences), and thus the coverage of methods
that depend on the exact type of their inputs.

When outputting the generated sequences as test cases,
we compare the static type of each method return value with
its dynamic type, adding explicit type casts where necessary.
Otherwise, the generated tests may fail to compile, because
the static types of method parameters (including the receiver)
do not match the dynamic types of the objects passed to them.

The dynamic type management identifies many diverse data
types and never forgets; we therefore call it elephant brain.



DemandDrivenInputCreation(7")

Input: The type T" of an object to create.

Output: A set of generated objects (method sequences) of type 7.

1: dependentMethodSet M < ExtractDependentMethods( T, {})

2: for each method m € M do

seq < getInputAndGenSeq(mainObjPool, secondObjPool, m)
> Get inputs for method m, and generate new method sequences

4 if seq! = null then

5 execSuccess +— exec(seq)

6 if ezecSuccess then

7: secondObjPool.add(seq)

8

9

10

w

> Execute method sequence seq

end if
end if
: end for
11: candidateMethodSeqs < getMethodSeq(secondObjPool, T)
12: mainObjPool.addAll( candidateMethodSeqs)
13: return candidateMethodSeqs

14: ExtractDependentMethods(T’, processedSet)
Input: A dependent type 7', and processedSet are types we have
performed method extraction on.
Output: A set of methods that constructs objects of type 1" .
15: M < {} > Set of dependent methods that construct objects of type T"
16: DepTypes <+ {} > Set of dependent types of methods in 7'
17: if T € processedSet v T is primitive type then
return
18: end if
19: for each visible method m in class 7' do
20: if isConstructor(m) V getReturnType(m) == T then
21: M+ MUm

22: DepTypes < Dep Types U getInputTypes(m)
23: end if
24: end for

25: processedSet < processedSet UT

26: for each visible type T’ € DepTypes do

27: M <« M U ExtractDependentMethods(7”, processedSet)
28: end for

29: return M

Fig. 5. Demand-driven object creation algorithm for missed input objects.

D. Detective: Demand-Driven Input Construction

To test an MUT m, all input arguments (including the
receiver object) of m must be prepared. If any input of m
cannot be created, m cannot be tested. Therefore, the ability
of creating objects that MUTs depend on greatly affects the
number of testable MUTs. In order to create auxiliary objects,
diverse API types and methods are often required.

Consider class TOUtils (see Fig. 4), where both methods
copy and skip require an object of type InputStream.
The required object cannot be generated by tools like Randoop,
because the creation of the object of type Input Stream re-
quires an external library (the Java core library) and cannot be
performed by using only the methods in the SUT. As a result,
no method in class TOUtils is ever covered. It is tempting
to use accessible methods from dependent classes (such as all
library classes) of an SUT, but this increases the search space
and wastes effort on methods that are not the target.

We propose a demand-driven approach to construct missing
input objects in two phases: we statically analyze the method
type dependency of MUTs to identify those types that cannot
be created by running MUTs only; at run-time, we use a
demand-driven approach to construct inputs of types that are
not directly available, by maintaining a secondary object pool.

Our method type dependency analysis first statically com-
putes dependencies of MUTs by checking their input and

return types. Then, it analyzes each input type of MUTs and
determines if the objects of an input type can be obtained at
run-time from other MUTs. Using this analysis, GRT identifies
a set of unavailable types as candidates (input) for demand-
driven input construction.

Fig. 5 shows the demand-driven algorithm for creating
sequences for missing input types. When an unavailable input
of type T is required during test generation, the algorithm
calls function EztractDependentMethods (line 1) to search
all available packages for constructors and methods that return
the required type (lines 19 to 24). T is marked as processed
when we have extracted the necessary methods from it. The
algorithm recursively searches for inputs needed to execute a
method m that returns the sought-after type 7" (lines 26 to 28).
The recursive search terminates if the current 7 is a primitive
type or if it has already been processed (lines 17 to 18).

For each method m required to produce objects of type
T, GRT searches for necessary inputs of m in both the main
and the secondary object pool. If all inputs of m are available,
GRT combines the corresponding method sequences with m
to generate a new method sequence ending with a call to
m (lines 2 to 3). Then, GRT executes the newly created
sequence and stores the resultant object in the secondary object
pool (lines 4 to 9). We use a secondary object pool, because
adding all objects to the main object pool can add additional
overhead and decrease the query performance for the main
test generation procedure. GRT selects the method sequences
that produce objects of type T from the secondary object
pool and adds them to the main object pool for future use
(lines 11 to 12). This makes constructing missed input objects
and querying efficient without interfering with the main test
generation procedure.

Like a detective, this component works by following the
clues (i. e., relationships) between methods.

E. Orienteering: Cost-Guided Input Sequence Selection

To test a method m, GRT prepares all its input objects
mostly by selecting existing method sequences from the object
pools. As there are often a large number of method sequences
that return the objects of the same type, randomly select-
ing type-compatible method sequences as input makes the
generated test method sequence grow considerably in length
and execution cost. Even worse, repeatedly executing lengthy
sequences may take up too much execution budget, leaving
many other relevant sequence combinations untested.

For better run-time performance, it is desirable to use
method sequences that have lower execution cost as input.
The idea is inspired by orienteering, where a path that takes
lower cost is preferable. Therefore, we randomly select a
sequence as an input based on its execution cost measured by:
weight(seq) = 1/(2?21 seq.exec_time; * \/seq.meth_size),
where seq is a sequence for selection, £ counts how many
times seq has been selected so far, seq.exec_time; is the exe-
cution time during the ith execution of seq, and seq.meth_size
is the number of methods in seq, excluding statements for the
assignment of primitive values. This weight formula favors
sequences with less execution effort while it still includes high-
cost sequences with diverse states.



F. Bloodhound: Coverage-Guided Method Selection

The difficulty of covering a branch varies between
branches. Some branches can be easily covered with simple
inputs, while others require complex object states. An equally
balanced selection of MUTSs wastes time on methods that are
already well covered. On the other hand, too much emphasis
on MUTs containing uncovered branches may waste time in
challenging the difficult branches without much payoff.

To direct testing towards uncovered code, we perform a
coverage analysis during test generation and favor those MUTs
that are not well covered so far. Although it is desirable to
update the coverage information after each execution of an
MUT, this is expensive; Therefore, the coverage information
is updated at time interval ¢. During each interval, we prioritize
method selection for a method m among all MUTs M by using
the following function to compute its weight w(m, k):

succ(m) N
_— ifk=0
maxSucc(M)

w(m, k) = . o y
max << In(1 — p) * ?)’ In(size(M) + 3))

In this function, k represents the number of selections of
method m since the last update of the coverage information;
uncovRatio(m) is the uncovered branch ratio (the number of
uncovered branches over all branches) of m; p is the parameter
of a logarithmic series that determines how fast the factor
decreases as k increases; succ(m) is the total number of
successful invocations of m; maxSucc(M) is the maximal
number of successful invocations of all MUTs; max(a,b)
returns the larger value of the two given values; size(M) is
the number of MUTs M and « is the parameter to adjust the
weight of the first formula.

a * uncovRatio(m) + (1 — «) * (1 —

*w(m,0) ifk>1

The overall effect of the weight function is that initially
(k = 0) we favor those methods with low code coverage.
Once a method has been tested successfully (k > 1), we
downgrade its weight logarithmically (the first part of max
function). After several rounds of selection, the weight of each
method returns to a uniform distribution again (the second part
of max function). At each update of the coverage, the weights
are recalculated, and k is reset to 0.

Our method selection strategy is inspired by the multi-
armed bandit algorithm [61]. This algorithm balances ‘“‘ex-
ploitation” (methods that are well tested) and “exploration”
(methods with low coverage) for a higher payoff. The al-
gorithm is useful because some branches of an MUT can
be difficult to cover even if the MUT is tested over and
over again. A weight function only based on the uncovered
ratio of code would waste resources on methods with difficult
branch conditions, without gaining much benefit. Our approach
considers both code coverage and the execution history of each
MUT for the initial weight, but decreases this weight later to
avoid investing too much effort in difficult branches.

Like a Bloodhound, this enhancement hungers for cover-
age, while intelligently balancing the deeper search of each
MUT against the breadth given by the entire problem set.

IV. EXPERIMENTS

We implement GRT based on the random testing frame-
work of Randoop. Constant mining is implemented as an

TABLE II. BENCHMARKS: SIZE AND COMPLEXITY METRICS.

Software (version) NCLOC # Class # Insn. # Bran. # Mut.

A4] (1.0b) 3,602 45 9,773 544 936
Apache BCEL (5.2) 23,631 338 65,719 5,133 7,209
Apache C. Codec (1.9) 5,803 76 24,960 1,835 2,747

Apache C. Collection (4.0) 23,713 390 47,324 5,499 7,401
Apache C. Compress (1.8) 17,462 181 57,083 4,634 7,605
Apache C. Lang (3.0) 18,997 141 47,773 7,179 9,057
Apache C. Math (3.2) 81,792 845 288,250 18,576 41,023
Apache C. Primitive (1.0) 9,836 231 18,462 1,446 3,290
Apache Commons Cli (1.2) 1,978 20 3,588 490 512

Apache Shiro-core (1.2.3) 13,818 217 27,964 3,291 3,770
ASM (5.0.1) 24,193 176 65,146 7475 9,765
ClassViewer (5.0.5b) 1,485 23 5,266 470 609
Dcparseargs (10/2008) 204 6 652 88 103
Easymock (3.2) 4,372 79 9,449 915 1,382
Fixsuite (R48) 2,665 36 6,520 374 804
Guava (16.0.1) 66,566 1,546 136,321 11,247 20,709
Hamcrest-core (1.3) 1,253 40 2,199 155 314
Jcommander (1.36) 2,154 34 5,688 640 686
Java Simp. Arg. Parser (2.1) 4,888 69 8,623 714 969
Java View Control (1.1) 4,617 24 15,650 2,064 2,084
Javassit (3.19) 34,574 367 87,381 8,830 n.a.
Javax Mail (1.5.1) 28,271 284 79,599 9,523 11,070
Jaxen (1.1.6) 20,345 175 20,352 3,323 4,338
Jdom (1.0) 8,362 70 20,970 3,196 4,116
Joda Time (2.3) 27,638 208 62,627 6,172 9,838
Mango (2.1 03/2014) 2,141 90 3,689 382 556
Nekomud (R16) 363 8 809 44 63
Pmd-ded (5.2.2) 1,608 20 2,902 305 384
SAT4J Core (2.3.5) 17,397 213 41,840 3,815 6,140
SCCH collection (1.0) 1,348 25 2,688 292 433
Sif4j-api (1.7.12) 1,504 18 2,581 271 265
Tiny Sql (2.26) 7,672 31 20,850 2,237 2,755
Total 464,252 6,026 1,192,698 111,159 160,933

abstract interpreter using ASM [7]. Impurity is based on Relm
& Relmlnfer [26]. Bloodhound is implemented by adapting
JaCoCo [28] to support on-line coverage collection during
test generation. Based on our experience of developing GRT,
we empirically set its parameters for the experiments; fur-
ther parameter tuning is possible. For constant mining, we
set the probability as peonse = 0.01. For primitive value
fuzzing, we select 0 = 30 as the standard deviation for
Gaussian distribution fuzzing; this covers boundary conditions
and character constant ranges well. For coverage guidance,
we set parameters of the weight formula and time interval
as p = 0.99,a = 0.9,t = b0seconds (see Section III-F).
Using this configuration we evaluate GRT by investigating the
following questions:

QI1: What code coverage and mutation score are achieved by
GRT, compared to Randoop and EvoSuite?

Q2: How does each tool perform given different time budgets?

Q3: How much does each component of GRT contribute to
code coverage?

Q4: How many existing defects can be detected by GRT in a
controlled study?

Q5: How many new defects can GRT reveal in real-world
software?

A. Subject Programs and Setting

We compare GRT with Randoop 1.3.4[49], and with Evo-
Suite (snapshot Oct. 14, 2014) [14]. We select EvoSuite
because it represents the state of the art in search-based
testing [21], [19].
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Fig. 6. Instruction coverage, branch coverage and mutation score of Randoop, GRT and EvoSuite over 32 subjects for a time budget of 2s to 60 s/class.
TABLE IIL RESULTS: AVERAGE INSTRUCTION/BRANCH COVERAGE 100
AND MUTATION SCORE OVER 32 BENCHMARKS, FOR DIFFERENT TIME
BUDGETS. [
80 T
Time Insn. cov. [%] Branch cov. [%] Mutation score [%]
budget 60

Ran. GRT Evo. Ran. GRT Evo. Ran. GRT Evo.

2s 474 60.6 438 351 495 326 345 473 368
10s 51.1 663 520 393 56.7 425 393 547 46.1
30s 529 682 578 413 592 494 419 578 519
60s 536 689 60.8 42.6 603 533 439 592 545

To answer Q1-Q3, we run all tools on a collection of
32 popular real-world programs. The overview in Table II
shows for each program its name and version, its overall
size in terms of non-comment lines of source code (NCLOC,
measured by CLOC 1.60 [11]), the number of classes, the
number of instructions and branches in the bytecode (measured
by JaCoCo v0.6.4 [28]), and the number of mutants generated
by the mutation analysis tool PIT [47].

Our experiments were executed on a computer cluster. Each
cluster node ran a GNU/Linux system (Ubuntu 12.04 LTS)
with Linux kernel 3.5.0, on a 16-core 1.4 GHz AMD 64-bit
CPU with 48 GB of RAM. We used Oracle’s Java VM (JVM)
version 1.7.0_65, allocating up to 4 GB for the JVM.

B. Code Coverage and Mutation Score

Q1 and Q2: We compare the effectiveness of GRT, Ran-
doop and EvoSuite, in terms of code coverage and mutation
score. We run each tool on each study subject with four test
time budgets: 2 s/class, 10 s/class, 30 s/class, and 60 s/class.
Pre- and post-processing, such as loading classes and writing
test cases to disk, are not counted towards that time budget. As
also discussed in other work [17], we use different time budget
configurations to account for different use cases, from testing
during a coffee break to generating tests over night. For each
configuration (time budget, tool, subject), the experiments are
repeated 10 times to mitigate the influence of the randomness
of the tools. As each tool sometimes generates tests that do
not compile, our experimental platform automatically removes
uncompilable code at a method level. All the compilable tests
are then evaluated by JaCoCo for code coverage. As a conven-
tional procedure for mutation analysis [30], we first filter out
generated test cases that fail on the original programs, and then
send the passing tests to PIT to compute the mutation score that
measures the ability of killing automatically generated mutants.

- |
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Fig. 7. Branch coverage for each component on our 32 benchmarks (600 s).

With a time budget of 60 s/class, the tools mostly reach a
state in which code coverage and mutation score grow much
slower or stop growing (with few exceptions when running
EvoSuite). Since the amount of time is allocated for each class
(instead of the entire SUT), the results are largely independent
of the size of the subject programs. When extending the time
budget, large subjects (e.g., Guava) run for many hours, as
mutation analysis incurs a high computational cost [30] and
sometimes takes longer than test generation itself. For example,
on Jaxen, each tool takes about 2 hours to finish test generation
when choosing 60 s/class as time budget, but it takes more than
10 hours for running the mutation analysis with PIT. In total,
over all cluster nodes, the experiments consumed more than
one year of computation time.

Figure 6 shows instruction coverage, branch coverage and
mutation scores achieved by Randoop, GRT and EvoSuite
over the 32 study subjects for each time budget configuration
ranging from 2-60 s/class. Table III summarizes the results in
terms of average code coverage and mutation score. The results
show that when running with a short time budget, (2s or 10s),
GRT has a clear advantage on both higher code coverage (by
28-52 %) and mutation score (by 19-39 %) compared with
Randoop and EvoSuite. When the provided test time budget
increases, the overall code coverage and mutation score of all
tools increase, too. EvoSuite shows a noticeable improvement
from 2 s to 60s, reducing the coverage gap between GRT and
EvoSuite. This is because EvoSuite first performs an initial
random search and then uses evolutionary search to improve its
results [19]; the latter phase requires a certain amount of time
to become effective. With the largest time budget of 60 s/class
the coverage of EvoSuite tends to plateau out. For Randoop,
coverage tends to saturate after about 30 s/class.



For the largest time budget of 60 s/class, the average branch
coverage from GRT is 42% = (60.3 — 42.6)/42.6 higher
than with Randoop and 13 % higher than with EvoSuite. For
the average instruction coverage, the values are 29 % and
13 %, respectively. On the average mutation score, GRT also
outperforms Randoop by 35 % and EvoSuite by 9 %, indicating
that the tests generated by GRT have better performance in
revealing automatically seeded faults (mutants). The evaluation
of the coverage and mutation scores over all 32 subjects shows
that the improvement of GRT over Randoop and EvoSuite
is statistically significant (Wilcoxon Matched-Pairs Signed-
Ranks Test [53], p < 0.05 in all cases). The effect size
is determined using Vargha and Delaneys A measure [60];
A =0.58 to 0.73. For assessing the results of the individual
subjects we follow the guidelines proposed by Arcuri and
Briand [3]. The results including code coverage and mutation
scores for each benchmark are available on our website [24].

These results were also confirmed by the Search-Based
Software Testing Competition [50], [36], where GRT competed
with six other tools, also including Randoop and Evosuite. The
tools were compared over a benchmark that was not revealed to
participants a priori, following a fully automated competition
protocol that evaluated the effectiveness and efficiency of the
tools. The benchmark contained 63 classes taken from 10
open source Java packages. GRT achieved the highest score
of all tools [50], which was calculated based on obtained
code coverage, mutation score, and the time used to prepare,
generate and execute the test cases [50].

Q3: We run GRT with each of its six components enabled
individually in comparison to GRT with all components en-
abled on our 32 subjects with 600s as global time budget.
We observe a coverage improvement for each component and
for full GRT as time increases. In general, each individual
component of GRT contributes to the overall effectiveness; the
impact of each component varies across different subjects. The
combination of all six components is usually stronger than any
single component, as can be seen from the branch coverage
boxplots over all 32 subjects (Fig. 7).

Fig. 8—Fig. 10 show three examples of how each com-
ponent improves code coverage. Constant mining is effective
when extracted constants relate to branch conditions (Fig. 8).
Sometimes, detective makes a breakthrough by automatically
constructing objects of specific types (Fig. 9). Fig. 10 shows
another example, where orienteering outperforms the other
components of GRT. Other plots can be found online [24].

C. Defect Detection

Q4 and Q5: We first evaluate the defect detection ability of
each tool on the Defects4] framework [31], and then use GRT
to find new unknown defects in popular open source projects.

1) Defects4J: The Defects4] framework enables testing
studies using existing real faults. It contains 357 real faults
reported in five open source projects [31], [32]. For each
fault, Defects4] uses two versions of the program: a faulty
version and a correct version. Defects4] first runs a testing
tool on the correct version to generate test suites, and then
runs the generated test suites on the faulty version to see if

the bug is detected.! The outcome of a technique on a specific
fault is Pass, Fail, or Broken, which means the fault is not
detected, successfully detected, or the tests fail on the bug-
free version (in this case, the generated tests cannot be used
to determine whether they could detect bugs), respectively. To
make experiments efficient, Defects4] provides the information
on fault-related classes, so that tools can focus on these
classes (instead of the entire SUT) when generating test cases.

We run GRT, Randoop, and EvoSuite on Defects4] to
compare their fault-detection ability in a controlled environ-
ment (i.e., the faults are known). We use 120 seconds, 300
seconds and 600 seconds as the global time budget when
comparing GRT and Randoop in different use cases, and
allocate 120 seconds, 300 seconds and 600 seconds for each
class when running EvoSuite on Defects4]. This should be
sufficient for each tool to generate test cases and is reasonable
for our available computing resources. To mitigate the effects
of randomness, we run each tool 10 times to generate 10 test
suites (one test suite each time) to detect each fault. We then
measure the faults detected by each tool by aggregating the
faults found by the 10 generated test suites in each setting.

As shown in Table IV, each tool detects more bugs when
using a larger time budget setting, and GRT shows the largest
improvement (29=147 — 118) when the time budget increases
from 120s to 600s. GRT also detects more faults than Ran-
doop and EvoSuite in all subjects. In particular, GRT can detect
23 out of 26 (88 %) faults in JFreeChart, 21 out of 27 (77 %)
faults in JodaTime, and more than 50 % of the real faults in
both Apache Math and Apache Lang using 600 s as global time
budget. This result demonstrates GRT’s strong fault detection
ability, in a controlled study using a large number of real faults
under different time budget settings.

Table IV shows the four cases where we were able to
replicate most of the data on Randoop and EvoSuite from a
previous study on Defects4J [32]. Table IV does not include
data for the fifth subject, Closure Compiler, because all tools
detect unexpectedly few faults.”> Other minor deviations from
the previous study can be attributed to differences in our
computing environment, including hardware and software, and
the exact configurations; we used mostly default settings.’

2) Open Source Software: To evaluate GRT’s ability to find
new, previously unknown defects, we apply it to the latest
versions of 10 popular, widely used open source projects. We
use system exceptions, crashes, and the behaviors stipulated
for the base class java.lang.Object (e.g., the reflexivity
property of equals ()) as the test oracle [43].

As the failed tests generated by GRT require manual
analysis to determine whether they reveal frue bugs or generate
false positives, we selected projects that are still under active

IDefects4] removes all uncompilable tests, failed tests, and non-
deterministic tests before running a test suite for bug detection.

2In private communications with an author of Defects4], we confirm that
it is quite challenging to generate useful test cases for Closure Compiler, but
we could not confirm the root causes; this deserves future research.

3In their study on correlations between mutants and real faults [32], the
authors of Defects4] generated 30 test suites with EvoSuite (per configuration)
and 6 test suites with Randoop (per configuration) for each subject. As our
aim is to compare different techniques, we generate the same number of test
suites (i.e., 10) with Randoop, GRT, and EvoSuite with similar time budget
on each setting, to make the comparison as fair as possible.
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TABLE IV. DEFECT DETECTION IN DEFECTS4] BENCHMARKS . .
plateau at 60 s/class. Compared with Randoop and EvoSuite,
Program  1s0lated Ran. (global time) GRT (global time) ~ Evo. (time/class) GRT achieves a high coverage sooner (Q2). Not all compo-
defect 1 1
efects e 300s 600s 120s 300s 600s 120s 300s 600s nents .of GRT are equally effective in all cases, yet the overgll
Py o 5 5 1w 5 » 5 o s effectiveness of GRT results from the synergy between all six
reet art . .
Apa. Math 106 32 39 45 58 65 68 48 53 58 components (Q3). GRT is able to Qetect about two thirds of
Joda-Time 27 12 12 12 12 19 21 13 15 16 the known faults on the studied subjects of Defects4] (Q4) as
Apa. Lang 65 10 14 14 28 30 35 21 24 27 well as a number of new, previously unknown faults in the
Total 24 69 8 88 118 138 147 97 109 119 latest versions of real-world programs (QS5).
TABLE V. DEFECT DETECTION: GRT FINDS 23 PREVIOUSLY E. Threats to Vahd”y
UNKNOWN DEFECTS. The selection of study subjects is always a threat to validity.
“on Failed Filtered Identified issues Issue We. try to counter this bY ch0951ng 3.2 Q1verse programs from
ottware tests  tests numbers various application domains with their sizes ranging from very
issues false unkn. true . 1. .
small to fairly large. An external threat to validity is caused
2' gg}iec ; } (1) 8 8 (1) 183, 184 by the randomness of the three tools. We run each tool on the
A Collection 56 25 15 13 0 2 512.516 same configuration 10 times to diminish this threat, and have
A. Compress 25 0 4 0 0 4 273-276 not observed significant variance caused by randomness. A re-
2‘ gﬁ’mve 72 48 1; ? (1) (7] HI5-1118, 12?‘7‘ lated threat is that different tools may require different amounts
Guava 13 5 s 6 0 2 1722-1724 of time to exhibit their best performance. As a countermeasure,
JavaMail 20 12 6 0 0 6 6365-6368 we use four different time budgets to study the effectiveness
%:;EEL ; ! é (1) 2 (1) | 4_121; of each tool in most typical use cases. We have fully utilized
our computing resources to extend the time budget as much as
Total 208 90 56 27 6 23

development (the last update being less than a year ago), and
for which the number of failed test cases is not prohibitively
high (i. e, fewer than 100 failed tests); see Table V.

From the 208 failed tests, we first filter out tests that
confirm a problem that is either known or not going to be
fixed in the code, such as bugs caused by using deprecated
methods and infinite recursion in container data structures.
We then manually simplify the remaining tests and identify
duplicates by comparing the stack traces and the sequences of
method calls of different tests. This results in 56 distinct issues.
We reported these using the projects’ bug tracking systems,
combining similar issues into one bug report. According to the
developers’ feedback, GRT found 23 new, previously unknown
defects (see Table V).

D. Summary

Compared with Randoop and EvoSuite, GRT significantly
improves code coverage and mutation scores (Q1). The advan-
tage of GRT is observed for all time budget configurations,
from 2s/class to 60 s/class; the tools mostly tend to reach a

possible (up to 60 s/class). Another threat is that we have not
examined all tool configurations. In particular, EvoSuite can
be configured to satisfy one of three criteria, including branch
coverage, weak mutation testing, or strong mutation testing.
Our study uses the default configuration, which is branch
coverage. However, as indicated in a previous study [32] on
Defects4], the other two configurations would yield similar
overall results in terms of detected bugs. From the authors
of Defects4], we also obtained the breakdown of their earlier
study [32] and confirmed that there are minor differences
between results generated by different configurations.

We did not compare GRT with test generation tools based
on symbolic execution. This may miss an important aspect of
our study. It is because we could not find an existing symbolic
execution based automatic test tool that supports to test Java
programs and works on the large set of subjects that we used.
However, the idea of symbolic execution is orthogonal to the
framework of GRT and could be integrated as another analysis
component in GRT in the future.

V. RELATED WORK

Given the large body of work on automated testing, we
discuss only work closely related to GRT. For further work,
we refer readers to representative surveys [1], [39], [46], [18].



1) Variants of Random Testing: The critical step in auto-
matic test case generation for object-oriented programs is to
prepare input objects with desirable object states. An input
object can be constructed by either direct construction [6],
[38] or method sequence construction returning the desired
objects [44], [55], [66]. Direct construction approaches, e.g.,
Korat [6] and TestEra [38], construct objects by assigning
fields directly. They use specifications defined in languages,
such as Alloy, and are therefore not fully automated.

Most random techniques create required input objects by
method sequence construction [12], [42], [44], [55], [65].
JCrasher [12] creates input objects by using a parameter graph
to find method type dependencies (similar to our dependency
method extraction described in Section III-D). Eclat [42] and
Randoop [44], [43] use feedback from previous tests. The run-
time phase of GRT is based on the same basic idea, however,
it performs sophisticated dynamic analysis to generate finer-
grained feedback. In addition, the static phase of GRT extracts
useful information of the SUT to support the run-time phase.

Adaptive random testing (ART) [8], [1] improves the
defect detection effectiveness of random testing by evenly
spreading test input selection across the input domain. Since its
introduction by Chen et al. [9], various studies [8], [10], [33]
have shown that ART requires fewer tests to detect defects than
random testing. However, it has also been shown that ART has
a high computational overhead [2], [45], and has difficulties in
testing large SUTSs that require complex inputs [1]. It would be
interesting to include adaptive random testing (ART) tools in
the analysis of GRT as well, as our constant mining technique
is related to it. Unfortunately, we are not aware of any publicly
available ART tools that support Java and work on the large set
of benchmarks we used. We leave the study on the usefulness
of ART as a GRT component as future work.

2) Random Testing Guided by Domain Knowledge: Several
tools take advantage of the information contained in existing
test cases (method sequences). MSeqGen [55] mines frequently
used sequence patterns from code bases. Palus [65] trains a
method sequence model from existing test cases, which is
used for test generation at run-time. OCAT [29] adopts object
capture-and-replay techniques, where object states are captured
from running sample test cases and then used as input for
further testing. Similar to these techniques, GRT also makes
use of program analysis to guide random testing, but GRT
does not require extra information sources, such as existing
test cases and code bases.

3) Systematic Testing: In contrast to random testing, sym-
bolic execution represents input as symbolic values, execu-
tion is based on abstract semantics, and path conditions are
computed by leveraging constraint solvers. Tools like Java
PathFinder [62] and Symbolic PathFinder [34] generate test
cases in this way. Hybrid approaches of random (concrete)
and symbolic execution, called concolic execution, are imple-
mented by tools like DART [23], Cute and JCute [52], [51],
Pex [56], and Dsc [27].

An alternative to symbolic execution is bounded exhaustive
testing [38], [6], [63], which exhaustively generates method
sequences up to a small bound of sequence length. However,
real-world software usually requires longer test sequences to
examine more program states beyond a small bound.

4) Evolutionary Testing: Evolutionary testing [57], [4],
[19], [16] leverages evolutionary algorithms to evolve
and search for test sequences that optimize their fitness,
e.g., branch coverage, in a limited search budget. Evo-
Suite [19], [16], [22] implements such an approach. Yet it goes
beyond traditional techniques as it adopts a hybrid approach
to automatically generate and optimize the whole test suites
towards satisfying coverage criteria. It has been shown effec-
tive in achieving high coverage on real-world software [18],
[20]. GRT shares some ideas with EvoSuite, such as extracting
constants from SUT. Using EvoSuite, Fraser and Arcuri [17]
study the influence of seeding constants (extracted from SUT)
on the search-based testing techniques. The constant mining
component of GRT is based on a similar assumption: Constants
used in the SUT are more likely to be useful in testing.
However, GRT uses different strategies, namely frequency-
based prioritization and value fuzzing, to improve the use-
fulness of the extracted constants. We have not investigated
how constants extracted from existing test cases can improve
GRT (the third strategy studied by EvoSuite [17]). Although
this can be a promising enhancement to GRT, it would make
GRT dependent on external knowledge (i.e., existing tests).

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose GRT, a technique that combines
static analysis and run-time analysis to guide random testing.
GRT does not rely on knowledge outside of the SUT. Our
static analysis extracts domain knowledge from the SUT
as input for run-time test generation. Our dynamic analysis
systematically improves test coverage in the generation phase.
We have evaluated GRT thoroughly on a large set of real-world
projects. Our approach exhibits significant improvements on
code coverage, mutation score, and the ability to find defects.

Our work shows that random testing has not reached its
limits yet. GRT itself can be improved in a number of ways.
It is tempting to incorporate symbolic execution techniques
to achieve higher code coverage, especially in the face of
complicated branches. Simple specialized treatments, such as
handling less visible code, may be surprisingly effective. We
also plan to enhance the test oracle of GRT. Currently, GRT
focuses on leveraging program analysis to obtain high code
coverage, using simple oracles, such as software crashes and
exceptions. Sometimes the oracles are too weak to detect the
faults, even though the faulty code is executed. Automated
specification mining that extracts information on valid uses
of a system [13], [48] would be a promising next step
towards stronger test oracles. Considering the sheer number
of generated test cases, reducing false positives is another
important task. Possible solutions include options to avoid
deprecated code and recursive data structures. Developing an
efficient test simplification technique is also helpful to ease the
validation of failed tests. Enabling the application of GRT in
more scenarios [35] is another direction of our future work.
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